Levosimendan and Dobutamin Attenuate LPS-Induced Inflammation in Microglia by Inhibiting the NF-κB Pathway and NLRP3 Inflammasome Activation via Nrf2/HO-1 Signalling

Mannino, Federica and Brancati, Valentina Urzì and Lauro, Rita and Pirrotta, Igor and Rottura, Michelangelo and Irrera, Natasha and Cavallini, Gian Maria and Pallio, Giovanni and Gitto, Eloisa and Manti, Sara (2024) Levosimendan and Dobutamin Attenuate LPS-Induced Inflammation in Microglia by Inhibiting the NF-κB Pathway and NLRP3 Inflammasome Activation via Nrf2/HO-1 Signalling. Biomedicines, 12 (5). p. 1009. ISSN 2227-9059

[thumbnail of 12/5/1009] Text
12/5/1009 - Published Version

Download (382kB)

Abstract

Hypovolemic shock is a circulatory failure, due to a loss in the effective circulating blood volume, that causes tissue hypoperfusion and hypoxia. This condition stimulates reactive oxygen species (ROS) and pro-inflammatory cytokine production in different organs and also in the central nervous system (CNS). Levosimendan, a cardioprotective inodilator, and dobutamine, a β1-adrenergic agonist, are commonly used for the treatment of hypovolemic shock, thanks to their anti-inflammatory and antioxidant effects. For this reason, we aimed at investigating levosimendan and dobutamine’s neuroprotective effects in an “in vitro” model of lipopolysaccharide (LPS)-induced neuroinflammation. Human microglial cells (HMC3) were challenged with LPS (0.1 µg/mL) to induce an inflammatory phenotype and then treated with levosimendan (10 µM) or dobutamine (50 µM) for 24 h. Levosimendan and dobutamine significantly reduced the ROS levels and markedly increased Nrf2 and HO-1 protein expression in LPS-challenged cells. Levosimendan and dobutamine also decreased p-NF-κB expression and turned off the NLRP3 inflammasome together with its downstream signals, caspase-1 and IL-1β. Moreover, a reduction in TNF-α and IL-6 expression and an increase in IL-10 levels in LPS-stimulated HMC3 cells was observed following treatment. In conclusion, levosimendan and dobutamine attenuated LPS-induced neuroinflammation through NF-κB pathway inhibition and NLRP3 inflammasome activation via Nrf2/HO-1 signalling, suggesting that these drugs could represent a promising therapeutic approach for the treatment of neuroinflammation consequent to hypovolemic shock.

Item Type: Article
Subjects: Academic Digital Library > Multidisciplinary
Depositing User: Unnamed user with email info@academicdigitallibrary.org
Date Deposited: 04 May 2024 12:03
Last Modified: 04 May 2024 12:03
URI: http://publications.article4sub.com/id/eprint/3301

Actions (login required)

View Item
View Item