iPSCs in Modeling and Therapy of Osteoarthritis

Csobonyeiova, Maria and Polak, Stefan and Nicodemou, Andreas and Zamborsky, Radoslav and Danisovic, Lubos (2021) iPSCs in Modeling and Therapy of Osteoarthritis. Biomedicines, 9 (2). p. 186. ISSN 2227-9059

[thumbnail of biomedicines-09-00186-v2.pdf] Text
biomedicines-09-00186-v2.pdf - Published Version

Download (569kB)

Abstract

Osteoarthritis (OA) belongs to chronic degenerative disorders and is often a leading cause of disability in elderly patients. Typically, OA is manifested by articular cartilage erosion, pain, stiffness, and crepitus. Currently, the treatment options are limited, relying mostly on pharmacological therapy, which is often related to numerous complications. The proper management of the disease is challenging because of the poor regenerative capacity of articular cartilage. During the last decade, cell-based approaches such as implantation of autologous chondrocytes or mesenchymal stem cells (MSCs) have shown promising results. However, the mentioned techniques face their hurdles (cell harvesting, low proliferation capacity). The invention of induced pluripotent stem cells (iPSCs) has created new opportunities to increase the efficacy of the cartilage healing process. iPSCs may represent an unlimited source of chondrocytes derived from a patient’s somatic cells, circumventing ethical and immunological issues. Aside from the regenerative potential of iPSCs, stem cell-derived cartilage tissue models could be a useful tool for studying the pathological process of OA. In our recent article, we reviewed the progress in chondrocyte differentiation techniques, disease modeling, and the current status of iPSC-based regenerative therapy of OA.

Item Type: Article
Subjects: Academic Digital Library > Biological Science
Depositing User: Unnamed user with email info@academicdigitallibrary.org
Date Deposited: 17 Dec 2022 06:12
Last Modified: 11 Sep 2023 10:56
URI: http://publications.article4sub.com/id/eprint/3

Actions (login required)

View Item
View Item