The Impact of Melatonin and NLRP3 Inflammasome on the Expression of microRNAs in Aged Muscle

Sayed, Ramy KA and Fernández-Ortiz, Marisol and Fernández-Martínez, José and Aranda Martínez, Paula and Guerra-Librero, Ana and Rodríguez-Santana, César and de Haro, Tomás and Escames, Germaine and Acuña-Castroviejo, Darío and Rusanova, Iryna (2021) The Impact of Melatonin and NLRP3 Inflammasome on the Expression of microRNAs in Aged Muscle. Antioxidants, 10 (4). p. 524. ISSN 2076-3921

[thumbnail of antioxidants-10-00524.pdf] Text
antioxidants-10-00524.pdf - Published Version

Download (3MB)

Abstract

Muscular aging is a complex process and underlying physiological mechanisms are not fully clear. In recent years, the participation of the NF-kB pathway and the NLRP3 inflammasome in the chronic inflammation process that accompanies the skeletal muscle’s aging has been confirmed. microRNAs (miRs) form part of a gene regulatory machinery, and they control numerous biological processes including inflammatory pathways. In this work, we studied the expression of four miRs; three of them are considered as inflammatory-related miRs (miR-21, miR-146a, and miR-223), and miR-483, which is related to the regulation of melatonin synthesis, among other targets. To investigate the changes of miRs expression in muscle along aging, the impact of inflammation, and the role of melatonin in aged skeletal muscle, we used the gastrocnemius muscle of wild type (WT) and NLRP3-knockout (NLRP3−) mice of 3, 12, and 24 months-old, with and without melatonin supplementation. The expression of miRs and pro-caspase-1, caspase-3, pro-IL-1β, bax, bcl-2, and p53, was investigated by qRT-PCR analysis. Histological examination of the gastrocnemius muscle was also done. The results showed that age increased the expression of miR-21 (p < 0.01), miR-146a, and miR-223 (p < 0.05, for both miRs) in WT mice, whereas the 24-months-old mutant mice revealed decline of miR-21 and miR-223 (p < 0.05), compared to WT age. The lack of NLRP3 inflammasome also improved the skeletal muscle fibers arrangement and reduced the collagen deposits compared with WT muscle during aging. For the first time, we showed that melatonin significantly reduced the expression of miR-21, miR-146a, and miR-223 (p < 0.05 for all ones, and p < 0.01 for miR-21 at 24 months old) in aged WT mice, increased miR-223 in NLRP3− mice (p < 0.05), and induced miR-483 expression in both mice strains, this increase being significant at 24 months of age.

Item Type: Article
Subjects: Academic Digital Library > Agricultural and Food Science
Depositing User: Unnamed user with email info@academicdigitallibrary.org
Date Deposited: 07 Oct 2023 09:44
Last Modified: 07 Oct 2023 09:44
URI: http://publications.article4sub.com/id/eprint/2017

Actions (login required)

View Item
View Item