Galactic Panspermia

Ginsburg, Idan and Lingam, Manasvi and Loeb, Abraham (2018) Galactic Panspermia. The Astrophysical Journal, 868 (1). L12. ISSN 2041-8213

[thumbnail of Ginsburg_2018_ApJL_868_L12.pdf] Text
Ginsburg_2018_ApJL_868_L12.pdf - Published Version

Download (322kB)

Abstract

We present an analytic model to estimate the total number of rocky or icy objects that could be captured by planetary systems within the Milky Way Galaxy and result in panspermia should they harbor life. We estimate the capture rate of objects ejected from planetary systems over the entire phase space as well as time. Our final expression for the capture rate depends upon the velocity dispersion as well as the characteristic biological survival time and the size of the captured object. We further take into account the number of stars that an interstellar object traverses, as well as the scale height and length of the Milky Way's disk. The likelihood of Galactic panspermia is strongly dependent upon the survival lifetime of the putative organisms as well as the velocity of the transporter. Velocities between 10–100 km s−1 result in the highest probabilities. However, given large enough survival lifetimes, even hypervelocity objects traveling at over 1000 km s−1 have a significant chance of capture, thereby increasing the likelihood of panspermia. Thus, we show that panspermia is not exclusively relegated to solar system-sized scales, and the entire Milky Way could potentially be exchanging biotic components across vast distances.

Item Type: Article
Subjects: Academic Digital Library > Physics and Astronomy
Depositing User: Unnamed user with email info@academicdigitallibrary.org
Date Deposited: 27 Jun 2023 05:03
Last Modified: 26 Oct 2023 04:36
URI: http://publications.article4sub.com/id/eprint/1935

Actions (login required)

View Item
View Item