Corollary discharge enables proprioception from lateral line sensory feedback

Skandalis, Dimitri A. and Lunsford, Elias T. and Liao, James C. and Baden, Tom (2021) Corollary discharge enables proprioception from lateral line sensory feedback. PLOS Biology, 19 (10). e3001420. ISSN 1545-7885

[thumbnail of journal.pbio.3001420.pdf] Text
journal.pbio.3001420.pdf - Published Version

Download (3MB)

Abstract

Animals modulate sensory processing in concert with motor actions. Parallel copies of motor signals, called corollary discharge (CD), prepare the nervous system to process the mixture of externally and self-generated (reafferent) feedback that arises during locomotion. Commonly, CD in the peripheral nervous system cancels reafference to protect sensors and the central nervous system from being fatigued and overwhelmed by self-generated feedback. However, cancellation also limits the feedback that contributes to an animal’s awareness of its body position and motion within the environment, the sense of proprioception. We propose that, rather than cancellation, CD to the fish lateral line organ restructures reafference to maximize proprioceptive information content. Fishes’ undulatory body motions induce reafferent feedback that can encode the body’s instantaneous configuration with respect to fluid flows. We combined experimental and computational analyses of swimming biomechanics and hair cell physiology to develop a neuromechanical model of how fish can track peak body curvature, a key signature of axial undulatory locomotion. Without CD, this computation would be challenged by sensory adaptation, typified by decaying sensitivity and phase distortions with respect to an input stimulus. We find that CD interacts synergistically with sensor polarization to sharpen sensitivity along sensors’ preferred axes. The sharpening of sensitivity regulates spiking to a narrow interval coinciding with peak reafferent stimulation, which prevents adaptation and homogenizes the otherwise variable sensor output. Our integrative model reveals a vital role of CD for ensuring precise proprioceptive feedback during undulatory locomotion, which we term external proprioception.

Item Type: Article
Subjects: Academic Digital Library > Biological Science
Depositing User: Unnamed user with email info@academicdigitallibrary.org
Date Deposited: 24 Jan 2023 06:03
Last Modified: 15 Sep 2023 04:34
URI: http://publications.article4sub.com/id/eprint/161

Actions (login required)

View Item
View Item