Aromatic Hydrazide Compounds That Inhibit the Growth of Mycobacterium tuberculosis

Bartzatt, Ronald and Sule, Preeti and Galbadage, Thushara and D. Cirillo, Jeffrey (2020) Aromatic Hydrazide Compounds That Inhibit the Growth of Mycobacterium tuberculosis. Journal of Advances in Medical and Pharmaceutical Sciences, 21 (4). pp. 1-11. ISSN 2394-1111

[thumbnail of sciencedomain,+Bartzatt2142020JAMPS54244.pdf] Text
sciencedomain,+Bartzatt2142020JAMPS54244.pdf - Published Version

Download (443kB)

Abstract

Aims: To demonstrate the efficacy of aromatic hydrazide compounds to inhibit growth of Mycobacterium tuberculosis.

Study Design: To synthesize tuberculostats and test their antibacterial activity in-vitro.

Place and Duration of Study: University of Nebraska, Durham Science Center, 6001 Dodge Street, Omaha NE 68182, and Texas A&M Health Science Center, Department of Microbial Pathogenesis and Immunology, 8447 State Hwy 47, Medical Research and Education Building, Room #3012, Bryan, TX 7780. From March 2019 to October 2019.

Methodology: Hydrazide functional groups were formed by covalently bonding hydrazine onto a carbonyl carbon that is a substituent of a single aromatic ring. Microwave excitation was utilized for synthesis, followed by evaluation of antibacterial activity. These compounds were placed into tissue culture media at various concentrations and then Mycobacterium tuberculosis bacteria was added, in order to determine the level of growth inhibition. Growth inhibition of the bacteria was measured as a function of compound concentration versus growth inhibition.

Results: Compounds A, B, C, and D carry hydrazide groups as a substituent to a single aromatic ring. All four compounds show zero violations of Rule of 5, indicating favorable drug-likeness. All four compounds showed greater than 50% growth inhibition of bacteria at concentrations below 50 micrograms per milliliter. Growth inhibition was measured by colony forming units and luminescence. Polar surface area, Log P, molecular volume, and other molecular properties were determined for these four compounds.

Conclusion: These four hydrazide compounds induced substantial inhibition of bacterial growth. Microwave excitation for the synthesis of hydrazide compounds is effective. These compounds have favorable drug-likeness properties and are highly effective inhibiting the growth of Mycobacterium tuberculosis.

Item Type: Article
Subjects: Academic Digital Library > Medical Science
Depositing User: Unnamed user with email info@academicdigitallibrary.org
Date Deposited: 30 Mar 2023 12:06
Last Modified: 15 May 2024 09:41
URI: http://publications.article4sub.com/id/eprint/1134

Actions (login required)

View Item
View Item