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ABSTRACT 
 

The increasing human population requires greater rice production and methane is the second most 
potent greenhouse gas emitted from rice soils under anaerobic conditions. To address this, an 
experiment was carried out in two phases. In the first phase of the experiment, Si content 
accessed in the rice index leaves and recorded the mean values of 2.50, 2.48, 2.51 and 2.43% at 
Jagtial, Warangal, Rajendranagar and Rudrur varietal display plots in Telangana. For the second 
phase of field experiment, one with high Si (JGL-3855) and another with low Si (RNR-2354) 
content genotypes were selected with each four levels of N (0, 80, 120 & 160 kg ha-1) and Si (0, 
200, 400 & 600 kg ha

-1
) in strip plot design. Conjunctive application of N and Si to both genotypes, 

JGL-3855 recorded significantly higher grain and straw yield compared to RNR-2354, among the 
different combinations of Si and N, application 160 kg N + 600 kg Si ha

-1
 recorded significantly 

higher grain and straw yields (7180 and 9693 kg ha-1). The treatments which received a higher 
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dose of Si@600 kg ha-1 in combination with N@ 80, 120 and 160 registered the lower emission of 
methane@ 25.7, 24.6 and 24.3 mg m

-2
 hr

-1 
and there was a significant scaling down of pest and 

disease incidence was noticed in treatments wherever increased Si doses (0, 200, 400 and 600 kg 
ha

-1
) were included. 

 
 

Keywords: Silicon; nitrogen; CH4 emission; rice; pest and diseases. 
 

1. INTRODUCTION 
 

In agricultural soils, fluxes of greenhouse gases 
are affected by soil factors such as           
temperature, water, and inorganic N fractions 
(NH4

+
 and NO3

−
). As a result, unique nature of 

flooded rice systems has been identified as a 
major source of CH4 which accounts for 
approximately 15% annual global emissions [1]. 
Predictions based on population growth rate in 
countries where the rice is the staple food 
projects rice production increase by 60% in the 
next few decades to meet the expected food 
demand for the growing population [2] and 
further it may increase the CH4 emissions to 
accelerate global warming effects. Production of 
CH4 and oxidation in flooded rice soils are 
regulated by various microorganisms,                   
which are controlled by physical, chemical and 
biological factors present in the soil. Among the 
various factors, the content of soil oxidants 
(electron acceptors) and reductants                   
(electron donors) play a vital role in controlling 
CH4 emissions from wetland rice agriculture          
[3].  
 
Although CH4 emission was suppressed by 
application of iron oxides in paddy soils [4-6] and 
silicate fertilizers contain a high amount of active 
iron oxides, resulting in enhancing the activity of 
iron‐reducing bacteria, and correspondingly 
depressing the activity of methanogenesis, as 
competing for electron donor [7]. In addition, 
application of silicate fertilizers promoted rice 
root growth, thus leading to an increase in root 
oxygen exudation, enhancement of 
methanotrophic activity, depression of 
methanogenic activity and reduction in CH4 
emission [8]. Moreover, Silicon (Si) is the only 
element known that does not damage plants 
upon its excess accumulation and reduces the 
concentration of toxic elements like Al, Mn and 
other heavy metals and necessary for healthy 
rice growth [9] to increase yield potential [10] and 
developing resistance to pest and pathogens 
[11]. Therefore, this experiment was undertaken 
to investigate the feasibility of a combined 
application of N and silicate fertilizer on rice     
yield, pest and disease load and methane 
emission.  

2. MATERIALS AND METHODS 
 

The experiment was carried out in two stages, 
initial survey work carried out to assess the 
concentration of silicon in index leaves of rice 
plants from varietal display plots at Agricultural 
Research Institute (ARI) Rajendranagar, 
Regional Agricultural Research Station (RARS) 
Jagtial, Regional Agricultural Research Station 
(RARS), Warangal and Regional Sugarcane and 
Rice Research Station (RS & RRS) Rudrur of 
Telangana. From the selected plots, the index 
leaf samples i.e, 3

rd
 or 4

th
 leaves from the top of 

the plant were collected at tillering stage and 
were dried in an oven at 65

o
C for two days and 

powdered. From this, 0.5 g of sample digested in 
a mixture of 50 ml each of 10 ml of HF (46%) + 
40 ml of double-distilled water and allowed for 
cold digestion overnight. Out of which 0.1 ml 
aliquot collected and added 2 ml of 0.1M B, 2 ml 
of Mo working solution, and allowed to stand for 
1-3 minutes. Then, 4ml of 0.1M citric acid added, 
made the final volume up to 10 ml with double 
distilled water and absorbance was measured at 
400 nm with UV-visible Spectrometer [2,12]. To 
assess the available silicon status of different 
rice-growing soils, representative soil samples 
were collected simultaneously and were 
extracted with 0.5 M acetic acid. From it, 0.25 ml 
filtrate was collected and added 10.5 ml of 
distilled water, 0.25 ml of 1:1 hydrochloric acid, 
0.5ml of 10% ammonium molybdate solution (pH 
7-8), finally solution was allowed to stand for 5 
minutes.  After 5 minutes, 0.5 ml of 20% tartaric 
acid and 0.5 ml reducing agent (ANSA) was 
added, and absorbance was measured at 630nm 
using a UV visible Spectrophotometer [13]. At the 
end of the first phase survey experiment, grain 
yield of various display plots were recorded and 
were correlated with silica content in rice index 
leaves. 
 

Out of all 133 varieties assessed during the first 
phase of survey experiment, only two varieties 
were selected for the second phase of field 
experiment which was having high Si content 
(3.20%) i.e., JGL-3855 and another with low Si 
(2.15%) i.e., RNR-2354 with four levels of 
Nitrogen (0, 80, 120 and 160 kg ha-1) and four 
levels of Silicon (0, 200, 400 and 600 kg ha

-1
) 
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consisting of sixteen treatments, replicated thrice 
in strip-plot design at RARS, Jagtial, Karimnagar, 
Telangana. The experimental soil was sandy clay 
loam in texture, slightly alkaline (pH7.61) in 
reaction, non-saline (0.27 dSm-1), low in organic 
carbon (0.48 percent), available N (194.61 kg   
ha-1) and available Si (82.17 kg SiO2 ha-1), high 
in available P2O5 (29.53 kg ha

-1
) and medium in 

K2O (170.28 kg ha
-1

). Later, the field was laid out 
into 96 plots as per the design by providing 
bunds for individual plots and applied 
recommended doses of phosphorus and 
potassium (60 and 40 kg ha

-1
) uniformly to all 

treatments in the form of single super phosphate 
(SSP) and muriate of potash (MOP) as basal. 
Nitrogen was applied in the form of urea in 3 
equal splits (1/3 basal, 1/3 at active tillering stage 
and 1/3 at the panicle initiation stage). Silicon 
was applied as basal in the form of sodium 
silicate, which composed of 99.71, 0.02, 0.03, 
0.1, 0.09, 0.01 and 0.02% of SiO2, Na2O, Fe2O3, 

Al2O3, TiO2, CaO and ZrO2.  
 

The CH4 fluxes were measured by a static closed 
chamber method during the rice-growing period 
[14]. Each experimental plot had removable 
chambers for gas collection, which measured 50 
cm × 50 cm × 100 cm, and samples were 
collected at 5-minute intervals (5, 10, 15 and 20 
minutes) between 8:00 to 11:00 in the morning 
on each sampling day at a one‐week interval 
from tillering to maturity stage. On each sampling 
day, the sequence of gas measurements in the 
treatments was randomized to avoid bias due to 
rising temperatures during the morning hours. 
Gas samples were collected through sampling 
ports that were fitted at the top of the chamber by 
using syringes and were directly analyzed with a 
gas chromatograph (GC), which was equipped 
with a flame ionization detector (FID) for CH4 
analysis. A closed-chamber equation [15] was 
used to estimate CH4 fluxes from each treatment. 
 

The observations on various pest viz., yellow 
stem-borer (Scirpophaga incertulas), gall midge 
(Orseolia oryzae), brown plant-hopper 
(Nilaparvata lugens) and green leaf-hopper 
(Nephotetticx virescens) were recorded during 
tillering, vegetative and reproductive phases by 
following standard procedures [16]. The disease 
incidence was assessed by recording the 
severity of sheath blight (Rhizoctonia solani) and 
brown spot (Helminthosporium oryzae) during 
boot leaf, tillering and at harvesting stage, 
whereas sheath rot (Sarocladium oryzae) and 
grain discoloration (complex disease caused by 
fungi and bacteria) were recorded at harvest of 
the rice crop in accordance with standard 

evaluation system by adopting 0-9 scale [17] and 
calculated percent disease intensity [18]. The 
analysis of variance for grain and straw yield, 
pest, and diseases and methane flux were 
worked out by feeding the replicated data into the 
INDOSTAT software. 
 

3. RESULTS AND DISCUSSION 
 
3.1 Si Content in Index Leaf Samples and 

Grain Yields of Promising Varieties 
 
Among the various locations of the present study 
(Table 1), the Si content in the index leaves of 
promising varieties at tillering ranged from 1.50 
to 3.20, 1.60 to 3.15, 1.49 to 3.20 and 1.55 to 
3.06% with mean values of 2.50, 2.48, 2.51 and 
2.43% at RARS (Jagtial), RARS (Warangal), ARI 
(Rajendranagar) and RS & RRS (Rudrur) 
research centers, respectively [19]. The variation 
in Si concentration in plant species was largely 
due to the efficiency of plant roots for Si 
acquisition [20] because the proteinaceous 
transporter gene mediates Si uptake in rice roots 
[21]. Besides this, higher density xylem loading 
transporter genes SIT1 and SIT2 were also 
responsible for higher Si accumulation [22] in 
plant roots. 
 
The yield of selected promising rice varieties at 
different rice-growing areas of Telangana region 
is presented in Table 1, and it showed an overall 
yield from four locations ranged from 2886 to 
7198 kg ha

-1
 at RARS, Jagtial, from 2693 to 6831 

kg ha-1 at RARS, Warangal, from 2653 to 6860 
kg ha

-1
 at ARI, Rajendranagar and from 4399 to 

5950 kg ha-1 at RS & RRS, Rudrur depending on 
the potentiality of varieties. The overall rice grain 
yield from four locations ranged from 3157 kg ha-

1
 to 6709 kg ha

-1
 with a mean of 4933 kg ha

-1
. 

These variations in yields might have been due 
to the genotypic variations and also due to 
variations in climatic and soil conditions of 
different locations [23]. 
 

3.2 Correlation of Rice Grain Yield with Si 
Content  

 

Correlation coefficients between Si concentration 
(%) in index leaves and yields (kg ha

-1
) of 

different genotypes showed a positive and 
significant correlation (r = 0.55**) presented in 
Table 2. This may be due to the soils in which 
the genotypes were grown at different locations 
are clay to sandy clay loam in texture, contained 
enough quantities of available Si, and hence had 
a good Si supplying power to rice crop [24]. 
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Table 1. Mean values of Si content in index leaves and yield at different locations of state  
 

Location No. of 
verities 

      Yield (kg ha
-1

)            Silica (%) 
Range Mean Range Mean 

RARS (Jagtial) 41 2886-7198 5845 1.50-3.20 2.50 
RARS (Warangal) 33 2693-6831 5871 1.60-3.15 2.47 
ARI (Rajendranagar) 47 2653-6860 5646 1.49-3.20 2.51 
RS&RRS (Rudrur) 12 4399-5950 5069 1.55-3.06 2.43 
Mean 133 3157-6709 4933 1.49-3.20 2.34 

Source Rajamani et al. [19] 
 

Table 2. Correlation coefficients between Si 
concentration in index leaves of different 

genotypes and their grain yields 
 

Parameters Yield (kg ha-1 ) Si (%) 
Yield ( kg ha-1) 1.00 0.55** 
Si (%)   1.00 

* Significant at P = 0.05 **Significant at P = 0.01 
 

3.3 Influence of Different Levels of N and 
Si on Grain and Straw Yields 

 

It is observed that both the varieties as well as 
nutrient levels showed a significant influence on 
rice grain and straw yields (Fig. 1). Among the 
varieties, JGL-3855 showed significantly higher 
grain (6779 kg ha

-1
) and straw yields (8949 kg 

ha-1) compared to RNR-2354, which register 
6460 and 8530 kg of grain and straw yield ha

-1
. It 

could be due to the high efficiency of JGL-3855 
in remobilizing nutrients or with the genotypic 
characteristic to put forth more yield attributes 
like number of productive tillers, number of grains 
per panicle and test weight [25]. According to 
[26], rice is a silicon accumulator and fertilization 
of silicon improves the yield and quality of rice by 
improving plant growth [27] and also impart the 
resistance/tolerance to biotic and abiotic stress 
[28]. 
 

Among the different combinations of Si and N, 
application of 160 kg N+600 kg Si ha

-1
 recorded 

significantly higher grain and straw yield (7180 
and 9693 kg ha

-1
) over control (5622 and 7197 

kg ha-1) and was on par with (N160 + Si400), (N160 
+ Si200), (N120 + Si600), (N120 + Si400) and (N120 + 
Si200) with their respective grain and straw yields 
of 7169 and 9607, 7172 and 9601, 7172 and 
9611, 7165 and 9597, 7155 and 9594 kg ha

-1
. It 

could be due to the synergistic effect of Si and N 
in decreasing percent spikelet sterility, 
decreasing susceptibility to lodging, decreasing 
the incidence of infections with root parasites and 
pathogens, leaf pathogens and preventing 
toxicity of harmful elements and to increase the 
N use efficiency by efficient use solar radiation 
[29]. 

Even among these treatments, the treatments 
which did not receive any Si with N@120 and 
160 kg ha-1, recorded lower grain yields of 6466 
and 6467 kg ha

-1
 compared to the treatments 

which received Si@200, 400 & 600 kg ha-1 along 
with N. This can be attributed to the application 
of Si and causes an increase in growth and yield 
in cereals, because of high phosphate uptake in 
rice with the application of silica [30]. There was 
a spectacular increase in mean grain yield from 
6022 kg ha

-1
 at N0 level to 6990 kg ha

-1
 when 

120 kg N ha
-1

 was applied. However, at the 
highest rate of N (160 kg ha-1) application, the 
yield increase was very marginal and the 
percentage increase was 7.38%, 16.07% and 
16.24%, respectively over N0. These results 
show that Si reduces negative effects like 
drooping of leaves due to excess application of N 
as erect leaves can easily account for a 10% 
increase in the photosynthesis of the canopy and 
consequently a similar increase in yield [31]. The 
application of Si increased rice yield on Histosols 
mainly due to the supply of plant-available Si and 
not due to the supply of other nutrients [32]. 
Similar to grain yields, the results revealed a 
significant influence of fertility levels as well as 
their interactions on rice straw yields. Higher 
straw yield could also be attributed to increased 
number of tillers per hill and plant height. The dry 
matter production increased significantly with 
each increment in N and Si fertility level due to 
increased chlorophyll formation which ultimately 
improved photosynthesis [33] in different rice 
soils of India. 

 
3.4 Effect of N and Si Fertilization on CH4 

Emission 
 
Methane emission was low at initial crop growth 
stage i.e., within 35 days after transplanting, and 
it increased with plant growth, thereafter 
gradually decreased and finally dropped to 
minimum levels as plant reached the maturity 
stage (Fig. 2). The data revealed a significant 
influence of different N and Si levels on CH4 
emission, while the varieties and the interaction 



effects between the varieties and different N and 
Si levels were statistically non-significant. The 
first CH4 peak (5.6 mg m-2 hr-1) was observed on 
the 43

rd
 day after rice transplanting, followed

the highest peak (7.4 mg m-2 hr-1) on the 71
after transplanting, and these results in tune with 
[34]. These changes in the CH4 emission pattern 
usually influenced by the development of intense 
reduced conditions in the rice rhizosphere 
which increases fermentation of labile organic C 
and root exudates [36]. 
 
Among the fertility levels, the T1 treatment which 
did not receive any N or Si levels registered the 
highest cumulative CH4 emission (26.6 mg m
hr-1), compared to other treatments that received 
the conjunctive application of both N and Si. With 
an increase in the level of N@80, 120 and 160 
the cumulative methane emission increased as 
26.7, 26.9 and 27.1 mg m-2 hr-1. It may be due to 
the urea application, which enhances ammonium 
ion concentration in soil and due to structural 
symmetry between CH4 and ammonium ion 
methanotrophs bind with ammonium which 
results in low CH4 oxidation and high CH
emission from paddy soils [38]. However, when 
N is integrated with Si the emission wa
decreased. Among the treatment combinations, 
the treatments which received a higher dose of 
Si@600 kg ha

-1
 in combination with N@ 80, 120 

and 160 registered the lower emission of 
methane@ 25.7, 24.6 and 24.3 mg m
Several factors may be responsibl
decrease in CH4 emission with silicate 
 

Fig. 1. Influence of different levels of nitrogen and silicon on grain and straw yields of two 
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effects between the varieties and different N and 
significant. The 

) was observed on 
day after rice transplanting, followed by 

) on the 71st day 
after transplanting, and these results in tune with 

emission pattern 
usually influenced by the development of intense 
reduced conditions in the rice rhizosphere [35], 
which increases fermentation of labile organic C 

treatment which 
did not receive any N or Si levels registered the 

emission (26.6 mg m-2 
s that received 

the conjunctive application of both N and Si. With 
an increase in the level of N@80, 120 and 160 
the cumulative methane emission increased as 

. It may be due to 
the urea application, which enhances ammonium 

n concentration in soil and due to structural 
and ammonium ion [37], 

methanotrophs bind with ammonium which 
oxidation and high CH4 

. However, when 
N is integrated with Si the emission was 
decreased. Among the treatment combinations, 
the treatments which received a higher dose of 

in combination with N@ 80, 120 
and 160 registered the lower emission of 
methane@ 25.7, 24.6 and 24.3 mg m

-2
 hr

-1
. 

Several factors may be responsible for the 
emission with silicate 

fertilization; firstly, ferric oxide might have 
accepted electrons formed under anaerobic soil 
conditions with suppression of the methanogens 
activity [39]. Secondly, adequate Si supply 
increased oxygen transport from the plant top to 
the roots by enlarging aerenchyma gas channels 
[40], and this enhanced root rhizosphere 
oxidative conditions with accelerated CH
oxidation and reduced CH4 emission 
 

3.5  Correlation Coefficients of Si 
Concentration with Rice Pest and 
Diseases 

 

It was observed that the occurrence of major 
pest and diseases of rice crop was negatively 
correlated with silicon content in both the 
varieties at harvest (Tables 3 and 4). Correlation 
values of JGL-3855 and RNR-2354 existed as 
0.84 and -0.90 for stem borer and 
0.90 for gall midge. Similarly, presence of high 
silica content is negatively correlated with the 
incidence of diseases by JGL-3855 was 
sheath rot, -0.88 for sheath blight, 
discoloration and  -0.87 for brown spot and also 
with RNR-2354 correlation values for same 
above-mentioned diseases were 
0.91 and -0.90. The promoter or carrier
silicon transportation into rice concerning to pest 
and disease resistance [42]. They 
simple amino acids, such as histidine, imidazole, 
glutamic acid, glycine, and glutamine significantly 
enhanced the levels of Si(OH)4 in the stem and 
14 to18% into the leaf surface. 

 
Influence of different levels of nitrogen and silicon on grain and straw yields of two 

different rice genotypes 
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Fig. 2. Methane emission (mg m-2 h-1) from rice cultivars grown under different levels of  
nitrogen and silicon 

 

Table 3. Correlation coefficients of Si concentration with rice pests in JGL-3855 and RNR-2354 
   

Parameters Dead Hearts Galls 
JGL-3855    
Si (%) 1.00 -0.84** -0.84** 
Dead Hearts  1.00 0.99 
Galls   1.00 
RNR-2354      
Si (%) 1.00 -0.90** -0.90** 
Dead Hearts  1.00 0.99 
Galls    1.00 

 
Table 4. Correlation coefficients of Si concentration with rice diseases in JGL-3855 and  

RNR-2354 
 

Parameter Si (%) Sheath rot Sheath blight Grain discoloration Brown spot 
JGL- 3855 
Si (%) 1.00 -0.88** -0.88** -0.88** -0.87** 
Sheath rot  1.00 0.97 0.98 0.97 
Sheath blight   1.00 0.97 0.96 
Grain 
discoloration 

   1.00 0.95 

Brown spot     1.00 
RNR-2354 
Si (%) 1.00 -0.91** -0.89** -0.91** -0.90** 
Sheath rot  1.00 0.97 0.98 0.98 
Sheath blight   1.00 0.97 0.97 
Grain 
discoloration 

   1.00 0.96 

Brown spot     1.00 
 

4. CONCLUSION 
 

Flooded paddy is one of the most important 
anthropogenic sources of atmospheric CH4. 

Research worldwide indicates that fertilizer 
management and candidate rice cultivars 
sustainably affect the flux of CH4 to protect the 
economically important ecosystem. Studies 
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conducted with different levels of N and Si clearly 
indicated that application of 160 kg N + 600 kg Si 
ha

-1
 recorded significantly higher grain and straw 

yields (7180 and 9693 kg ha
-1

) and 
simultaneously a higher dose of Si@600 kg ha-1 
in combination with N@ 80, 120 and 160 
registered lower cumulative CH4 flux@25.7, 24.6 
and 24.3 mg m

-2
 hr

-1
. Further, there was a 

significant scaling down of pest and disease 
incidence was noticed in treatments wherever 
increased Si doses (0, 200, 400 and 600 kg ha

-1
) 

were included. Therefore, silicate fertilizers could 
be a good soil amendment for sustaining rice 
productivity, pest and disease load, as well as to 
reduce CH4 emission from paddy soils. For 
intense utilization of silicate fertilizers at irrigated 
rice in tropical soils, further research is needed to 
gain a better understanding of Si mechanisms in 
soil-plant interaction towards evaluating the 
global warming potential (GWP) as well as 
sustainable production in tropical countries. 
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