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Nowadays, data are generated in the world with high speed; therefore, recognizing features and dimensions reduction of data
without losing useful information is of high importance. There are many ways to dimension reduction, including principal
component analysis (PCA) method, which is by identifying effective dimensions in an acceptable level, reducing dimension of
data. In the usual method of principal component analysis, data are usually normal, or we normalize data; then, the principal
component analysis method is used. Many studies have been done on the principal component analysis method as a step of data
preparation. In this paper, we propose a method that improves the principal component analysis method and makes data
analysis easier and more efficient. Also, we first identify the relationships between the data by fitting the multivariate copula
function to data and simulate new data using the estimated parameters; then, we reduce the dimensions of new data by
principal component analysis method; the aim is to improve the performance of the principal component analysis method to

find effective dimensions.

1. Introduction

In many real-world programs, reduction of high-volume
data is of high importance and necessity as a prestage of data
processing. For example, in data mining programs, dimen-
sionality reduction is considered one of the most important
stages to remove data redundancy, to increase precision of
measurement, and to improve decision making process.
Analyzing high-volume data is intrinsically difficult via
high-volume computations for many learning algorithms
as well as data processing. In dimensionality reduction
methods, extraction of data features is highly important. A
highly used method to reduce dimension reduction of data
in data mining and in the data preparing phase is the princi-
pal component analysis method. The PCA method can be
used if the original variables are correlated, homogeneous,

if each component is guaranteed to be independent and if
the dataset is normally distributed [1, 2]. The critical issues
for the majority of dimensionality reduction studies are
how to provide a convenient way to generate correlated mul-
tivariate random variables without imposing constrain to
specific types of marginal distributions. An appropriate
approach to this problem is to use Copula’s theory [3, 4].
In this paper, we first use the copula function to study the
correlation and relationships between data to determine
and eliminate irrelevant properties and simulate new data
using the estimated parameter; then, by using the PCA
method, we reduce the dimensions of data [4-6].

L.1. Principal Component Analysis (PCA). Principal compo-
nent analysis method has been first developed by Karl
Pearson in 1901. The analysis includes analyzing special
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values of the covariance matrix. Analyzing principal com-
ponents upon mathematics definition is an orthogonal
transformation taking data to a new system of coordinates
so that the largest data variance would be placed on the
first coordinate axis; the second largest variance would
be placed on the second coordinate axis and etc. Principal
component analysis is aimed at transferring dataset X with
m dimensions to data Y with [ dimensions. Therefore, it is
assumed that matrix X is formed of vectors X, X,, -+, X,
each of which placed in m column in matrix X. So, the
data matrix would be in form of m x n. Principal compo-
nents are just related to covariance matrix ¥ (correlation
matrix p) of random variables X;,X,, -, X,, [7].

1.2. Calculating Empirical Mean and Covariance Matrix and
Data Normalization. To calculate covariance matrix, data
have to be normalized first. To do so, the primarily vector
of empirical mean would be calculated as follows:

1 n
Um= EZX[m,i]' (1)
i=1

Clearly, the empirical mean would be applied on matrix
lines.

Then, the distance matrix to mean would be obtained as
follows:

B=X —uh, (2)

where h is a vector with size of 1 x n and value equal to 1 in
each of the entries.

Covariance matrix > with m x m dimensions would be
obtained as follows:

Z:E[B@B]:E[B-B*}:%B-B*, 3)

where E is arithmetic mean, (X) is an external coefficient, and
B* is the matrix B conjugate transpose.

Consider X' = [X,, X,, ---, X,,] random vector and assume
that this random vector has matrix covariance > with spe-
cial values A, >A,>---> A, >0. Consider following linear
compositions:

Y, =UX =1, X, + Ly Xyt X

Y, =LX =1,X, + Ly Xyt o+, X
Y, =X =1,X, +L,X,++,,X,.

Using relationship (4), we have

var (Y;) = Z:Zli, cov (Y, Y,)= Z;Zlk, L,k=1,2,---,n.

()

Its principal components are Y,,Y,,---, Y, unrelated
linear compositions; variances of which in relationship
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(5) would be large to the extent possible. The first principal
component of a linear composition has maximum variance.
Clearly, var (Y,) = I;>I, can be maximized through multiply-
ing each [, by a constant. That is, the first principal component
of linear composition is [;X which maximizes var (Y,) with
consideration of ;1] = 1. The second principal component of
linear composition is ,X which maximizes var (Y,) with con-
sideration of I3, = 1 and cov (I} X, I, X) = 0, continuously to
the n'™ principal component.
According to relationship (5), we have

n n
Zvar(Xi) =0y, + 0+ 40, =A + A+ +A, = Zvar(Yi),
i=1

(6)

and ratio of total variance to K™ component (k=1,2,---,n) is

<T0tal share of population variance related to principal K™ component)
— Ak
T R
(7)
If for large n, the highest maximum variance of total pop-
ulation (80 or 90%) could be attributed to the first several

components; these components can be replaced by 7 primary
variables, losing not much information [2, 8-10].

2. Copula Function

In general, the copula function is the link function of multi-
variate distributions and their marginal distributions. The
copula function is a multivariate distribution, marginal dis-
tribution which follows uniform distribution of [0,1] interval
[11-13].

2.1. Characteristics of Copula Function. Assume the following
characteristics for C : I — I:

(1) For every u, v € [0, 1], we will have
C(u,0)=C(0,v)=0,C(u, 1) =u,C(L,v)=v (8)
(2) Forevery0<v, <v,<1,0<u; <u, <1, we will have

C(Uyvy) + C(Upvy) = C(Uy, vy) = C(Up, ) 20
(©)

Such function like C implied in the two above conditions
is called the copula function [14].

2.2. Sklar’s Theorem. It is indicated by Sklar’s theorem that if
joint distribution function like H would be available with
marginal distributions F and G, then, there would be copula
function C available. That is, for every X;, X j € R, we have

H(X; X)) =C(F(X;),G(X;)), (10)
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and if F and G would be continuous, then, copula function C
would be unique. Otherwise, C would be defined as unique
on Rang(F) x Rang(G).

The most important application of the copula func-
tion is formulation of a proper method to produce distri-
bution of random related multivariate variables and to
provide a solution for the problem of density estimation
transformation [15].

For reversible transformation of n continuous random
variables X, X,, ---, X, based on their distribution function
to n independent variables with uniform distribution U, =
F, (X)), U,=F,(X,), -+, U, = F,(X,), the probability den-
sity function X, X,, --+, X,, would be equal to f(X;, -, X,,)
and joint probability density function U, U,, -+, U, would
be equal to C(U,,---,U,). Therefore, probability density
function f(X,, -, X,) can provide a nonparametric form
(unknown distribution). Here, probability density function
Cc(U,,---, U,) for U, U,, -+-, U, would be estimated instead
of X;,X,,--,X,, so that problem of density estimation
becomes simpler. Then, it would be simulated so that ran-
dom samples X;,X,,---,X, would be obtained through
reverse transformation X; = F~!(U,).

According to Sklar’s theorem, one copula function with n
unique dimensions C is available in [0, 1]" with uniform mar-
ginal distribution U,, U,, ---, U,.. That is, every function F
with margins F,, F,, ---, F, can be written as follows:

V(X X,) € R F(X,, -+

To evaluate a copula function selected via an estimated
parameter and to avoid defining any hypothesis on distribu-
tions, empirical distribution function can be used. An empir-
ical copula function is useful to study the dependence
structure of multivariate random vectors. In general, empiri-
cal copula function is as follows:

1 n
Cyj= Z;I(UUSUU)’ (12)

where I ) would be an indicator function [16].

2.3. Gaussian Copula Function. Difference between Gaussian
copula function and normal joint distribution function is
that the first one authorizes various distribution functions
to be used for joint distribution [14]. However, in proba-
bility theory and statistics, normal multivariate distribution
is considered the generalization of one-dimensional nor-
mal distribution [17].
Gaussian copula function is defined as

D(X,)) = ﬁ exp {;X‘ <_Zl —I)X},

where @(X;) is a standard Gaussian function and X; has stan-
dard normal distribution and X is a correlation matrix. As a
result, C(U,, ---U,,) copula function would be called a Gauss-
ian copula function.

3. Methodology

In the research, a two-stage method would be used for
dimensionality reduction. That is, primarily empirical cop-
ula function and fit of Gaussian copula function to data
would be used to estimate parameter p for variables X,
X,, -+, X,,. Important advantages of using the copula func-
tion in multivariate distributions is that correlation
between variables would be considered by these functions,
and in fact, there would be no need for independence of
variables; instead, the correlation structure between vari-
ables would be even considered by these functions [18].
For estimation purposes, generating function is available
with dependence unscaled value available in it. The corre-
lation coefficient value has to be specified. To do so, the
Pearson correlation coefficient will be used and defined
as follows for two X; and X; variables:

cov (X;, X
p= ), i

0x,0x,

where oy and oy are standard deviations of X; and X,
! J

respectively.

Then, those data with lower correlation compared to
others would be eliminated and using estimated function
and Gaussian copula function for X;,X,,---,X,,, where
m uniform variables U, =F,(X;), U,=F,(X,),- U, =
F,,(X,,) would be generated (m<n) and placed instead
of X;,X,,---,X,, in the principal component analysis
method. After dimensionality reduction, the results would
be compared through applying the method on raw data
[16, 19].

4. Numerical Results

During past 30 years, increasing prevalence of urinary stone
disease has been observed. About 80% of kidney stones are
from calcium oxalate type. Here, 79 urine samples would be
analyzed to see if some of physical features of urine are
related to formation of calcium oxalate or not. These data
include following columns (variables), which is available at
https://cran.r-project.org/web/packages/cond.

Using Gaussian copula function, correlation values of
variables would be obtained as follows:

Considering Table 1, it is observed that correlation of var-
iable X2 is lower than other variables; so, it would be elimi-
nated at the first stage. After estimation of parameters, new
data would be generated. Figure 1 shows the copula function
for main data and data generated by this method.

Now, data would be generated based on estimated
parameters. To specify whether data are generated correctly
or not, diagram QQPlot would be drawn.


https://cran.r-project.org/web/packages/cond

Advances in Mathematical Physics

TasBLE 1: Estimation of parameter p for variables of urine.

X1 X2 X3 X4 X5 X6
X1 1 -0.30856 0.83231 0.57256 0.81165 0.54872
X2 1 -0.25167 -0.09762 -0.27985 -0.12147
X3 1 0.77226 0.81012 0.58452
X4 1 0.45542 0.43444
X5 1 0.58813
X6 1

Xlis urine gravity, X2 is urine pH, X3 is urine osmolarity (it is corresponding to unit of solute concentration), X4 is urine conductivity (it is corresponding to
concentration of charged ions in solution), X5 is urea concentration (mM/liter), and X6 is calcium concentration (mM/liter).

Correct data generation is shown by Figure 2. In the sec-
ond stage, after elimination of the X2 variable on data gener-
ated, principal component analysis would be done. In
Figure 2, principal components for primary data and those
generated by copula function are shown after reduction of
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FiGure 1: Diagram of copula function for generated data based on main and reduced data.

Generated data

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Real data

F1Gure 2: QQ Plot diagram of real and generated data for data of example 1.

the X2 variable. Figure 3 shows principal components for
main data and the data generated.

Ratios of population variance related to principal compo-
nents are provided in following table. Its screen plot is as
follows.
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FIGURE 3: Diagram of principal components for raw and generated data through recommended method.
TAaBLE 2: Ratios of population variance related to principal components for main data.
PC1 PC2 PC3 PC4 PC5 PC6
0.61817360 0.15701415 0.11567297 0.07879801 0.02912841 0.00121285
TaBLE 3: Ratios of population variance related to principal components for data generated through the recommended method.
PC1 PC2 PC3 PC4 PC5
0.73414280 0.07840848 0.07583399 0.06866719 0.04294755
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FIGURE 4: Diagram of population variance ration related to principal components for main data and generated data through recommended

method.

Considering Tables 2 and 3 as well as Figure 4, it is
observed that in dimensionality reduction method presented
in the research, two first components include more than 80%
of population variances and first component includes more
than 70% of population.

Example 1. To recognize image resolution in a rectangular
monitor, its display would be divided into different boxes
and numbers of black and white dots in these boxes would

be measured. Images of these characters have been made
based on 20 different images, and each box from within
these 20 boxes has been randomly selected. A file includ-
ing 20000 unique simulators have been produced. Each
stimulator has been transformed and scaled to 7 following
numerical variables so that they would be placed within 0-
15 range, (which is available at https://cran.r-project.org/
web/packages/mlbench/index.html).

There are 2000 observations available from these variables.
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TaBLE 4: Estimation of parameter p for variables of resolution in a rectangular monitor.
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X1 X2 X3 X4 X5 X6 X7

X1 1 0,7960 0,8788 0,7439 0,7282 -0,0263 0,0296
X2 1 0,7044 0,8203 0,6148 0,0784 -0,0754
X3 1 0,7089 0,8156 0,0648 0.0119
X4 1 0.0119 0,0618 -0,0190
X5 1 0,1196 -0,0278
X6 1 -0,4227
X7 1
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FIGURE 5: Diagram of copula function for main and reduced data.
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F1GUrEe 6: QQ Plot diagram of real and generated data for data of example 2.

Using Gaussian copula function, correlation values of
variables would be obtained as follows:

X is the box. X1 is the horizontal location of box, X2 is the
vertical location of box (y.box), X3is width of box (width), X4
is the height of box (height), X5 is the total numbers of dots in
the box (onpix), X6 is the mean value of x in dots of the box (x
.bar), and X7 is the mean value of y in dots of box (y.bar).

Considering Table 4, it is observed that correlation
between variables X6 and X7 is less compared to other vari-

ables. So, these two would be eliminated at first stage and
then Gaussian copula function would be fitted to reduced
data and new data would be generated through estimated
parameter, which is shown in Figure 5.

Now, data would be generated. QQPlot would be as
follows.

Now, principal component analysis would be done on
generated data. Diagrams of principal components are as fol-
lows (Figure 6).
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TaBLE 5: Ratio of population variance related to principal components for main data.

PC1 PC2 PC4 PC5 PCé6
0.55123270 0.20018487 0.09008126 0.07169468 0.05074973 0.02071375
TaBLE 6: Ratio of population variance related to principal components for data reduced through recommended method.

PC1 PC2 PC3 PC4 PC5
0.79028555 0.05470965 0.05363693 0.05154868 0.0498199
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FIGURE 7: Diagrams of population variance ratios related to principal components for main data and recommended method.
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FiGure 8: QQPlot diagram of real and generated data.

Screen plot of population variance ratio related to princi-
pal components for both methods are as follows.

According to Tables 5 and 6 as well as Figure 7, it is
observed that ratio of population variance for the first two
components in the recommended method includes almost
85% of population and the first component includes almost
80% of population, whereas, for main data, ratio of popula-
tion variance for the three first components includes almost
85% of population.

5. Conclusion

Considering the two aforementioned examples, it has been
observed that data generated according to the estimated
parameters of the Gaussian copula distribution are consistent
with the original data (see Figures 2 and 8) by using the rec-
ommended method in the research and copula function to
recognize dependencies and structural dependence between
variables in addition to elimination of redundant data will



increase efficiency of principal component analysis method
as well as speed of obtaining analysis results (see Figures 4
and 7, Tables 2, 3, 5, and 6). Considering the point that now-
adays data are generated with high-speed, appropriate, and
efficient methods for dimensionality reduction without los-
ing information are of high importance and necessity, and
recommended method in the research is a useful one to do
so. The recommended method in the research can be also
used for other dimensionality reduction techniques so that
data would be prepared for more analysis, for example in
data mining.
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