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This work addresses 3D bioconvective viscoelastic nanofluid flow across a heated Riga surface with nonlinear radiation, swimming
microorganisms, and nanoparticles. The nanoparticles are tested with zero (passive) and nonzero (active) mass flux states along
with the effect of thermophoresis and Brownian motion. The physical system is visualized via high linearity PDE systems and
nondimensionalized to high linearity ordinary differential systems. The converted ordinary differential systems are solved with
the aid of the homotopy analytic method (HAM). Several valuable and appropriate characteristics of related profiles are
presented graphically and discussed in detail. Results of interest such as the modified Hartmann number, mixed convection
parameter, bioconvection Rayleigh number, and Brownian motion parameter are discussed in terms of various profiles. The
numerical coding is validated with earlier reports, and excellent agreement is observed. The microorganisms are utilized to
improve the thermal conductivity of nanofluid, and this mechanism has more utilization in the oil refinery process.

1. Introduction

“Bioconvection” is known to be the convective movement
within sight of swimming microorganisms. In this convec-
tive mode, the cells with bottom-heavy cells tend to swim
at an angle to vertical, and this process is known as gyro-
tactic [1]. Therefore, the gyrotactic microorganisms are
stable in the upper layer of the fluid, and consequently,
stratification of the top-heavy fluid layer will become
unbalanced. Thus, the system, which consists of a gyrotac-
tic microorganism, induces one of the exciting characters
in heat transfer that is “stability.” The reason is that nano-

fluids that have higher stability tend to improve the ther-
mal efficiency of the heat exchanger (any energy
systems). Hosseinzadeh et al. [2] examined the gyrotactic
microorganism influence over a cylindrical surface with
cross fluid flow. Mogharrebi et al. [3] present the MHD
nanofluid flow towards a rotating cone with motile oxytac-
tic microorganisms. Nowadays, the research on nanofluid
through a Riga plate becomes an exciting area of research.
For instance, mixed convective nanofluid flowed a Riga
plate is studied numerically and analytically in [4]. It is
shown that the desired size of the nanoparticle influences
the skin friction coefficient. Ahmad et al. [5] studied the
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role of nanofluid past a heated vertical Riga plate numer-
ically. Influence on viscous dissipation and thermal radia-
tion of nanofluid flow between the Riga plate is explored
numerically [6]. They have used carbon nanotubes as the
nanoparticle, and it is shown that by varying the radiation
parameter, the local heat transfer rate elevates. The
application of the Cattaneo-Christov approach heat gen-
eration and absorption for the second-grade fluid that
passed through the Riga plate is presented numerically
[7]. In line with the application of the Riga plate, the
stagnation flow on the vacillating Riga plate is studied
numerically [8]. The variable thicked Riga plate for
melting heat transfer application is explored numerically,
and it is reported that for higher values of modified
Hartmann number, the velocity profile distribution
increases [9]. Recently, several research papers have been
devoted to the study of nanofluid and their applications
in practical situations [10-13].

Further, the study on heat transfer characteristics of
nanofluid is widely studied. For instance, viscoelastic
fluid with Newtonian heating is numerically studied
[14-17]. It is shown that Al,O/water nanofluid exhibits
higher performance evaluation criteria. Besides, the study
of viscoelastic nanofluid through the Riga plate is exten-
sively studied. A nonuniform heat flux unsteady visco-
elastic fluid that is unsteady is numerically investigated
[18]. The viscoelastic nanofluid over an unsteady surface
that is stretchable is evaluated numerically [19]. Also, the
magnetic field effect on the Maxwell viscoelastic nano-
fluid over a plate that is moving at a uniform velocity
is numerically assessed [20]. The temperature and veloc-
ity relaxation time influencing the heat transfer rate of
the nanofluid are concluded by them. Besides that, the
nonlinear effects on the MHD stagnation flow of visco-
elastic nanofluid are explored numerically [21]. The
Homotopy Analysis Method (HAM) is employed by
Hayat et al. [22] to solve the 3D flow of a viscoelastic
nanofluid over a stretching surface. The same research
group extended their work towards the viscoelastic model
for various applications [23-25]. A slew of researchers
studies the gyrotactic microorganism impact. For exam-
ple, mixed convection of nanofluid containing third-
grade nanomaterial containing gyrotactic microorganisms
is figured out numerically [26]. Walters B nanofluid with
the incorporation of gyrotactic microorganisms is evalu-
ated numerically [27]. Acharya et al. [28] reported the
effects of solar radiation bioconvection nanofluid with
gyrotactic microorganisms. The suspension of microor-
ganisms induced with the effect of the magnetic field is
reported [29, 30]. Also, numerous researches on gyrotac-
tic microorganisms are studied and explored [30-35].
Analysis of active and passive controls with the chemical
reaction of nanofluid is analyzed [36]. Using the homo-
topy perturbation method, unsteady nanofluid with active
and passive controls is developed by Acharya et al. [37].
Over a bent surface, the active-passive control of dihy-
drogen monoxide nanofluid is explored numerically
[38]. These controls are studied in various nanofluids
with diverse applications [39-44].
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By considering the earlier reports, it is concluded that
no studies were found to analyze the bioconvection of vis-
coelastic nanofluid on a 3D Riga surface with a compari-
son of active and passive control. The present study
explores the 3D viscoelastic nanofluid flow across the
heated Riga surface with nonlinear radiation and heat gen-
eration/absorption effects. The effects of several parameters
are compared with the active and passive control model of
nanoparticles. The homotopy analytic method [45-51] is
employed to study the present nonlinear ODE systems.
The results are discussed in terms of various profiles.
The numerical coding of the present study is validated
with earlier reports. The relevant research is applied to
multiple engineering streams like bioengineering, chemical,
nuclear, thermal, and mechanical.

2. Problem Development

We have considered bioconvective viscoelastic nanofluid
flow with u,=ax in the x direction v, =by in the y
direction over a 3D Riga surface with gyrotactic microor-
ganisms swimming. The surface is expanding in all three
directions, namely, x, y, and z. It is assumed that nanopar-
ticles do not influence the swimming microorganism; also,
the nanoparticles are assumed to be stable in the fluid
layer. Also, the nanoparticles have no effect on the velocity
and temperature of the swimming microorganisms. The
geometrical configuration is shown in Figure 1. By consid-
ering the above assumptions, the governing equations are
described below [42]:
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TasLE 1: Order of approximation for —f1 (0) and —g; (0).
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TaBLE 2: Order of approximation for —8](0), —¢;(0), and —&;(0).
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TaBLE 3: Comparison of —f} (0) and —g, (0) for various values of €
with limiting conditions Q=d, =A=Nr=Rb=0.

Using the transformations in Equation (1), we get
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The nondimensional structure of surface drag force (Cy,
&Cy,) and heat transfer rate (Nu), mass transfer rate (Sh),
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FIGURE 3: Velocity profile on x and y directions for various values of Q, y, A, Nr, Rb, and Pe.

and microorganism (Nn) density number is stated as
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3. Solution Approach: Homotopy Analysis
Method (HAM)

The primary assumptions of the homotopy analytic method
are stated as follows:
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The auxiliary linear operators Ls, L, , Ly, Ly » and Lg,
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4. Convergence Analysis

To analyze the convergence of the numerical code, the con-
vergence analysis is carried out for the value of h. The vari-
able h has control over the convergence and divergence of
the numerical code, and it is shown in Figure 2. In the case
of active and passive control, the values of hg, h, ,h, . hy ,
h in the range of -2.0<h; h, h, hy hy <0.5. For the
convergence study in the direction of x and y axes, the value
of he h, isin the range of -2.0 to 0.5, respectively. The order
of approximation is shown in Tables 1 and 2. Table 3 reports
that the value of f}(0)and g}(0) is compared with earlier
results with Qayyum et al. [14].

5. Results and Discussions

In this work, viscoelastic nanofluid past a stretching 3D Riga
surface with gyrotactic microorganisms is explored numeri-
cally. The governing parameters such as velocity (f;,g,)
parameters, temperature (6,) parameter, &, modified Hart-
mann number (Q), viscoelastic parameter (), mixed convec-
tion parameter (A), buoyancy ratio parameter (Nr),
bioconvection Rayleigh number (Rb), bioconvection Peclet
number (Pe), heat generation/absorption parameter (Hg),
thermophoresis parameter (Nt), and microorganism concen-
tration difference parameter (2) are studied.

Figure 3(a) describes the impact of Q (modified Hart-
mann’s number) on the velocity profile. It is observed that
with an increase in Q, velocity profiles decrease in both direc-
tions (x, y). This is due to the increase in Q leading to an
increase in Lorentz force and consequently velocity profile
decreases. In Figure 3(b), it is noticed that as the viscoelastic
parameter (y) increases, the velocity profile decreases. In gen-
eral, tensile stress is generated by viscoelasticity of the fluid.
This stress opposes the fluid motion, and finally, the veloci-
ties of x and y directions are decays when the values of y
are improved. The increase in velocity profile is noted in

Figure 3(c) with an enhancement in the mixed convection
parameter (A). By definition, A is the ratio between the buoy-
ancy force and the viscous force. Figure 3(d) reveals that an
increase in buoyancy ratio parameter velocity profile
decreases. In this work, the thermal and concentration forces
are considered, and those forces provide smaller resistance
consequently due to this reason that the velocity profile
decreases. Also, it is observed in Figure 3(e) that the extend-
ing values of bioconvection Rayleigh number have a ten-
dency to diminish the velocity profile. In Figure 3(f), it is
noted that an increase in the bioconvection Peclet number
produces the diminishing performance in the swimming
speed of microorganisms that cause a decreasing trend in
the velocity profile.

From Figure 4(a), it is evident that the increase in tem-
perature profile increases with an increase in bioconvection
Rayleigh number (RD). In fact, for larger values of Rb, bound-
ary layer thickness increases which increases the buoyancy
forces; subsequently, temperature profile increases for both
the cases of active and passive controls. The impact of tem-
perature profile with regard to the thermophoresis parameter
Nt is discussed in Figure 4(b). With an increase in the ther-
mophoresis parameter, Nt temperature profile is increased.
With an increase in Nt, more nanoparticles shifted to the
colder place from the hotter one, so the temperature profile
increases. An increase in temperature ratio parameter 0,
increases the temperature profile as observed in Figure 4(c).
The ratio of temperature at the surface (T,,) to the tempera-
ture at free stream (T,) is mathematically defined as 6, =
T,/T,. For nonlinear radiation, the value of 6, must be
higher than 1. Moreover, an increasing trend found in the
temperature along the surface is noted for larger 0,, values.
Consequently, thermal boundary and associated layer thick-
ness improve. The effect of the heat generation/absorption
parameter, Hg on the temperature profile, is proclaimed in
Figure 4(d). As we increase Hg, more movement between
the nanoparticles is reported; therefore, the temperature pro-
file increases. The slowing moment of the liquid flow due to
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the modified Hartmann number (Q) leads to producing a
heat energy, and it is highly pronounced in the lesser value
of modified Hartmann number Q, as seen in Figure 4(e).

Figure 5 illustrates the role of nanoparticle volume frac-
tion on (a) thermophoresis parameter (Nt) and (b) Brownian
motion parameter (Nb), for active and passive control cases.
It is noted that for both behaviours of active and passive con-
trol, the Nb value increases. As we increase the Nb value,
more resistive force is applied to the surface of the nanopar-
ticle; thus, to increase the heat transfer, the nanoparticle vol-
ume fraction has to be increased. This increasing trend is
reported in Figure 5(a) for both the cases of active and pas-
sive controls. As overturn to the above discussion, it is noted
in Figure 5(b) that the volume fraction of nanoparticles
decreases with an increase in the Brownian motion parame-
ter, Nb. The fact is that the larger values of the Brownian
motion parameter increase the length of the mean free path
of the nanoparticle, which incredibly decreases the volume
fraction of the nanoparticles.

The influence of the bioconvection Rayleigh number on
the concentration of microorganisms is shown in
Figure 6(a). With the increase in the Rayleigh number, the
movement of microorganisms is increased; consequently,
the concentration of microorganisms also increases. The role
of the microorganism’s concentration difference parameter
Q in concentration is explored in Figure 6(b). For both the
cases of active and passive controls, the trend is reported to
be the same. In Figure 6(c), it is seen that the concentration
of microorganisms increases as the bioconvection Lewis
number Lb decreases. It is due to the variation in the temper-
ature difference between the nanoparticles. It is noted in
Figure 6(d) that the trend of active and passive control is in
an opposite direction for the variation in the bioconvection
Peclet number, Pe. As we increase the value of Pe, the diffu-
sivity of microorganisms is decreased. Therefore, the concen-
tration of microorganisms is decreased for passive control.
Whereas the scenario is in active control, the trend is
increased. The thermophoresis parameter Nt effect on
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FIGURE 10: The effect of motile microorganism’s density number for combined parameters Rb and Q.
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concentration of microorganisms is plotted in Figure 6(e).
With the increase of Nt, the low heated nanoparticle is
moved into the high heated surface which is induced by the
increase in Nt. Hence, the concentration on microorganism
is increased. In final, the variation in mixed convection
parameter A is analyzed in Figure 6(f). The increase in A
and the concentration on microorganisms is decreased.
While for larger values of A, temperature variation between
the nanoparticles increases; therefore, this strongly affects
the concentration of microorganisms.

Figures 7 and 8 depict the heat transfer rate (Nu, ) for dif-
ferent combinations of pertinent parameters. From Figure 7,
the heat transfer rate enhances for higher values of modified
Hartmann number (Q), and it decays for radiation parameter
(Rd). Figure 8 elucidates that heat transfer rates reduce for
larger values of y and Hg. Figure 9 explores the combination
of Nb and Nt in the mass transfer rate (Sh,). It is noted from
this figure that the mass transfer rate enhances for the Brow-
nian motion parameter for active control while an opposite

behaviour is noticed for the thermophoresis parameter for
both cases. Figures 10 and 11 portray the motile microorgan-
ism’s density number rate (Nn,) for different related param-
eters. From these figures, we found that the combined
parameters Rband Q2 and Pe and Lb show the inverse effects
on the microorganism’s density number rate for active and
passive controls.

6. Conclusion

In this work, the active and passive control of viscoelastic
nanofluid flow over a 3D Riga plate is investigated analyti-
cally by the homotopy technique. Effects are studied with
the influence of the gyrotactic microorganism in bioconvec-
tive heat transfer. The following outcomes are observed:

(i) Anincrease in the modified Hartmann number pro-
duces the diminishing impact on velocity profile for
both x and y directions
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(ii) Fluid velocity decays in both x and y directions for
the augmentation in bioconvection Rayleigh
number

(iii) The microorganism profile is an increasing function
of bioconvection Peclet number for active control,
and it is decreasing for passive control

(iv) Mass transfer rate enhances for Brownian motion
parameter while an opposite behaviour is noticed
for thermophoresis parameter for both cases

(v) An increase in bioconvection Peclet number pro-
duces the inverse phenomena in microorganism
profile for active and passive controls

Nomenclature

a, b: Positive constants (-)

C: Concentration (kgm™)

Co:  Ambient concentration (kgm™)

C,: Surface concentration of nanoparticles (kgm™)

C,: Specific heat (Jkg' K™')

Cye: Skin friction in x direction

C fyt Skin friction in y direction

d: Chemotaxis constant (m)

Dy: Brownian diffusion coefficient (m?s™)

Dy: Thermophoretic diffusion coefficient (m”s™)

v:  Microorganism’s diffusion coefficient (m?s™)
Velocity similarity function in x direction (—)

g,(n): Velocity similarity function in y direction (—)

Hg: Heat generation/absorption parameter (—)

k: Thermal conductivity (mkgs™ K™!)

Le: Lewis number (—)

Ly Bioconvection Lewis number (—)

Nb: Brownian motion parameter (—)

Nt: Thermophoresis parameter (—)

My Surface concentration of microorganisms (kgm™)
Ne:  Ambient concentration of microorganisms (kgm™)
Nr: Buoyancy ratio parameter (—)

Nu:  Nusselt number (—)

Nn:  Microorganisms’ density number (—)

Pr: Prandtl number (—)

P, Bioconvection Peclet number (—)

Q: Modified Hartmann number

Qq: Dimensional heat generation/absorption coefficient
Rb: Bioconvection Rayleigh number (—)

Rd: Radiation parameter (—)
Sh: Sherwood number (—)

T: Temperature (K)

T.:  Ambient temperature (K)

Uy, Velocity of the sheet (ms™)

u, v, w: Velocity components (ms™!)

W, Maximum cell swimming speed (ms™')
x,¥,z: Cartesian coordinates (m).

Greeks

a: Material parameter of fluid

B: Volume expansion coefficient (—)
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Viscoelastic parameter (—)

: Concentration similarity function (—)
Stretching ratio
Similarity parameter (—)

: Microorganisms’ similarity function (—)
Mixed convection parameter (—)
Kinematic viscosity (m?s™!)

Ratio of the effective heat capacity (—)

: Temperature similarity function (—)
Density (kgm™)

Density of nanofluid (kgm™)
Density of nanoparticles (kgm™)

._.
—
=

=

—
—~
=

=

DR DI IR 0SS
Sy

<3

Density of microorganism’s particles (kgm™)
Electrical conductivity (S* m? kg™")

Stream function (ms™')

Microorganisms’ concentration difference parameter

(=)
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