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Abstract

In the paper, we consider a single-machine scheduling problem with generalized due dates, in
which the objective is to minimize total weighted work. This problem was proven to be NP-hard
by Mosheiov et al. [1]. However, the exact complexity remains open. We show that the problem
is strongly NP-hard, and is weakly NP-hard if the lengths of the intervals between the consecutive
due dates are identical.
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1 Introduction

Consider a scheduling problem such that the due date is assigned not to the specific job but to the
job position. Such a due date is referred to as the generalized due date (GDD). Since the scheduling
problem with GDD was initiated from Hall [2], much research has been done in [3, 4, 5, 6, 7, 8].
Recently, Mosheiov et al. [1] considered single-machine scheduling problems with GDD to minimize
total late work. They showed that the problem can be solved by the Shortest Processing Time first
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(SPT) rule, while it is NP-hard if each job has a different weight. Note that it is unknown whether
the case with the different weights is strongly NP-hard or not. We establish the exact complexity
for the case with the different weights.

The remainder of this paper is organized as follows. Sections 2 and 3 defines the problem formally
and establishes the computational complexity.

2 Problem Definition

Our problem can be formally stated as follows: For each job j ∈ J = {1, 2, ..., n}, let pj and wj

be the processing time and the weight, respectively. Let π =
(
π(1), π(2), ..., π(n)

)
be a schedule,

where π(j) is the jth job. For each j ∈ J, let Sj(π) and Cj(π) be the start and completion times of
job j in π, respectively, and π−1(j) be the position of job j in π. In our model, unlike the traditional
scheduling problem, the due date di is assigned not to the specific job, but to the job positioned
ith for each due date i ∈ D = {1, 2, ..., n}. For simplicity, assume that d0 = 0 and

d1 ≤ d2 ≤ · · · ≤ dn.

GDD has two special cases depending on the condition of the due dates. The first and the second
cases have a common due date with

di = d for i ∈ D, (2.1)

and identical lengths of the intervals between the consecutive due dates, that is,

di = iδ and di − di−1 = δ for i ∈ D, (2.2)

respectively. Let the due dates with relations (2.1) and (2.2) be referred to as the common due
dates (CDD) and periodic due dates (PDD), respectively. For each j ∈ J, let Tj(π) and Yj(π) be
the tardiness and late work of a job j in π, respectively, which are calculated as

Tj(π) = max
{
0, Lj(π)

}
and Yj(π) = min

{
pj , Tj(π)

}
,

where Lj(π) = Cj(π) − dπ−1(j). The objective is to find a schedule π to minimize total weighted
late work, which is calculated as

z(π) =
∑
j∈J

wjYj(π).

We follows the standard three-field notation 1|β|
∑

j∈J wjYj introduced by Graham et al. [9], where
β ∈ {CDD,PDD,GDD} describes the characteristics of the due dates. This paper establishes the
complexities of three cases.

Table 1 summarizes our results (note that ‘wNP-hard’ and ‘sNP-hard’ stand for weakly and strongly
NP-hard, respectively).

Table 1. Complexity for 1|β|γ

γ \ β CDD PDD GDD∑
wjTj wNP-hard [10, 8] wNP-hard [3] sNP-hard [4]∑
wjYj polynomially solvable [1] wNP-hard (Cor. 3.2) sNP-hard (Thm. 1)
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3 Computational Complexity

In this section, we show that 1|GDD|
∑

wjYj and 1|PDD|
∑

wjYj are strongly and weakly NP-
hard, respectively.

Theorem 1. 1|GDD|
∑

wjYj is strongly NP-hard.

Proof Gao and Yuan [4] showed that 1|GDD|
∑

wjTj is strongly NP-hard. It is observed from
the reduced instance in their proof that Tj = Yj holds for each job j ∈ J in the optimal schedule.
Thus, 1|GDD|

∑
wjYj is strongly NP-hard. �

Theorem 2. 1|PDD|
∑

wjYj is NP-hard.

Proof For simplicity, for 1|CDD|
∑

wjTj , let p̄j and w̄j be the processing time and weight of job
j ∈ {1, 2, ..., n}, respectively, and d be the common due date. Yuan [8] showed that 1|CDD|

∑
wjTj

is NP-hard, even if
n∑

j=1

p̄j ≤ 2d+ 1. (3.1)

Given an instance of 1|CDD|
∑

wjTj , we can construct an instance of 1|PDD|
∑

wjYj with (n+1)
jobs in J = {0, 1, ..., n} such that

· p0 = 0 and w0 = 1 +
∑n

j=1 w̄j ;

· pj = d+ p̄j and wj = w̄j , j = 1, 2, ..., n;

· δ = d.

It is observed that job 0 is processed at the first position in any optimal schedule for the reduced
instance of 1|PDD|

∑
wjYj . Thus, we consider only a schedule π for the reduced instance with

π(1) = 0, that is, a schedule π = (0, π̄), where π̄ is the schedule for a given instance of 1|CDD|
∑

wjTj .
Note that the kth job in π̄ is the (k + 1)th job in π. Then, we have

Cπ(k+1)(π) =

k+1∑
h=2

pπ(h) =

k∑
h=1

(d+ pπ̄(h)) = kd+ Cπ̄(k)(π̄), (3.2)

where the first equality holds due to pπ(1) = 0. If job j is the kth job in π̄, then we have, by equation
(3.2),

Lj(π) = kd+ Cπ̄(k)(π̄)− (k + 1)δ = Cj(π̄)− d = Lj(π̄)

and

Tj(π) = Tj(π̄).

By inequality (3.1), we have Tj(π̄) ≤
∑n

j=1 p̄j − d ≤ d+ 1 ≤ d+ p̄j . Then

Yj(π) = min{pj , Tj(π)} = min{d+ p̄j , Tj(π̄)} = Tj(π̄).

Since job 0 is not tardy in π and wj = w̄j , j = 1, 2, ..., n, the objective values of the two schedules
π and π̄ in each instance are the same. This implies that 1|CDD|

∑
wjTj is special case of

1|PDD|
∑

wjYj . Thus, Theorem 2 holds. �
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Let a job j be referred to as small if pj ≤ δ, and large, otherwise. Let S and L be the sets of small
and large jobs, respectively. Let

aj =

{
δ − pj for j ∈ S

pj − δ for j ∈ L.

Furthermore, let aj be referred to as auxiliary processing time for j ∈ L. Under a schedule π, let a
job j be referred to as early if Yj(π) = 0, partially late if 0 < Yj(π) < pj , and fully late if Yj(π) = pj .
In 1|PDD|

∑
wjYj , an optimal schedule π can be represented as

π = (πs, πe, πp, πf ),

where πs, πe, πp and πf are sequences of small, early, partially late, and fully late jobs, respectively.
Furthermore, the jobs in πi for i ∈ {s, e, f} are sequenced arbitrarily. By Observation 3, henceforth,
we construct only a schedule for large jobs. Let d =

∑
j∈S aj and [h] be the hth large job in π.

Note that

T[h](π) = max

{
0,

h∑
i=1

a[i] − d

}
and Y[h](π) = min

{
p[h], T[h](π)

}
. (3.3)

Let P and x be the set of partially late jobs and the first partially late job in the optimal schedule,
respectively. Let x be referred to as a straddling job.

Lemma 1. In an optimal schedule π, jobs in P\{x} are sequenced in non-increasing order of wj/aj .

Proof Suppose that there exist two jobs i = [k] and j = [k + 1] in P \ {x} with
wi

ai
<

wj

aj
. (3.4)

Note that by [k − 1] ∈ P, T[k−1](π) > 0. Then, by {i, j} ⊂ P and (3.3),

wiYi(π) + wjYj(π) = wi

(
T[k−1](π) + ai

)
+ wj

(
T[k−1](π) + ai + aj

)
. (3.5)

Let π̄ be the schedule constructed by interchanging the positions of jobs i and j from π. Then,

wjYj(π̄) + wiYi(π̄) ≤ wj

(
T[k−1](π) + aj

)
+ wi

(
T[k−1](π) + aj + ai

)
. (3.6)

By (3.4)-(3.6), we have
z(π)− z(π̄) ≥ wjai − wiaj > 0.

This contradicts to the optimality of π. �
Theorem 3. 1|PDD|

∑
wjYj can be solved in pseudo-polynomial time.

Proof We present a DP based on Observation 3 and Lemma 1. Suppose that in an optimal schedule,
the auxiliary processing time and the weight of the straddling job x are a and w, respectively.
Renumber the remaining large jobs such that

w1

a1
≥ w2

a2
≥ · · · ≥ wm

am
,

where m = |L| − 1. Then, we construct a schedule of jobs in {1, 2, ...,m} by applying Algorithm
3.1. For each k ∈ {1, 2, ...,m}, the kth phase of Algorithm 3.1 produces a set Sk of states. Each
state in Sk is expressed as a vector S = [s1, s2, s3, s4, s5] representing the information of a partial
schedule for the first k jobs, where

· The component s1 is total auxiliary processing time of early jobs;

· The components s2 and s3 are total auxiliary processing time and total weight of partially late
jobs, respectively;
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· The component s4 is the last partially late job in the current partial schedule;

· The component s5 is total weighted late work of a partial schedule.

The initial set S0 contains only one state [0, 0, 0, 0, 0]. For each k ∈ {1, 2, ...,m}, Sk is obtained from
Sk−1 through three mappings, F1, F2, and F3, which translate S := [s1, s2, s3, s4, s5] ∈ Sk−1 into
the states in Sk as follows:

i) Calculate F1 defined by

F1(ak, wk, S) = [s1, s2, s3, s4, s5 + wk(ak + δ)].

Note that job k becomes a fully late job through mapping F1;

ii) Calculate F2 defined by

F2(ak, wk, S) = [s1, s2 + ak, s3 + wk, k, s5 + wk(s2 + ak)].

Note that job k becomes a partially late job through mapping F2;

iii) If s1 + ak < d, then calculate F3 defined by

F3(ak, wk, S) = [s1 + ak, s2, s3, s4, s5].

Note that job k becomes an early job through mapping F3.

After completing the mth phase, we place the straddling job x if jobs x and s4 can be the first and
last partially late jobs, respectively. That is, shift all (partially and fully) late jobs to the right by
(s1 + a − d) and insert the straddling job x on interval [s1, s1 + a] if the state S ∈ Sm belongs to
the following set from (3.3):

Q = {S ∈ Sm | s1 ≤ d < s1 + a and δ ≤ s1 + a+ s2 − d < as4 + δ}.

At this time, total weighted late work of a feasible schedule is calculated as

G(S) = s5 + (s3 + w)(s1 + a− d) for S ∈ Q.

Algorithm 3.1 outputs a schedule with the minimum G(S) among S ∈ Q.

Algorithm 3.1 (t). S0 ← {[0, 0, 0, 0, 0]} k ← 1 to m each S := [s1, s2, s3, s4, s5] ∈ Sk−1 Sk ←
Sk ∪ F1(ak, wk, S) ∪ F2(ak, wk, S) ∪ F3(ak, wk, S) Q = {S ∈ Sm | s1 ≤ d < s1 + a and δ ≤
s1 + a + s2 − d < as4 + δ} each S := [s1, s2, s3, s4, s5] ∈ Q G(S) ← s5 + (s3 + w)(s1 + a − d)
min{G(S) | S ∈ Q} DP for 1|PDD|

∑
wjYj with a fixed straddling job.

Note that the number of states in the algorithm is bounded by O(lA2WT ), where l = |L|,
A =

∑
j∈L aj , W =

∑
j∈L wj , and T =

∑
j∈L wjpj . Hence, Algorithm 3.1 is a pseudo-polynomial

algorithm. Since the possible number of straddling job is l, 1|PDD|
∑

wjYj can be solved in pseudo-
polynomial time. �

Corollary 3.2. 1|PDD|
∑

wjYj is weakly NP-hard.

Proof It immediately holds by Theorems 2 and 3. �

4 Concluding Remarks

We consider a single-machine scheduling problem with generalized due dates and total weighted
late work criterion. Although the problem has been known to be NP-hard, its exact complexity is
not established. We prove its strong NP-hardness, and weak NP-hardness of the case with periodic
due dates.
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