
Asian Research Journal of Mathematics

18(4): 1-6, 2022; Article no.ARJOM.85321

ISSN: 2456-477X

A Single-machine Scheduling with Generalized Due
Dates to Minimize Total Weighted Late Work

Myoung-Ju Park a and Byung-Cheon Choi b∗

aDepartment of Industrial and Management Systems Engineering, Kyung Hee University, 1732,
Deogyeong-daero, Giheung-gu, Yongin-si, Kyunggi-do 17104, Korea.

bSchool of Business, Chungnam National University, 99 Daehak-ro, Yuseong-gu,

Daejeon 34134, Korea.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved
the final manuscript.

Article Information

DOI: 10.9734/ARJOM/2022/v18i430368

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s)
and additional Reviewers, peer review comments, different versions of the manuscript, comments

of the editors, etc are available here: https://www.sdiarticle5.com/review-history/85321

Received: 02 February 2022

Accepted: 05 April 2022

Short Communication Published: 11 April 2022

Abstract

In the paper, we consider a single-machine scheduling problem with generalized due dates, in
which the objective is to minimize total weighted work. This problem was proven to be NP-hard
by Mosheiov et al. [1]. However, the exact complexity remains open. We show that the problem
is strongly NP-hard, and is weakly NP-hard if the lengths of the intervals between the consecutive
due dates are identical.

Keywords: Scheduling; total late work; generalized due dates; computational complexity.

1 Introduction

Consider a scheduling problem such that the due date is assigned not to the specific job but to the
job position. Such a due date is referred to as the generalized due date (GDD). Since the scheduling
problem with GDD was initiated from Hall [2], much research has been done in [3, 4, 5, 6, 7, 8].
Recently, Mosheiov et al. [1] considered single-machine scheduling problems with GDD to minimize
total late work. They showed that the problem can be solved by the Shortest Processing Time first

*Corresponding author: E-mail: polytime@cnu.ac.kr;

https://www.sdiarticle5.com/review-history/85321

Park and Choi; ARJOM, 18(4): 1-6, 2022; Article no.ARJOM.85321

(SPT) rule, while it is NP-hard if each job has a different weight. Note that it is unknown whether
the case with the different weights is strongly NP-hard or not. We establish the exact complexity
for the case with the different weights.

The remainder of this paper is organized as follows. Sections 2 and 3 defines the problem formally
and establishes the computational complexity.

2 Problem Definition

Our problem can be formally stated as follows: For each job j ∈ J = {1, 2, ..., n}, let pj and wj

be the processing time and the weight, respectively. Let π =
(
π(1), π(2), ..., π(n)

)
be a schedule,

where π(j) is the jth job. For each j ∈ J, let Sj(π) and Cj(π) be the start and completion times of
job j in π, respectively, and π−1(j) be the position of job j in π. In our model, unlike the traditional
scheduling problem, the due date di is assigned not to the specific job, but to the job positioned
ith for each due date i ∈ D = {1, 2, ..., n}. For simplicity, assume that d0 = 0 and

d1 ≤ d2 ≤ · · · ≤ dn.

GDD has two special cases depending on the condition of the due dates. The first and the second
cases have a common due date with

di = d for i ∈ D, (2.1)

and identical lengths of the intervals between the consecutive due dates, that is,

di = iδ and di − di−1 = δ for i ∈ D, (2.2)

respectively. Let the due dates with relations (2.1) and (2.2) be referred to as the common due
dates (CDD) and periodic due dates (PDD), respectively. For each j ∈ J, let Tj(π) and Yj(π) be
the tardiness and late work of a job j in π, respectively, which are calculated as

Tj(π) = max
{
0, Lj(π)

}
and Yj(π) = min

{
pj , Tj(π)

}
,

where Lj(π) = Cj(π) − dπ−1(j). The objective is to find a schedule π to minimize total weighted
late work, which is calculated as

z(π) =
∑
j∈J

wjYj(π).

We follows the standard three-field notation 1|β|
∑

j∈J wjYj introduced by Graham et al. [9], where
β ∈ {CDD,PDD,GDD} describes the characteristics of the due dates. This paper establishes the
complexities of three cases.

Table 1 summarizes our results (note that ‘wNP-hard’ and ‘sNP-hard’ stand for weakly and strongly
NP-hard, respectively).

Table 1. Complexity for 1|β|γ

γ \ β CDD PDD GDD∑
wjTj wNP-hard [10, 8] wNP-hard [3] sNP-hard [4]∑
wjYj polynomially solvable [1] wNP-hard (Cor. 3.2) sNP-hard (Thm. 1)

2

Park and Choi; ARJOM, 18(4): 1-6, 2022; Article no.ARJOM.85321

3 Computational Complexity

In this section, we show that 1|GDD|
∑

wjYj and 1|PDD|
∑

wjYj are strongly and weakly NP-
hard, respectively.

Theorem 1. 1|GDD|
∑

wjYj is strongly NP-hard.

Proof Gao and Yuan [4] showed that 1|GDD|
∑

wjTj is strongly NP-hard. It is observed from
the reduced instance in their proof that Tj = Yj holds for each job j ∈ J in the optimal schedule.
Thus, 1|GDD|

∑
wjYj is strongly NP-hard. �

Theorem 2. 1|PDD|
∑

wjYj is NP-hard.

Proof For simplicity, for 1|CDD|
∑

wjTj , let p̄j and w̄j be the processing time and weight of job
j ∈ {1, 2, ..., n}, respectively, and d be the common due date. Yuan [8] showed that 1|CDD|

∑
wjTj

is NP-hard, even if
n∑

j=1

p̄j ≤ 2d+ 1. (3.1)

Given an instance of 1|CDD|
∑

wjTj , we can construct an instance of 1|PDD|
∑

wjYj with (n+1)
jobs in J = {0, 1, ..., n} such that

· p0 = 0 and w0 = 1 +
∑n

j=1 w̄j ;

· pj = d+ p̄j and wj = w̄j , j = 1, 2, ..., n;

· δ = d.

It is observed that job 0 is processed at the first position in any optimal schedule for the reduced
instance of 1|PDD|

∑
wjYj . Thus, we consider only a schedule π for the reduced instance with

π(1) = 0, that is, a schedule π = (0, π̄), where π̄ is the schedule for a given instance of 1|CDD|
∑

wjTj .
Note that the kth job in π̄ is the (k + 1)th job in π. Then, we have

Cπ(k+1)(π) =

k+1∑
h=2

pπ(h) =

k∑
h=1

(d+ pπ̄(h)) = kd+ Cπ̄(k)(π̄), (3.2)

where the first equality holds due to pπ(1) = 0. If job j is the kth job in π̄, then we have, by equation
(3.2),

Lj(π) = kd+ Cπ̄(k)(π̄)− (k + 1)δ = Cj(π̄)− d = Lj(π̄)

and

Tj(π) = Tj(π̄).

By inequality (3.1), we have Tj(π̄) ≤
∑n

j=1 p̄j − d ≤ d+ 1 ≤ d+ p̄j . Then

Yj(π) = min{pj , Tj(π)} = min{d+ p̄j , Tj(π̄)} = Tj(π̄).

Since job 0 is not tardy in π and wj = w̄j , j = 1, 2, ..., n, the objective values of the two schedules
π and π̄ in each instance are the same. This implies that 1|CDD|

∑
wjTj is special case of

1|PDD|
∑

wjYj . Thus, Theorem 2 holds. �

3

Park and Choi; ARJOM, 18(4): 1-6, 2022; Article no.ARJOM.85321

Let a job j be referred to as small if pj ≤ δ, and large, otherwise. Let S and L be the sets of small
and large jobs, respectively. Let

aj =

{
δ − pj for j ∈ S

pj − δ for j ∈ L.

Furthermore, let aj be referred to as auxiliary processing time for j ∈ L. Under a schedule π, let a
job j be referred to as early if Yj(π) = 0, partially late if 0 < Yj(π) < pj , and fully late if Yj(π) = pj .
In 1|PDD|

∑
wjYj , an optimal schedule π can be represented as

π = (πs, πe, πp, πf),

where πs, πe, πp and πf are sequences of small, early, partially late, and fully late jobs, respectively.
Furthermore, the jobs in πi for i ∈ {s, e, f} are sequenced arbitrarily. By Observation 3, henceforth,
we construct only a schedule for large jobs. Let d =

∑
j∈S aj and [h] be the hth large job in π.

Note that

T[h](π) = max

{
0,

h∑
i=1

a[i] − d

}
and Y[h](π) = min

{
p[h], T[h](π)

}
. (3.3)

Let P and x be the set of partially late jobs and the first partially late job in the optimal schedule,
respectively. Let x be referred to as a straddling job.

Lemma 1. In an optimal schedule π, jobs in P\{x} are sequenced in non-increasing order of wj/aj .

Proof Suppose that there exist two jobs i = [k] and j = [k + 1] in P \ {x} with
wi

ai
<

wj

aj
. (3.4)

Note that by [k − 1] ∈ P, T[k−1](π) > 0. Then, by {i, j} ⊂ P and (3.3),

wiYi(π) + wjYj(π) = wi

(
T[k−1](π) + ai

)
+ wj

(
T[k−1](π) + ai + aj

)
. (3.5)

Let π̄ be the schedule constructed by interchanging the positions of jobs i and j from π. Then,

wjYj(π̄) + wiYi(π̄) ≤ wj

(
T[k−1](π) + aj

)
+ wi

(
T[k−1](π) + aj + ai

)
. (3.6)

By (3.4)-(3.6), we have
z(π)− z(π̄) ≥ wjai − wiaj > 0.

This contradicts to the optimality of π. �
Theorem 3. 1|PDD|

∑
wjYj can be solved in pseudo-polynomial time.

Proof We present a DP based on Observation 3 and Lemma 1. Suppose that in an optimal schedule,
the auxiliary processing time and the weight of the straddling job x are a and w, respectively.
Renumber the remaining large jobs such that

w1

a1
≥ w2

a2
≥ · · · ≥ wm

am
,

where m = |L| − 1. Then, we construct a schedule of jobs in {1, 2, ...,m} by applying Algorithm
3.1. For each k ∈ {1, 2, ...,m}, the kth phase of Algorithm 3.1 produces a set Sk of states. Each
state in Sk is expressed as a vector S = [s1, s2, s3, s4, s5] representing the information of a partial
schedule for the first k jobs, where

· The component s1 is total auxiliary processing time of early jobs;

· The components s2 and s3 are total auxiliary processing time and total weight of partially late
jobs, respectively;

4

Park and Choi; ARJOM, 18(4): 1-6, 2022; Article no.ARJOM.85321

· The component s4 is the last partially late job in the current partial schedule;

· The component s5 is total weighted late work of a partial schedule.

The initial set S0 contains only one state [0, 0, 0, 0, 0]. For each k ∈ {1, 2, ...,m}, Sk is obtained from
Sk−1 through three mappings, F1, F2, and F3, which translate S := [s1, s2, s3, s4, s5] ∈ Sk−1 into
the states in Sk as follows:

i) Calculate F1 defined by

F1(ak, wk, S) = [s1, s2, s3, s4, s5 + wk(ak + δ)].

Note that job k becomes a fully late job through mapping F1;

ii) Calculate F2 defined by

F2(ak, wk, S) = [s1, s2 + ak, s3 + wk, k, s5 + wk(s2 + ak)].

Note that job k becomes a partially late job through mapping F2;

iii) If s1 + ak < d, then calculate F3 defined by

F3(ak, wk, S) = [s1 + ak, s2, s3, s4, s5].

Note that job k becomes an early job through mapping F3.

After completing the mth phase, we place the straddling job x if jobs x and s4 can be the first and
last partially late jobs, respectively. That is, shift all (partially and fully) late jobs to the right by
(s1 + a − d) and insert the straddling job x on interval [s1, s1 + a] if the state S ∈ Sm belongs to
the following set from (3.3):

Q = {S ∈ Sm | s1 ≤ d < s1 + a and δ ≤ s1 + a+ s2 − d < as4 + δ}.

At this time, total weighted late work of a feasible schedule is calculated as

G(S) = s5 + (s3 + w)(s1 + a− d) for S ∈ Q.

Algorithm 3.1 outputs a schedule with the minimum G(S) among S ∈ Q.

Algorithm 3.1 (t). S0 ← {[0, 0, 0, 0, 0]} k ← 1 to m each S := [s1, s2, s3, s4, s5] ∈ Sk−1 Sk ←
Sk ∪ F1(ak, wk, S) ∪ F2(ak, wk, S) ∪ F3(ak, wk, S) Q = {S ∈ Sm | s1 ≤ d < s1 + a and δ ≤
s1 + a + s2 − d < as4 + δ} each S := [s1, s2, s3, s4, s5] ∈ Q G(S) ← s5 + (s3 + w)(s1 + a − d)
min{G(S) | S ∈ Q} DP for 1|PDD|

∑
wjYj with a fixed straddling job.

Note that the number of states in the algorithm is bounded by O(lA2WT), where l = |L|,
A =

∑
j∈L aj , W =

∑
j∈L wj , and T =

∑
j∈L wjpj . Hence, Algorithm 3.1 is a pseudo-polynomial

algorithm. Since the possible number of straddling job is l, 1|PDD|
∑

wjYj can be solved in pseudo-
polynomial time. �

Corollary 3.2. 1|PDD|
∑

wjYj is weakly NP-hard.

Proof It immediately holds by Theorems 2 and 3. �

4 Concluding Remarks

We consider a single-machine scheduling problem with generalized due dates and total weighted
late work criterion. Although the problem has been known to be NP-hard, its exact complexity is
not established. We prove its strong NP-hardness, and weak NP-hardness of the case with periodic
due dates.

Competing Interests

Authors have declared that no competing interests exist.

5

Park and Choi; ARJOM, 18(4): 1-6, 2022; Article no.ARJOM.85321

References

[1] Mosheiov G, Oron D, Shabtay D. Minimizing total late work on a single machine wiht
generalized due dates. European Journal of Operational Research. 2021;293:837-846.

[2] Hall NG. Scheduling problems with generalized due dates. IIE Transactions. 1986;18:220-222.

[3] Choi BC, Kim KM, Min Y, Park MJ. Scheduling with generalized and periodic due dates
under single- and two-machine environments. Optimization Letters. 2022;16:623-633.

[4] Gao Y, Yuan JJ. Unary NP-hardness of minimizing total weighted tardiness with generalized
due dates. Operations Research Letters. 2016;44:92-95.

[5] Hall NG, Sethi SP, Sriskandarajah C. On the complexity of generalized due date scheduling
problems. European Journal of Operational Research. 1991;51:100-109.

[6] Park MJ, Choi BC, Kim KM, Min Y. Two-machine ordered flow shop scheduling wiht
generalized due dates. Asia-Pacific Journal of Operational Research. 2020;37:1-16.

[7] Srikandarajah S. A note on the generalized due dates scheduling Problem. Naval Research
Logistics. 1990;37:587-597.

[8] Yuan JJ. The NP-hardness of the single machine common due date weighted tardiness problem.
Journal of Systems Science and Complexity. 1992;5:328-333.

[9] Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG. Optimization and approximation
in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics.
1979;3:287-326.

[10] Lawler EL, Moore JM. A functional equation and its application to resource allocation and
sequencing problems. Management Science. 1969;16:77-84.

——–
c⃝ 2022 Park and Choi; This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser
address bar)
https://www.sdiarticle5.com/review-history/85321

6

http://creativecommons.org/licenses/by/4.0

	Introduction
	Problem Definition
	Computational Complexity
	Concluding Remarks

