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Abstract 

 
In recent times, there have been increased rates at which researchers are searching for advanced ways of 

carrying out land-use land-cover (LULC) mapping, especially in developing countries. Four machine-

learning algorithms, namely Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbour 

(K-NN), and Gaussian Mixture Models (GMM) were examined. This study also attempted to validate the 

various models using the index-based validation method. Accuracy assessment was performed by using the 

Kappa coefficient. The results of the LULC showed that RF classified 23% of the study area as bare land, 

SVM has 24% of the study area classified as bare land, K-NN also allotted 24% to bare land, while that of 

GMM classifier was 30%. The overall accuracy of RF, SVM, K-NN and GMM were 0.9840, 0.9780, 0.9641 

and 0.9421 respectively. The Kappa Coefficient of the various classifiers were RF (0.9695), SVM (0.9580), 

K-NN (0.9319) and GMM (0.8916). This study showed that though all the algorithms performed relatively 

very well, RF performed better than the other classifiers. It suffices to state that, there is a need for further 

studies since other extraneous environmental variables may be underpinning these conclusions. 
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1 Introduction 

 
Image classification defines phenomena in an image based on their spectral signatures, considered as a function 

wavelength. Mapping of land use land cover (LULC) dynamics has been identified as an integral part of a wide 

range of geospatial activities and applications [1]. Rapid and uncontrolled population growth with associated 

economic and industrial development, especially in developing countries with intensified LULC have become 

underpinning reasons for evaluating changes in LULC [2,3]. Changes in LULC have a series of impacts on the 

environment in many ways such as increased flood, drought vulnerability, soil degradation, loss of ecosystem 

services, groundwater depletion, landslide hazards, soil erosion and others [4,5,6]. Over the years, researchers 

had deployed conventional and direct ways of mapping at various scales integrating spatial information with 

different levels of precision, which were laborious, time-consuming and expensive in mapping large areas [7]. 

 

On the other hand, the satellite-based mapping of LULC has proven to be more cost-effective, spatially 

extensive, multi-temporal, and time-saving [8]. With the advancement in remote-sensing (RS) techniques 

satellites now provide data at various spatial and temporal scales [9,10]. Satellite images also have the 

advantages of multi-temporal availability as well as large spatial coverage for the LULC mapping [11,12]. In 

recent times, machine-learning algorithms on remotely-sensed imageries for LULC mapping have been 

attracting considerable attention [13,14]. Remote sensing techniques have advanced in recent decades, and 

numerous approaches for land use land cover (LULC) change research, such as support vector machines 

(SVMs), random forests (RFs), and convolutional neural networks, have been created, including machine 

learning (CNNs). In LULC classification applications, nonparametric machine learning methods such as SVM 

and RF are well-known for their ideal classification accuracies [15-17]. These algorithms have similar 

advantages and abilities in classifying multitemporal and multi-sensor data, such as high-dimensional datasets, 

and enhanced overall accuracy [18]. In LULC classification applications, nonparametric machine learning 

methods such as SVM and RF are well-known for their ideal classification accuracies [15-17]. These algorithms 

have similar advantages and abilities in classifying multitemporal and multi-sensor data, such as high-

dimensional datasets, and enhanced overall accuracy [18]. Therefore, researchers have been deploying various 

classification algorithms in the fields of Remote Sensing and Geographic Information systems (GIS). They 

include parametric algorithms such as maximum likelihood [19], machine learning algorithms such as Random 

Forest RF) Artificial Neural Networks (ANNs) and Support Vector Machine (SVM) [20,21]. Machine-learning 

algorithms have been grouped into two categories; supervised and unsupervised techniques [22].Therefore, 

researchers have been deploying various classification algorithms in the fields of Remote Sensing and 

Geographic Information systems (GIS). They include parametric algorithms such as maximum likelihood [19], 

machine learning algorithms such as Random Forest RF) Artificial Neural Networks (ANNs) and Support 

Vector Machine (SVM) [20,21]. Machine-learning algorithms have been grouped into two categories; 

supervised and unsupervised techniques [22]. Examples of the supervised classification techniques include 

Spectral Angle Mapper (SAM), Support Vector Machine (SVM), Random Forest (RF), Mahalanobis Distance 

(MD), Fuzzy Adaptive Resonance Theory-Supervised Predictive Mapping (Fuzzy ARTMAP), Radial Basis 

Function (RBF), Naive Bayes (NB), Decision Tree (DT), K-Nearest Neighbour (K-NN), Gaussian Mixture 

Models (GMM), Multilayer Perception (MLP), Maximum likelihood classifier (MLC), and Fuzzy Logic 

[23,24].  

 

Conversely, the unsupervised classification techniques include Affinity Propagation (AP) Cluster Algorithm, 

Fuzzy C-Means algorithms, K-Means algorithm, ISODATA (iterative self-organizing data) etc. [25,14]. Thus, 

numerous studies on the LULC modelling have been carried out using different machine-learning algorithms 

[26-28] as well as comparing the machine-learning algorithms [29-32]. Other factors aside from the type of 

machine learning algorithm used for lulc classification, can affect its accuracy. It must be mentioned firmly. 

LULC classification utilizing medium-resolution and low-resolution satellites does not have numerous spectral 

and spatial constraints that impair its accuracy, according to several studies. While there have been some mirrors 

research on land use classification using a machine learning algorithm [1,33] There hasn’t been much work done 

on a comparative examination of the various models. As a result, the goal of this research is to determine 

whether machine learning languages can build a higher precision LULC map based on accurate statistics. 
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2 Materials and Methods 

 
Ileiloju/Okeigbo Local Government Area (study area) in Ondo state lies between Longitudes 6

o
 40’ and 7

o
 14’ N 

and Latitudes 4
o
 38’ E and 4

o
 53’ E [34]. It shares boundaries with Ondo town, Idanre and Ipetu Ijesha. In the 

study area, towns and villages such as Agunla, Akinsulure, Oloronba, Awopeju, Oloruntele, Bamkemo, 

Lisamikan and Ileoluji are notable. It covers a total area of about 698 km
2 

with an average temperature of 26
o
C. 

The topography is inundated with hills such as the Ikeji and Otasun hills. The average temperature is 26
o
C with 

a relative humidity of about 66%. The study area has rivers such as Oni, Okurughu and Awo rivers flowing 

across the local government area in terms of the drainage system. The economy of the study area is based on the 

cultivation of crops such as cassava, yam, and cash crops such as oil palm, cocoa, rubber, and kola nut 

(https://www.manpower.com.ng>lga). It must be stated that this study did not cover the entire local government 

area but mainly the northern part of the local government. The selection of this part of the map was premised on 

the fact that the focus of this study is on the performance of different machine learning classification algorithms 

and not on a land use land cover change detection analysis (Fig. 1). 

 

 
 

Fig. 1. Map of the study area (Source: Political Map of Nigeria: https//www.worldometers.info) 

 

 2.1 Materials 
 
The Landsat 8 Operational Land Imager (OLI) image of November 25th, 2021 (path/row 190/055) was 

downloaded from the United States Geological Survey (USGS) website (https://earthexplorer.usgs.gov). The 

Google Earth image coupled with some ground control points (GCP) was used to assess the classified LULC 

maps accurately. 

 

 2.2 Preprocessing 
 
An atmospheric correction is a prerequisite for image pre-processing. In this study, the Dark Object Subtraction 

(DOS) Algorithm in QGIS 3.22 using the (SCP plugin) was deployed for the image correction. The dark object 

subtraction method operates by removing the effects of scattering from the image data. It is unique because it 

derives the corrected DN (Digital Number) values majorly from the digital data without relying on outside 

information [35]. Dark-object subtraction (DOS) is one of the most widely used methods when it comes to 

reducing haze within an image. Most dark object subtraction technique assumes that there is a high probability 

that at least a few pixels within an image should be black (0% Reflectance) [35]. The (DOS) method assumes 

that within a satellite image, there exist features that have near-zero per cent reflectance (i.e., water, dense 
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forest, shadow), such that the signal recorded by the sensor from these features is solely a result of atmospheric 

scattering (path radiance), which must be removed [36,37]. Like similar research [38], this study utilized seven 

atmospherically corrected L8 OLI/TIRS spectral bands (Table 1). 

 

Table 1. Landsat 8 (OLI) bands and their wavelength 

 

Bands Wavelength (micrometres) 

Band 1 - Coastal aerosol 0.43 - 0.45 

Band 2 - Blue 0.45 - 0.51 

Band 3 - Green 0.53 - 0.59 

Band 4 - Red 0.64 - 0.67 

Band 5 - Near Infrared (NIR) 0.85 - 0.88 

Band 6 - SWIR 1 1.57 - 1.65 

Band 7 - SWIR 2 2.11 - 2.29 

 

 
 

Fig. 2. Flowchart showing the methodology deployed for this study 

 

2.3 Random Forest  
 

Random Forest (RF) is a new non-parametric ensemble machine-learning algorithm developed by Breiman [39]. 

It is unique because it can handle a variety of data, such as satellite imageries and numerical data [40]. RF is an 

ensemble learning algorithm premised on a decision tree, which integrates massive ensemble regression and 

classification trees. Several studies have shown a satisfactory performance for LULC classification using RF in 

the field of remote-sensing applications [13,23,31]. The higher the number of trees involved in this method the 

better the accuracy in the image classification and land use modelling [41,42].  

 

2.4 Support Vector Machine  
 

Support Vector Machine (SVM) is a non-parametric supervised machine learning method to solve binary 

classification problems [14]. In remote sensing, the polynomial and radial basis function (RBF) kernel has been 

used most commonly. However, for LULC classification, RBF is the most popular technique, and it produces 

better accuracy than the other traditional methods [14]. The objective of the original SVM technique was to find 

the hyper-plane that can separate datasets into several classes and find the optimal separating hyper-plane from 

the available hyper-planes [43]. In this process, the vectors ensure that the width of the margin will be 
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maximized [44]. The training samples or bordering samples that delineate the margin or hyper-plane of SVM 

are known as support vectors [24]. The operational capacity of the SVM is a function of the kernel size and 

density. Therefore, the differential between the simulated and the actual satellite data shows the best 

performance using the support vectors [45]. The SVM was performed in QGIS 3.22 using the dzetsaka plugin. 

 

2.5 K-Nearest Neighbour Classifier 

 
K-nearest neighbour (KNN) algorithm [39] is a method for classifying objects based on closest training 

examples in the feature space. K-nearest neighbour algorithm is among the simplest of all machine learning 

algorithms. In the classification process, the unlabeled query point is simply assigned to the label of its k-nearest 

neighbours. K-NN uses k-nearest neighbours from a subset of all of the training samples in determining a 

pixel’s class or the degree of membership of a class. The selection of different values for ‘K’ can generate 

different classification results for the same sample object. KNN is a simple classification technique. KNN is 

used to classify the objects based on their similarity or closest training samples in the feature space [46].  

 

2.6 Gaussian Mixture Models 
 
A Gaussian mixture model (GMM) is useful for modelling data that comes from one of several groups. The 

groups might be different from each other, but data points within the same group can be well-modelled by a 

Gaussian distribution. 

 

2.7 Validation of Machine Learning Classifiers 
 

To validate the results derivable from this study, the “index-based technique” has been chosen to select the best 

performing machine-learning technique for LULC mapping. For this purpose, three satellite-based indices; 

Normalized Difference Vegetation Index (NDVI), Normalized Differential Water Index (NDWI) and 

Normalized Difference Built-up Index (NDBI), have been classified using different thresholds (Table 2). In the 

end, the area extent of the classifier-derived LULC will be statistically compared to the index-derived area 

extent. 

 

Table 2. Relevant spectral indices and their formulas 

 

Index Formula Reference 

Normalized Difference Vegetation Index      
         

         
  [57] 

Normalized Difference Built-up Index      
         

         
  [58] 

Normalized Difference Water Index      
         

         
  [59] 

  

2.8 Accuracy Assessment  
 

The post-classification accuracy assessment of the LULC generated using various models has become an 

integral part of the classification process [50]. The Kappa coefficient statistical technique was deployed in this 

study to assess accuracy. Monserud and Leemans [51] suggested five levels of accuracy results: very poor (< 

0.4), fair (0.4 to 0.55), good (0.55 to 0.70), very good (0.70 to 0.85) and excellent (> 0.85). Thus, the Kappa 

coefficient was calculated using 501 randomly selected sample points to evaluate the accuracy of LULC maps 

generated using different algorithms. The reference data was downloaded using Google Earth Pro. 
 

3 Result and Discussion 
 

3.1 LULC Classification 
 

In this regard, image classification is based on the four advanced mathematical and machine learning algorithms 

including Random Forest, Support Vector Machine, K-Nearest Neighbour and the Gaussian Mixture Models. 

Landsat 8 (OLI/TIR) image was classified into four thematic classes: The Settlement, Bare land, Vegetation, 

and Waterbody. The study area is about 9,031 ha. From Table 2, out of the total area under study, the RF 



 

 
 

 

Aigbokhan et al.; ARJOM, 18(3): 62-74, 2022; Article no.ARJOM.84512 
 

 

 
67 

 

classifier classified 392 ha (4%) as Settlement area, 2015 ha (23%) as Bare land, 6264 ha (69%) as Vegetation 

and 360 ha (4%) as Waterbody. The SVM classifier classified 286 ha (3%) as Settlement, 2136 ha (24%) as 

Bare land, 6242 ha (69%) as Vegetation and 367 ha (4%) as Waterbody. Also, 359 ha (4%) were classified as 

Settlement, 2153 (24%) as Bare land,6142 (68%) as Vegetation, and 378 (4%) as Waterbody by K-NN 

classifier. GMM classifier had 949 ha (10%) classified as Settlement, 2732 ha (30%) as Bare land,5019 ha 

(56%) as Vegetation and 331 ha (4%) as Waterbody. The LULC maps in Fig. 3 showed that the settlement area, 

as classified by RF (4%), SVM (3%) and K-NN (4%) are very similar. GMM, using the same image and 

training samples classified 10% of the study area as settlement. With a sharp difference of about 6%, the GMM 

classifier tends to differ in algorithmic operations when compared to other classifiers. RF classified 23% of the 

study area as bare land, SVM has 24% of the study area classified as bare land. K-NN also allotted 24% to bare 

land, while that of the GMM classifier was 30%. Vegetation thematic class has almost the same classified area 

extends across the four different classifiers i.e. RF (69%), SVM (69%), K-NN (68%) and GMM (56%) which is 

the least coverage when compared to other classifiers. Waterbody was classified as 4% by all the classifiers 

(Table 2). 

  

   a 

 
 

   b

 
 

   c 

 

   d 

 

Fig. 3. LULC of the study area using different classifiers: (a) with Random Forest (RF) (b) with Support 

Vector Machines (SVM) (c) with K-Nearest Neighbour (KNN) (d) with Gaussian Mixture Model (GMM) 

 

Table 2. Shows the percentage share of each LULC class concerning each classifier's total land coverage 

in the study area 

 

 Random Forest 

(RF) 

Support Vector 

Machine (SVM) 

K-Nearest 

Neighbour (KNN) 

Gaussian Mixture 

Model (GMM) 

 Classes Area(ha) % Area(ha) % Area(ha) % Area(ha) % 

Settlement 392 4 286 3 359 4 949 10 

Bare land 2015 23 2136 24 2153 24 2732 30 

Vegetation 6264 69 6242 69 6142 68 5019 56 

Waterbody 360 4 367 4 378 4 331 4 

 

It is a fact according to [52] that LULC classes cannot be thematically equal amongst the classification 

techniques, be it machine-learning algorithms or traditional classification techniques. This explained why the 

area extent of the various LULC classes as shown in Table 2 are different from one classifier to another. 

Differences in the parameter optimization of the algorithms can also be responsible for the differences in area 

under LULC classes of different classifiers [53]. Though the studies of [13] and [31] opined that the machine-

learning techniques do not have significant differences in the results, this study revealed that there could be 

significant differences in the LULC results of the different classifiers. 

 

3.2 Validation of Models using Index-derived Techniques 
 

The results in Table 3 show the comparison between the spectral indices-derived area extent and that of the 

LULC derived from the classifiers. Fig. 4 shows the reclassified maps of the NDVI, NDBI and the NDWI. The 

total area of NDBI-based is 2339 ha compared to settlement/bare land area as classified by RF classifier which 

is 2407 ha, with a difference of -67 ha. It shows that they are both close when compared to that of SVM (2422 

ha), K-NN (2512 ha) and GMM (3681 ha) respectively. The NDVI-based vegetation area remained 6253 ha 

while that of the RF classifier stood at 6264 ha with a difference of -11 ha. The total vegetation area extent as 
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classified by other classifiers are SVM (6242 ha), K-NN (111 ha) and GMM (1234 ha) respectively. Waterbody 

area calculated using the NDWI was 365 ha, while that of the RF classifier was 360 ha (Table 3). 

 

Table 3. Area of LULC computed by the spectral indices and the computed areas of the LULC by the 

Machine Learning (ML) algorithms 

 

CLASS Spectral 

Indices (ha) 

Area (ha) computed by algorithms and their differences with 

spectral indices 

RF SVM K-NN GMM 

Settlement/Bare land 2339 2407 (-67) 2422 (-88) 2512 (-173) 3681 (-1342) 

Vegetation 6253 6264 (-11) 6242 (11) 6142 (111) 5019 (1234) 

Waterbody 365 360 (5) 367 (-2) 378 (-13) 331 (34) 
*Values within parenthesis indicate the difference between the area computed in spectral indices and that of the 

classification algorithms. 

 

 
 

Fig. 4. The index-derived maps of NDVI, NDWI and NDBI 

 

 3.3 Accuracy Assessment of the Classified LULC 
 

To validate these models’ accuracy, 501 random points were generated on the classified images which contain 

classified information. These points were then observed with the actual ground data extracted from google earth 

historical imagery 2021. The extracted values from the classified image vis-a-vis the reference data (google 

earth image) were used to calculate the error matrix, overall accuracy and Kappa coefficients of the four 

classifiers. Tables 4, 5, 6, 7and 8 showed the error matrices of the various classifiers and the Producer Accuracy. 

The producer accuracy of Settlement as classified by RF (0.9921) is the highest when compared to other 

classifiers, while the rest of the three classifiers (SVM, K-NN, and GMM) had approximately 0.9545. The user 

accuracy of the settlement class had RF (0.9167), SVM (0.9130), K-NN (0.8077) and GMM (0.6774). It showed 

that settlement was accurately classified by RF, but poorly classified by GMM. The results are almost the same 

pattern as the other classes (Table 8). The Overall Accuracy (OA) and Kappa Coefficient (K) for all the 

classifiers are shown in Table 9. The overall accuracy of RF, SVM, K-NN and GMM are 0.9840, 0.9780, 

0.9641 and 0.9421 respectively. This indicates that the classifier’s performance in terms of overall accuracy was 

very similar. The Kappa Coefficient results of the various classifiers RF (0.9695), SVM (0.9580), K-NN 

(0.9319) and GMM (0.8916) showed that RF was the most accurate of all the classifiers. It suffices to state that 

other classifiers also performed very high when compared to [51] Kappa Coefficient benchmark of 0.85 as 

excellent performance. Nevertheless, there appeared to be an excellent agreement between the classified LULC 
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map and the reality on the ground. It has been found that SVM and RF generally provide better accuracy when 

compared to other traditional classifiers. Some researchers have submitted that SVM and RF are the best 

techniques for the LULC classification compared to all other machine-learning techniques [20,23]. This study 

revealed that though, all the machine learning classifiers are very good in terms of LULC classification, the 

Random Forest is still highly recommended.  

 

Table 4. Error matrix for RF 

 

Error Matrix Observed Total 

C
la

ss
if

ie
d

 RF Settlement Bare land Vegetation Waterbody 

Settlement 22 1 0 1 24 

Bare land 0 143 2 0 145 

Vegetation 0 0 310 1 311 

 Waterbody 0 1 2 18 21 

Total 22 145 314 20 501 

 

Table 5. Error matrix for SVM 

 

Error Matrix Observed Total 

C
la

ss
if

ie
d

 SVM Settlement Bare land Vegetation Waterbody 

Settlement 21 1 0 1 23 

Bare land 0 143 2 1 146 

Vegetation 1 0 309 1 311 

 Waterbody 0 1 3 17 21 

Total 22 145 314 20 501 

 

Table 6. Error matrix for K-NN 

 

Error Matrix Observed Total 

C
la

ss
if

ie
d

 K-NN Settlement Bare land Vegetation Waterbody 

Settlement 21 3 1 1 26 

Bare land 0 140 5 1 146 

Vegetation 1 0 305 1 307 

 Waterbody 0 2 3 17 22 

Total 22 145 314 20 501 

 

Table 7. Error matrix for GMM 

 

Error Matrix Observed Total 

C
la

ss
if

ie
d

 GMM Settlement Bare land Vegetation Waterbody 

Settlement 21 5 4 1 31 

Bare land 0 136 8 1 145 

Vegetation 1 2 298 1 302 

 Waterbody 0 2 4 17 23 

Total 22 145 314 20 501 

 

Table 8. LULC Accuracy Assessment statistics of the classifiers 

 

 RF SVM K-NN GMM 

Classes Pa Ua Pa Ua Pa Ua Pa Ua 

Settlement 0.9921 0.9167 0.9545 0.9130 0.9545 0.8077 0.9545 0.6774 

Bare land 0.9862 0.9862 0.9862 0.9795 0.9655 0.9589 0.9379 0.9379 

Vegetation 0.9872 0.9968 0.9841 0.9936 0.9713 0.9935 0.9490 0.9867 

Waterbody 0.9 0.8571 0.85 0.8095 0.85 0.772727 0.8501 0.7391 
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Table 9. Summary of LULC accuracy assessment results 

 

Classifier Overall Accuracy (OA) Kappa Coefficient (K) 

Random Forest 0.9840 0.9695 

Support Vector Machine 0.9780 0.9580 

K-Nearest Neighbour 0.9641 0.9319 

Gaussian Mixture Model 0.9421 0.8916 

 

 The accuracy assessment in this study revealed an insignificant variation among the results of the classifiers. 

Therefore, comparing this study with some previous studies, the accuracy of LULC classification varied from 

one classifier to another sequel to variations in methods, techniques, time, and space [54,14,31].  

 

The result of Guanyao Xie and Simona Niculescu, 2021 [55] in consonance with this study showed, that RF and 

SVM models both performed well for LCLU classification; however, the accuracy assessments show that the 

SVM is better suited to classification. For urban LCLU classification, Jozdani et al. [56] deployed machine 

learning with Object-based Image Analysis (OBIA) methodologies. Though we did not integrate OBIA in our 

study, his results also support the high-performance rating of SVM and RF. LeCUN et al. [57] compared 

Convolution Neural Network (CNN) with other machine learning algorithms in terms of classification accuracy. 

In his results, the CNN outperforms other state-of-the-art machine learning classifiers. However, there are 

certain essential considerations to be made about its effectiveness. In comparison to RF models and SVMs, 

previous applications of CNN models have tended to stress their complexity. In this situation, cross-validation is 

frequently used to tune and optimize parameters for CNN algorithms. Variations in the classification outputs 

could be traceable to the influence of atmospheric, surface and illumination characteristics of the images [30]. It 

is pertinent to state that some other studies had reported that there are minor to moderate fluctuations in the 

accuracy of the LULC classification using different classifiers [58,59]. The high accuracy performance of the 

RF classifier in this study with a Kappa coefficient of 0.97 is furthersupported with previous studies such as that 

of [13] and [23] with accuracy levels 0.93 and 0.90, respectively, for the RF classifier. A small difference is 

found between the previous study and this study on the accuracy levels of SVM [60-62]. Furthermore, [63] 

noted that the accuracy of SVM and RF has very little difference, but the difference increases between either 

SVM and K-NN.  

 

4 Conclusions  

 
This study examined the accuracy of four different machine-learning classifiers for LULC classification using 

Landsat 8 (OLI/TIR) satellite image to elicit the best of all the classifiers. Settlement, bare terrain, vegetation, 

and waterbody were recognized as four distinct classes. The results revealed that under different classifiers, the 

area coverage of each LULC class varied. An accuracy assessment of the LULC classification was performed, 

with the total accuracy and Kappa coefficient as statistical metrics for comparison. In the end, the Kappa 

coefficient and overall coefficient showed changes in the accuracy of each LULC classifier. Both Kappa 

coefficient and Overall accuracy analysis showed that RF has the highest accuracy of all classifiers applied to 

LULC modelling in the study area. 
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