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Abstract: Water conservation efforts and studies receive special attention, versatile and constantly 
developing remote sensing methods especially so. The quality and quantity of algae fundamentally 
influence the ecosystems of water bodies. Inland lakes are less-frequently studied despite their es-
sential ecological role compared to ocean and sea waters. One of the reasons for this is the small-
scale surface extension, which poses challenges during satellite remote sensing. In this study, we 
investigated the correlations between remote-sensing- (via Seninel-2 satellite) and laboratory-based 
results in different chlorophyll-a concentration ranges. In the case of low chlorophyll-a concentra-
tions, the measured values were between 15 µg L−1 and 35 µg L−1. In the case of medium chlorophyll-
a concentrations, the measured values ranged between 35 and 80 µg L−1. During high chlorophyll-a 
concentrations, the results were higher than 80 µg L−1. Finally, under extreme environmental condi-
tions (algal bloom), the values were higher than 180 µg L−1. We also studied the accuracy and corre-
lation and the different algorithms applied through the Acolite (20231023.0) processing software. 
The chl_re_mishra algorithm of the Acolite software gave the highest correlation. The strong posi-
tive correlations prove the applicability of the Sentinel-2 images and the Acolite software in the 
indication of chlorophyll-a. Because of the high CDOM concentration of Lake Naplás, the blue–
green band ratio underestimated the concentration of chlorophyll-a. In summer, higher chlorophyll-
a was detected in both laboratory and satellite investigations. In the case of extremely high chloro-
phyll-a concentrations, it is significantly underestimated by satellite remote sensing. This study 
proved the applicability of remote sensing to detect chlorophyll-a content but also pointed out the 
current limitations, thus assigning future development and research directions. 
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1. Introduction 
Nowadays, accessible water resources play an increasingly critical role in society and 

the ecosystem. The monitoring of surface water resources is a top priority in most coun-
tries. Within the European Union, the conservation of water resources is primarily gov-
erned by the Water Framework Directive [1], which states that the Member States of the 
European Union should aim to achieve at least a good water quality status for their water 
resources, and where a good water quality status already exists, it should be maintained. 
For this, it is essential to monitor the relevant parameters of the water bodies. 

Different kinds of ecosystem services connect to inland water resources. Water qual-
ity is a complex and important part of hydrology that refers to water’s hydrological, chem-
ical, physical, and biological characteristics [2]. Collected information about water qual-
ity—more precisely, its physical, chemical, and biological parameters—is indispensable 
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for proper water resource management. The quantity and quality of the information are 
important factors because these datasets can be used for further analysis. 

As for the biological water quality parameters, the chlorophyll-a content of the water 
influences its usability for drinking, agricultural purposes (irrigation), economic and in-
dustrial purposes, and recreational activities. The chlorophyll-a concentration of water 
provides information about the vertical and horizontal distribution of phytoplankton. 
Several authors have studied phytoplankton’s horizontal and vertical distribution with 
different methods, for example, using submersible fluorescence spectrometers or other 
laboratory-based and remote sensing techniques [3–6]. They found that the submersible 
fluorescence probes were particularly suitable for analyzing the vertical distribution of 
algae. This technique provides rapid and accurate data about the chlorophyll-a concen-
tration of the water column. 

The spatial distribution of the phytoplankton is inhomogeneous, depending on nu-
merous influencing factors, for example, the underwater light conditions, available nutri-
ents, physical and chemical water quality parameters, thermal stratification, predator–
prey relationship, weather conditions (especially wind), currents, and water temperature 
[7,8]. Our research team has also focused on the vertical distribution of algae in a previous 
study [9]. After statistical analysis of collected physical, chemical, biological, and spectral 
parameters, we found that the UV radiation, available light, and water temperature sig-
nificantly affected the vertical distribution of phytoplankton. 

The dissolved organic matter (DOC) content in water provides an effective protection 
against UV radiation. Therefore, a significant part of the UV-B radiation is absorbed in the 
upper 20–50 cm layer [10,11]. Within the total suspended solids content, it is important to 
know the organic and inorganic suspended solids content and their relative proportions 
because these parameters interact with the spectral properties of water. Within this recent 
study, 85% of total suspended solids originated from organic components. In a previous 
study, Mirnasab et. al. [12] examined the relationship between water quality and natural 
organic matter in water. Their data suggest that the organic matter content plays a signif-
icant role in water quality and the spectral properties of the water. 

Concerning the horizontal distribution of algae, different remote sensing techniques, 
such as satellite- or UAV-based systems, provide a good monitoring solution. The ad-
vantage of these methods is that we can quickly and cost-efficiently obtain data from large 
areas. 

Several studies have compared different measuring methods, on-site submersible flu-
orescence spectrometers, conventional laboratory measurements, and remote sensing 
techniques with different observatory levels [13–17]. Their findings reveal that the ade-
quate environmental assessment of an area requires the simultaneous application of dif-
ferent analytical techniques. To obtain high-quality and large amounts of data for the in-
vestigated water parameters, we need to combine on-site measurements and remote sens-
ing. 

The significance and relevance of the research project presented here relies on two 
main points. First, climate change poses many challenges for humanity. Therefore, proper 
water resource management is essential on a local, regional, and global scale. This is why 
we used combined data collection methods for environmental monitoring. Second, com-
paring the different methods, focusing on usability and accuracy, opens possibilities for 
new ways to take advantage of the techniques. Our study focuses on the chlorophyll-a 
content of the water and two different data collection and measuring methods, namely, 
conventional and remote sensing techniques. As for the biological water quality measure-
ments in the laboratory, the chlorophyll-a content signifies a vital parameter. We used the 
ISO 10260:1992 [18] (water quality) measurement of biochemical parameters, and we used 
the spectrometric determination of the chlorophyll-a concentration method to determine 
the chlorophyll-a concentration. 

The utilized remote sensing analyses relied on Sentinel 2 data from the European 
Space Agency. The database is built upon a long-term in situ sampling campaign and 
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complex remote sensing data analysis in a selected nutrient-rich shallow lake in Hungary. 
Most sensors have been developed for land or ocean applications, not considering the 
possible and particular demands of lakes, which means that lake applications are some-
what restricted [19]. Sentinel-2 data and the Acolite (20231023.0) software were used to 
investigate algae formerly [20–22], with appropriate results. 

Since, during remote sensing, the detected rays are reflected from the surface or emit-
ted from it, the small investigated surface area carries some challenges. Radar altimetry is 
a commonly used technique for observing large lakes, and laser altimetry is commonly 
used to track changes in smaller lakes. The best choice for accurately quantifying lakes is 
to use instruments that work in the visible/infrared bands with high spatial resolution 
[23]. Sentinel-2, with its appropriate band, spatial resolution, and five-days revisiting time, 
is a potentially appropriate tool, which, together with Acolite, was successfully used in 
the case of a large surface lake to determine chlorophyll-a concentration [24]. 

Previous research found that the blue/green and the near-infrared/red ratio correlates 
well with the concentration of chlorophyll-a [25–29]. 

Several different phytoplankton types can cause problems in the aquatic ecosystem. 
There are three types (cyanobacteria, dinoflagellates, and diatoms) that can cause harmful 
algal bloom and health issues for people and animals. Cyanobacteria cause harmful algal 
blooms in freshwater. Dinoflagellates and diatoms are common types in salt water. Some 
types of cyanobacteria, including the harmful genus Microsystis, can produce hazardous 
cyanotoxins such as microcystins, which are hepatotoxins that cause liver problems in 
mammals. Other types of cyanobacteria can also produce harmful hepatotoxins, for ex-
ample: neurotoxins, cytotoxins, and endotoxins. Combined monitoring methods (in situ 
and remote sensing approaches) can help us to detect harmful algae blooms in time. 

This study’s main objective is to compare laboratory and remote sensing chlorophyll-
a measurements, especially their accuracy and the different algorithms used in the calcu-
lation process. 

To achieve the described main objective, we took the following steps: 
• Creation of a complex sampling and measuring program based on remote sensing, 

on-site, and laboratory measurements. 
• Establishment of correlations between the laboratory and remote sensing chloro-

phyll-a measurements. 
• Comparison between the different applied chlorophyll-a concentration algorithms 

based on remote sensing data. 
• Investigating the effect of chlorophyll-a’s vertical and horizontal distribution on re-

mote sensing. 

2. Materials and Methods 
2.1. Data Collection and Measurements 

The study area is Lake Naplás, a small, shallow (the average depth is 3 m) reservoir 
on the Szilas Creek in Budapest, Hungary. The area of the lake is 22 hectares, and it is 
primarily used for recreational activities. Lake Naplás and its connectional areas have 
been under environmental protection since 1997, and it is the largest open-surface urban 
lake and wetland area in Central Europe [30]. This protected area in the urban region pro-
vides a unique habitat for its complex ecosystem. It allows migratory birds (150 different 
bird species) and other animals and plants to survive. 

For creating the database, we fulfilled two on-site data collection periods to record 
the following parameters: 
• Chlorophyll-a concentration: vertical distribution of phytoplankton by taking water 

samples for further laboratory analysis. 
• Water temperature: water temperature profile of the sampling points for further anal-

ysis. 
• Depth of the water: depth profile of the sampling points for further analysis. 
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The sampling program was divided into two periods: the first sampling period was 
between 2016 and 2018, and the second was in 2022. The program included eighty-five 
wholly performed sampling campaigns during the first period and thirteen in the second. 
As for the data collection, we used a submersible sampler for the sampling process carried 
out from a boat. We designated three sampling points in the study area. During the des-
ignation process of the sampling points, the main point of interest was to represent the 
different basin characteristics and habitat conditions of the study area, based on our pre-
vious research [9]. We determined the chlorophyll-a content at different depths in all three 
sampling points. Table 1 lists the detailed information about the sampling campaigns. 

Table 1. Detailed information about the sampling points. 
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1.8 m By 0.1 m By 0.2 m 15 

N2 
47°30’29.84” N 
19°14’47.50” E 

1.8 m By 0.1 m By 0.2 m 15 

N3 47°30’33.29” N 
19°14’57.13” E 

0.7 m By 0.1 m n.d. 8 

The first sampling point (N1) is on the northern side of the lake. Within this area, the 
local currents are moderate, and the water column is hardly disturbed. We used this loca-
tion almost throughout the year, except in winter when the lake is frozen and walking on 
the ice is not permitted. 

The N2 sampling point is on the southern side of the lake. The currents are negligible 
because it is far from the in- and outflow. 

The third sampling point (N3) was located on the lake’s western side, close to the 
inflow of the Szilas creek. The lake’s bed is shallow and partly covered by reeds along the 
coast. Around this location, high-velocity flows are frequent. 

The locations of the sampling points are shown in Figure 1. 

 
Figure 1. Locations of sampling points (source: Google Earth). 
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The main objective of the laboratory analysis was to determine the chlorophyll-a con-
centration of the water samples with high accuracy to compare the results with the re-
motely sensed data. The conventional method of phytoplankton concentration determi-
nation, the ISO 10260:1992 method [18], was applied during the analysis. We applied a 
laboratory spectrometer (Jenway 6405 UV/VIS Spectrophotometer, Cole-Parmer, Stone, 
UK) to determine the chlorophyll-a concentration of the water samples. Biological param-
eters were measured from each collected 250 mL water sample. 

2.2. Source of the Dataset 
Sentinel-2 is a constellation of two satellites: Sentinel-2A (launched: 23 June 2015) and 

Sentinel-2B (7 March 2017). Sentinel-2 has the multispectral imager (MSI) on board, an 
optical imager with 13 spectral bands spanning from the blue to the shortwave infrared 
(SWIR), with 10, 20, or 60 m ground resolution. Sentinel-2 images rely on two sources: 
USGS EarthExplorer [31] and Copernicus Open Access Hub [32]. The processing level of 
the images was 1C, which is characterized by top-of-atmosphere (TOA) reflectance, radi-
ometric correction, and orthorectification. 

Several different studies have examined the accuracy of remote sensing determina-
tions [33–35]. The accuracy of the remote-sensing-based chlorophyll-a determination is 
between 80 and 95%, depending on the satellite system and algorithm used. Alongside 
these mentioned parameters, a very important point is the vertical distribution of the phy-
toplankton. 

2.3. Data Processing 
Data processing included three pieces of software: Acolite [36] to obtain chlorophyll-

a data; QGIS Desktop 3.14.15 software [37] to visualize the results, making the dataset 
clearly understandable and creating chlorophyll-a maps and zonal statistics; and IBM 
SPSS v25 [38] statistical software to perform statistical analysis. 

Acolite is a program developed by the Royal Belgian Institute of Natural Sciences 
(RBINS) specifically designed to process satellite water imagery. It also offers seven dif-
ferent algorithms for determining the content of chlorophyll-a in Sentinel-2. Chlorophyll-
a content was determined via remote sensing using a method and equation developed by 
Vanhellemont and Ruddick [39] (see p. 3., Equations (2)–(4)). 

The following algorithms we used during the recent study: 
• chl_oc2, chl_oc3: Chlorophyll-a concentration (µg/L) using the blue–green ratio algo-

rithm. The oc2 and oc3 use two and three bands, respectively. Results should be used 
with care in coastal and inland waters, especially in the presence of sediments and 
CDOM [40]. 

• chl_re_gons, chl_re_gons740: Chlorophyll-a concentration (µg/L) using the red edge 
algorithm by Gons et al. [41], with published coefficients and a mass-specific chloro-
phyll-a absorption of 0.015. By default, 780 nm (band 6) was used as a reference, but 
the chl_re_gons740 product uses 740 nm (band 5) on MSI [40]. 

• chl_re_moses3b, chl_re_moses3b740: Chlorophyll-a concentration (µg/L) using the 
three-band red edge algorithm by Moses et al. [42]. By default, we relied on 780 nm 
(band 6) as a reference, but the chl_re_moses3b740 product uses 740 nm (band 5) on 
MSI [40]. 

• chl_re_mishra: Chlorophyll-a concentration (µg/L) using the normalized difference 
chlorophyll index algorithm by Mishra and Mishra [40,43]. 
QGIS zonal statistics were applied to obtain datasets of the lake’s mean, maximum, 

and minimum chlorophyll-a values. We used the mean chlorophyll-a data for statistical 
analyses. Data visualization applied the four different classes with different chlorophyll-
a rates (0–8; 8–25; 25–75; >75 µg/L), as defined by the OECD (Organization for Economic 
Co-operation and Development) [44]. 
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To reveal the correlation between chlorophyll-a concentration of Lake Naplás, we 
used Pearson’s correlation after performing the Shapiro–Wilk normality test. 

We also investigated the average chlorophyll-a content of the lake and the chloro-
phyll-a concentration of the exact sampling points. To obtain the chlorophyll-a data of 
each point, we used QGIS’s “zoom-to-coordinate” function. 

3. Results and Discussion 
3.1. Overall Comparison of Laboratory-Based Chlorophyll-a Values with Remote Sensing Data 

When choosing adequate sampling dates, we had to consider the satellite revisit pe-
riod and the atmospheric weather conditions. Based on these circumstances, a few sam-
pling dates fell out of the 98 sampling occasions. The analyzed dataset was set up on 22 
sampling dates when the environmental and weather conditions were adequate to com-
pare the laboratory measurements with the remotely sensed data. 

Many images showed the study site covered by clouds, so we had to exclude many 
laboratory results because of the missing satellite data. Furthermore, three measurements 
were excluded from statistical analysis because of the >100 µg/L chlorophyll-a concentra-
tion given that extremely high chlorophyll-a values lead to saturation. 

We applied the Shapiro–Wilk test of normality to prove the Pearson correlation’s ap-
plicability. The results are shown in Table 2. 

Table 2. Results of the Shapiro–Wilk normality test. 

Tests of Normality 

 
Kolmogorov–Smirnov a Shapiro–Wilk 

Statistic df Sig. Statistic df Sig. 
spectrometer 0.096 19 0.200 * 0.973 19 0.829 

chl_oc2 0.324 19 0.000 0.661 19 0.000 
chl_oc3 0.315 19 0.000 0.692 19 0.000 

chl_re_gons 0.199 19 0.046 0.857 19 0.009 
chl_re_gons740 0.208 19 0.029 0.891 19 0.034 
chl_re_mishra 0.138 19 0.200 * 0.951 19 0.415 

chl_re_moses3b 0.227 19 0.011 0.900 19 0.048 
chl_re_moses3b740 0.151 19 0.200 * 0.930 19 0.176 

Notes: * This is a lower bound of the true significance; a Lilliefors significance correction. 

The results of laboratory measurements (spectrometer) and the Acolite algorithms 
chl_re_mishra and chl_re_moses3b740 fulfilled the condition of normality (p > 0.05); thus, 
we investigated these two algorithms further. The Q-Q plots of the two algorithms are 
presented in Figures 2 and 3. 

 
Figure 2. Q-Q plot of chl_re_mishra algorithm. 
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Figure 3. Q-Q plot of chl_re_moses3b740. 

The chl_re_mishra algorithm showed a higher correlation (0.618) with laboratory re-
sults than the chl_re_moses3b740 (0.322). A result of 0.618 represents a moderately strong 
correlation. Results are shown in Table 3. 

Table 3. Results of the Pearson correlation test. 

Correlations 
 chl_re_mishra chl_re_moses3b740 

spectrometer 
Pearson correlation 0.618 ** 0.322 

Sig. (2-tailed) 0.005 0.178 
N 19 19 

Notes: ** Correlation is significant at the 0.01 level (2-tailed). 

The chl_re_mishra algorithm uses the normalized difference chlorophyll index algo-
rithm, using red and red edges, by Mishra and Mishra [43]. In the case of Sentinel-2, the 
calculation used the red spectral band B4 with the red edge spectral band B5. The 
chl_re_mishra algorithm used the normalized difference chlorophyll Index, which has 
been created to predict chlorophyll-a (chl-a) concentration from remote sensing data in 
estuarine and coastal turbid productive waters. 

Additionally, algorithms that employ wavebands in the red and near-infrared (NIR) 
range (650–800 nm) are less sensitive than traditional blue–green (440–550 nm) ratio algo-
rithms to absorption by colored dissolved organic matter (CDOM) and scattering by min-
eral particles; both CDOM absorption and particulate scattering decrease rapidly with the 
wavelength and are small in the red–NIR part of the spectrum [26] 

The chl_re_gons, chl_re_gons740, chl_re_moses3b, and chl_re_moses3b740 algo-
rithms overestimate the concentration of chlorophyll-a. We used the red edge algorithm, 
relying on the published coefficients, and a mass-specific chlorophyll-a absorption of 0.015 
(after Gons et al. [41], so chl_re_gons and chl_re_gons740 estimate chlorophyll-a concen-
tration (µg/L). By default, 780 nm (band 6) was used as a reference, but the chl_re_gons740 
product uses 740 nm (band 5) on Sentinel-2 MSI. Chlorophyll-a concentration (µg L−1) uses 
Moses et al.’s three-band red edge algorithm [42]. By default, 780 nm (band 6) is used as a 
reference, but the chl_re_moses3b740 product uses 740 nm (band 5) on Sentinel-2 MSI. 

As expected, based on the high CDOM concentration of Lake Naplás, the chl_re_oc2 
and chl_re_oc3 algorithms (using blue/green band ratio) underestimated the concentra-
tion of chlorophyll-a, as displayed in Figure 4. 
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Figure 4. Chlorophyll-a concentration (laboratory and Acolite results). 

3.2. Horizontal and Vertical Distribution of Phytoplankton 
The horizontal and vertical distribution of phytoplankton are inhomogeneous on the 

surface and in the water column, influencing the optical properties of the system. Multiple 
processes and parameters influence the distribution. 

Based on our and other in situ and laboratory measurements [9,44], the underwater 
light conditions, available nutrients, physical and chemical water quality parameters, 
thermal stratification of the lakes, wind conditions, parts of the day, predator–prey rela-
tionship, currents, water temperature, and finally, UV radiation could be mentioned as 
necessary influencing factors. 

In this study, the vertical distribution of chlorophyll-a content is a significant param-
eter because it allows for further analysis of which layer correlates best with the remote 
sensing data. The results of laboratory measurement provided two main distribution pat-
terns during the study. In the first case, the maximum chlorophyll-a content was on the 
surface. Meanwhile, the maximum chlorophyll-a content in the second case was in the 
deeper layer (more than 50 cm below the water surface). These two cases are displayed in 
Figures 5 and 6. 
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Figure 5. Vertical distribution of phytoplankton in Case 1 (12 October 2017). 

 
Figure 6. Vertical distribution of phytoplankton in Case 2 (5 August 2022). 

In a former study [9], we found that the placement depth of the maximum chloro-
phyll-a content could influence the remote sensing reflectance. Based on these results, the 
difference in the vertical distribution of chlorophyll-a concentration provided different 
remote sensing reflectance curves. 

Within the framework of this recent study, we analyzed and compared the labora-
tory-based data with the satellite-based data regarding vertical distribution. Table 4 com-
pares the laboratory measurements and the remote sensing data regarding the vertical 
distribution of phytoplankton at sampling point N1. 
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Table 4. Results of laboratory- and remote-sensing-based measurements at sampling point N1. Dif-
ferent colors indicate the different levels of statistical correlations between the laboratory- and sat-
ellite-based reflectance measurements. Key of the colors: blue, no statistical correlation; red, poor 
(>0.584) correlation; pink, good (>0.795) correlation; orange, strong (>0.816) correlation; green, very 
strong (>0.853) correlation (for more explanation, see the text). 

Date 

Laboratory Measurements (N1) 
Satellite Measurements 

(chl_re_mishra) 
Maximum 

Chl-a 
Concentratio

n (µg L−1) 

Average Chl-a 
Concentration 

(µg L−1) 

Surface Chl-a 
Concentration 

(µg L−1) 

Placement Depth of 
Maximum Chl-a 

Concentration (cm) 
Chl-a Concentration (µg L−1) 

11 July 2016 73.9 41.6 73.9 0.0 68.6 
8 August 2016 55.7 24.3 36.5 50.0 35.7 
8 September 

2016 
111.2 37.6 76.3 50.0 79.9 

1 October 2016 56.9 26.3 15.4 40.0 59.6 
30 December 

2016 
16.0 2.7 0.0 20.0 39.1 

5 July 2017 295.4 110.9 295.4 0.0 141.8 
4 August 2017 350.7 122.9 350.7 0.0 189.3 

16 August 2017 112.6 65.8 66.7 50.0 65.9 
22 August 2017 154.3 47.9 70.4 50.0 73.8 
12 October 2017 55.0 21.4 55.0 0.0 51.5 
20 October 2017 31.3 21.2 10.5 40.0 35.4 

3 November 
2017 29.5 15.8 12.4 40.0 33.8 

20 December 
2017 

5.7 3.3 0.0 20.0 48.6 

13 July 2018 111.7 33.9 25.4 40.0 109.4 
24 July 2018 121.2 44.4 19.4 40.0 118.5 

23 August 2018 155.0 52.5 69.9 50.0 73.7 
30 September 

2018 
102.4 56.7 82.3 40.0 80.2 

16 October 2018 71.3 52.3 12.4 40.0 75.3 
15 November 

2018 
26.4 21.7 26.4 0.0 31.3 

5 August 2022 84.7 35.2 18.2 40.0 86.6 
10 August 2022 105.6 40.4 68.5 40.0 65.4 
15 August 2022 111.3 42.7 86.0 40.0 89.4 

Based on the statistical analyses, we have found that in the case of high surface chlo-
rophyll-a concentration (above 35 µg L−1), the remotely sensed maximum chlorophyll-a 
value showed a strong correlation (0.795) with the surface chlorophyll-a content (marked 
with pink in Tables 4–6). The reason was that the high surface chlorophyll-a content mod-
ified the surface reflectance. In this case, the in-situ-measured maximum chlorophyll-a 
concentration occurs in a deeper layer, generally below 40 cm depth. A similar case hap-
pened when the maximum chlorophyll-a content was close to the water surface (marked 
green in Tables 4–6). The correlation between the in situ and remote sensing data was 
robust (0.853). 
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Table 5. Results of laboratory- and remote-sensing-based measurements at sampling point N2. Dif-
ferent colors indicate the different levels of statistical correlations between the laboratory- and sat-
ellite-based reflectance measurements. Key of the colors: blue, no statistical correlation; red, poor 
(>0.584) correlation; pink, good (>0.795) correlation; orange, strong (>0.816) correlation; green, very 
strong (>0.853) correlation (for more explanation, see the text). 

Date 

Laboratory Measurements N2 
Satellite Measurements 

(chl_re_mishra) 
Maximum Chl-
a Concentration 

(µg L−1) 

Average Chl-a 
Concentration 

(µg L−1) 

Surface Chl-a 
Concentration 

(µg L−1) 

Placement Depth 
of Maximum Chl-a 
Concentration (cm) 

Chl-a Concentration (µg L−1) 

11 July 2016 71.23 41.59 71.23 0 68.52 
8 August 2016 96.45 30.66 21.3 40 75.36 
8 September 

2016 
106.56 44.42 71.36 40 74.39 

1 October 
2016 

78.5 34.55 78.5 0 80.61 

30 December 
2016 

12.5 2.76 0 30 28.74 

4 July 2017 260.3 58.25 260.3 0 185.9 
4 August 2017 180.63 46.58 180.63 0 145.9 

16 August 
2017 

135.9 49.81 18.96 40 132.56 

22 August 
2017 144.89 50.4 105.3 40 101.28 

12 October 
2017 65.69 26.08 65.69 0 67.14 

20 October 
2017 45.36 20.43 45.36 0 41.78 

3 November 
2017 32.6 16.75 32.6 0 32.55 

20 December 
2017 15.63 7.74 0 20 31.25 

13 July 2018 132.6 36.36 19.45 40 128.41 
24 July 2018 143.6 58.18 95.63 40 97.61 
23 August 

2018 
168.9 46.25 21.35 40 160.45 

30 September 
2018 

84.36 42.97 84.36 0 80.39 

16 October 
2018 

89.65 44.86 89.65 0 83.69 

15 November 
2018 

25.3 18.63 25.3 0 31.56 

5 August 2022 48.56 30.74 45.89 40 44.69 
10 August 

2022 138.98 55.64 98.56 50 100.36 

15 August 
2022 125.9 46.52 24.6 40 120.64 
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Table 6. Results of laboratory- and remote sensing-based measurements in sampling point N3. Dif-
ferent colors indicate the different levels of statistical correlations between the laboratory- and sat-
ellite-based reflectance measurements. Key of the colors: blue, no statistical correlation; red, poor 
(>0.584) correlation; pink, good (>0.795) correlation; orange, strong (>0.816) correlation; green, very 
strong (>0.853) correlation (for more explanation, see the text). 

Date 

Laboratory Measurements N3 
Satellite Measurements 

(chl_re_mishra) 
Maximum Chl-
a Concentration 

(µg L−1) 

Average Chl-a 
Concentration 

(µg L−1) 

Surface Chl-a 
Concentration 

(µg L−1) 

Placement Depth of 
Maximum Chl-a 

Concentration (cm) 
Chl-a Concentration (µg L−1) 

11 July 2016 104.50 54.04 104.50 0 98.39 
8 August 

2016 65.85 29.46 27.10 30 60.28 

8 September 
2018 105.20 47.26 105.20 0 97.85 

1 October 
2016 66.90 39.40 66.90 0 70.96 

30 December 
2016 16.90 4.13 0.00 30 32.90 

4 July 2017 278.30 50.84 278.30 0 158.30 
4 August 

2017 
218.77 30.38 218.77 0 147.87 

16 August 
2017 

123.80 50.89 24.30 40 106.90 

22 August 
2017 

386.96 102.91 386.96 0 196.30 

12 October 
2017 

58.63 29.78 58.63 0 55.71 

20 October 
2017 

52.36 31.16 52.36 0 46.93 

3 November 
2017 

36.68 20.82 36.68 0 40.63 

20 December 
2017 

10.20 6.10 0.00 20 35.36 

13 July 2018 95.30 50.63 95.30 0 91.28 
24 July 2018 112.30 72.07 112.30 0 106.90 
23 August 

2018 
171.36 45.61 24.60 20 163.58 

30 September 
2018 

90.63 45.00 23.60 30 95.69 

16 October 
2018 

85.60 46.69 25.60 30 90.71 

15 November 
2018 

28.90 23.31 28.90 0 31.58 

5 August 
2022 88.65 46.40 63.39 40 61.97 

10 August 
2022 102.35 50.21 71.69 40 67.82 

15 August 
2022 

135.25 45.72 135.25 0 128.42 
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During extremely high surface chlorophyll-a concentration (during massive algal 
bloom), poor correlation was identified between the two methods (marked with red in 
Tables 4–6). A possible explanation is that the floating algal mass has highly modified and 
distorted the water column’s surface reflectance and optical properties. In these cases, 
chl_re_gons and chl_re_gons740 algorithms correlated better (0.584) with the laboratory-
measured surface chlorophyll-a content. 

During the winter season, the chl_re_mishra algorithm did not correlate with the la-
boratory data (marked in blue in Tables 4–6). The reason for this was the ice crust on the 
lake, which was between 10 and 15 cm thick. The ice crust strongly influenced the remote 
sensing reflectance. Thus, the analyses reveal that the chl_oc2 algorithm correlated better 
(0.508) with the laboratory measurements. 

In another case, when the chlorophyll-a concentration of the surface water layer was 
lower than 25 µg L−1, the remotely sensed maximum chlorophyll-a concentration strongly 
correlated (0.816) with the laboratory-measured maximum chlorophyll-a concentration in 
the water column. Analyzing the vertical distribution pattern of phytoplankton, the place-
ment depth of maximum chlorophyll-a concentration was between 20 and 40 cm in depth 
(marked in orange in Tables 4–6). The data suggest that the chl_re_mishra algorithm de-
tected maximum chlorophyll-a concentration at the 40 cm depth when the surface layer 
chlorophyll-a content was in a low range. 

As predicted, the moderate wind speed modified the surface reflection, so satellite-
based measurements were inadequate. Therefore, remote sensing values did not correlate 
with any of the laboratory measurements (marked in blue in Tables 4–6). 

We also investigated the laboratory and satellite data at the sampling points. Each 
point has chlorophyll-a values in different depths, and the average of these values was 
compared to the satellite data. Figure 7 presents the results. 

 
Figure 7. Chlorophyll-a concentration at the sampling points (laboratory and satellite). 

According to laboratory measurements, the average chlorophyll-a concentration was 
similar in the three sampling points (N1: 35; N2: 38; N3: 45). 

Analyzing the horizontal distribution of phytoplankton, the different applications of 
remote sensing—UAV, aerial imaging, and satellite-based techniques—provide an appro-
priate solution for monitoring the surface distribution patterns. Figure 8 shows one sam-
ple of the chlorophyll-a maps on 5 August 2022 (chl_re_mishra algorithm). 
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Figure 8. Chlorophyll-a map (chl_re_mishra) on 5 August 2022. 

Figure 9 presents another example of the horizontal distribution of chlorophyll-a con-
tent. 

 
Figure 9. Chlorophyll-a map (chl_re_mishra) on 12 October 2017. 

Both examples represent the correlation between the laboratory-based and the satel-
lite-based results well. 
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3.3. Seasonal Trends 
The chlorophyll-a concentration was investigated and divided into summer and au-

tumn (spring and winter were excluded because of insufficient data). Figure 10 shows the 
related results. 

 
Figure 10. Seasonal distribution of chlorophyll-a. 

The laboratory and the satellite results show that the average chlorophyll-a concen-
tration is higher in summer than in autumn. The difference is lower in the case of satellite 
measurements. The significant difference between maximum chlorophyll-a content in 
summer can be explained by the very high chlorophyll-a concentration (174 µg L−1), which 
leads to saturation, as we presented above. This phenomenon has also appeared in the 
case of Kis-Balaton, West Hungary, in previous studies [24]. 

4. Conclusions 
A shallow lake, Lake Naplás, Budapest, characterized by a small open water surface 

area and reeds along the coast, was investigated. Laboratory and satellite data were ana-
lyzed, applying Sentinel-2 images and Acolite software to acquire chlorophyll-a data and 
maps. Of the seven Acolite algorithms, two fulfilled the requirement of normal distribu-
tion. From the two algorithms, chl_re_mishra showed a moderately strong correlation, 
proving the applicability of satellite remote sensing in the case of an optically complex 
lake. Because of the high CDOM concentration of Lake Naplás, the blue–green band ratio 
underestimated the content of chlorophyll-a. In the case of large chlorophyll-a concentra-
tions, it is significantly underestimated by satellite remote sensing. 

It was found that in the case of high surface chlorophyll-a concentration (above 30 µg 
L−1), the remotely sensed maximum chlorophyll-a value was strongly correlated with the 
surface chlorophyll-a content. The chl_re_mishra algorithm detected the maximum chlo-
rophyll-a concentration in the 40 cm depth when the surface layer chlorophyll-a content 
was in a low range, i.e., under 25 µg L−1. 
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