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Abstract: Modal parameters can reflect the dynamic characteristics of the structure and can be used to
control vibration. To identify the operational modal parameters of linear slow-time-varying structures
only from non-stationary vibration response signals, a method based on moving window locality
preserving projections (MWLPP) algorithm is proposed. Based on the theory of “time freeze”, the
method selects a fixed length window and takes the displacement response signal in each window as
a stationary random sequence. The locality preserving projections algorithm is used to identify the
transient modal frequency and modal shape of the structure at this window. The low-dimensional
embedding of the displacement response data set calculated by locality preserving projections (LPP)
corresponds to the modal coordinate response matrix, and the transformation matrix corresponds
to the modal shape matrix. The simulation results of the mass slow-time-varying three degree of
freedom (DOF) and the density slow-time-varying cantilever beam show that the new method can
effectively identify the modal shape and modal natural frequency of the linear slow-time-varying
only from the non-stationary vibration response signal, and the performance is better than the moving
window principal component analysis (MWPCA).

Keywords: operational modal parameters; slow-time-varying structures; non-stationary vibration
response signals; moving window; preserving projections algorithm

1. Introduction

Vibration is an inherent property of structures and bad vibrations will cause damage
to structures [1]. Operational modal analysis (OMA) identifies structural modal parameters
(modal natural frequency, modal shape, damping ratio) from the output displacement
response signal of the structure [2,3], which can be used for damage identification [4],
structural design [5], structural health monitoring of aircraft wings [6], and building
performance assessment [7].

Manifold Learning [8] has become a research focus in information science since it
was first proposed in 2000. Assuming that the data are uniformly sampled from a low-
dimensional manifold in a high-dimensional Euclidean space, the purpose of manifold
learning is to find the low-dimensional embedding in the high-dimensional space and
find the corresponding embedded transformation matrix [9]. Based on this concept, the
dimensionality reduction process of manifold learning needs to keep the data after dimen-
sionality reduction satisfying the geometric constraint relation related to high-dimensional
space manifold. At present, the more widely applied algorithms of manifold learning
include principal component analysis (PCA) [10], isometric feature mapping (Isomap) [11],
Laplacian eigenmaps (LE) [12], locally linear embedding (LLE) [13] and so on. Many
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researchers have applied manifold learning to operational modal analysis. Wang et al.
used principal component analysis for operational modal parameters identification to solve
the problem of false modal in other identification methods [14]. Bai et al. used locally
linear embedding to identify operational modal parameters of complex three-dimensional
continuous structures [15]. Wang et al. used isometric feature mapping to identify the
operational modal parameters of three-dimensional structures [16]. The method mentioned
above is suitable for linear time-invariant structures.

However, operational modal parameters of many structures are time-varying [17].
A linear structure whose system parameters (i.e., mass, stiffness, or damping) change
over time is called a linear time-varying (LTV) structure. For example, during the flight
launch of missile or rocket, the mass of the whole structure is gradually reduced due
to the constant consumption of fuel [18]. With the activity of human flow, the structure
characteristics of large human gathering places change, such as stadiums [19]. Therefore,
time-varying systems are different from constant system. Time-varying structures need to
identify time-varying parameters, which can monitor the state of the structures. At present,
the time-domain and frequency domain methods are used to identify the operational modal
parameters of time-varying structures [20,21]. Zhou et al. analyzed and summarized the
advantages and disadvantages of these methods in detail [22]. The time-varying structures
can be divided into fast time-varying structures and slow-time-varying structures [23] and
Ramnath pointed out the system whose variation in coefficient is much less than variation
in solution is called slow time-varying system [24]. For example, when a train passes a
bridge quickly, the train works together with the bridge to form a unified dynamic system.
The mass distribution and stiffness distribution of the system change rapidly with time,
which forms a fast time-varying structural dynamics problem [25]. The mechanical arms in
industrial manufacture can be regarded as slow time-varying structures [26]. The vibration
response signals of linear slow-time-varying structures cannot be obtained completely
at one time, but need to be obtained by continuous sampling over time. Therefore, the
moving window method based on the theory of “short time-invariant” can be well applied
to the identification of operational modal parameters of linear slow-time-varying structures.
At present, the moving window method has been applied to some algorithms to identify
the operational modal parameters of linear slow-time-varying structures. Huang et al.
proposed moving window EASI algorithm identify the operational modal parameters
of the linear slow-time-varying system [27]. Wang et al. proposed a moving window
second order blind identification method for identifying operational modal parameters
of linear slow-time-varying structures, and the performance of this method is better than
the moving window independent component analysis [28]. Guan et al. combined moving
window with principal component analysis to effectively identify the operational modal
parameters of the slow-time-varying system [29,30]. Huang et al. propose an operational
modal analysis (OMA) method that uses eigenvector recursive PCA with a forgetting factor
to identify the transient natural frequencies and transient modal shapes [31].

In addition, there are many time-domain methods for operational modal analysis.
Some methods involve choosing a mathematical model to idealize the structural dynamic
responses, including autoregressive moving average (ARMA) [32] and autoregressive (AR)
model updating [33]. Based on singular value decomposition and QR factorization, Barros-
Rodriguez et al. proposed a new method and applied it to the analysis of F-18 flutter flight
test data. The method is capable of identifying the frequency and damping of the critical
aircraft modes, those responsible for the flutter phenomenon [34]. Chen et al. developed a
novel method for moving force identification (MFI) called preconditioned least square QR
factorization (PLSQR) method which seeks to reduce the impact of identification errors
caused by unknown noise [35]. Some methods, such as time–frequency analysis method,
can use the response signal of a vibration sensor to identify multi-modal parameters, but
generally can only identify the natural frequency and damping ratio of multi-modal, but
cannot identify modal shapes.
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Locality preserving projections (LPP) is a linear dimensionality reduction method [36],
which makes it fast and suitable for practical application. In addition, LPP has several
nonlinear technology data representation characteristics, which makes it more accurate
in preserving data characteristics. Therefore, a method based on moving window locality
preserving projections (MWLPP) is proposed to identify the operational modal parameters
of linear slow-time-varying structures. LPP first calculates the transformation matrix of
mapping the high-dimensional data to the low-dimensional space, and then computes the
low-dimensional embedding. The primary contributions of the article can be summarized
as follows:

(1) An operational modal parameter identification method based on LPP is proposed.
The main idea is to find out the one-to-one correspondence between the coordinate
response matrix and the low-dimensional embedded data, and the one-to-one cor-
respondence between the modal shape matrix and the transformation matrix. The
operational modal parameter identification problem can be transformed into the
manifold dimension reduction problem of structural vibration response data.

(2) The LPP algorithm and moving window method are combined to identify the opera-
tional modal parameters of linear slow-time-varying structures.

(3) By comparing the operational modal parameter identification method based on
moving window principal component analysis method, MWLPP has higher accuracy
and effectively reduces the modal missing.

(4) To verify the identification ability of operational modal parameters of linear slow
time-varying structures based on MWLPP, a mass slow-time-varying 3-DOF (degree
of freedom) structure and a density slow-time-varying cantilever beam structure
were designed. The MWPCA method was used to identify the operational modal
parameters of non-stationary vibration response simulation data for comparison.

The remainder of this paper is organized as follows. In Section 2, The LPP algorithm is
introduced to identify the operational modal parameters of linear time-invariant structures.
The moving window combined with LPP algorithm is introduced to identify the operational
modal parameters of linear slow-time-varying structures in Section 3. Section 4 presents
the simulation verification results. Finally, we make a conclusion in Section 5.

2. OMA of Linear Time-Invariant Structures Based on LPP
2.1. Problem of OMA of Linear Time-Invariant Structures

According to the dynamic theory of the structure, the dynamic equation of n degrees
of freedom (DOF) linear time-invariant vibration structure in the physical coordinate
system is:

M
..
X(t) + C

.
X(t) + KX(t) = F(t) (1)

where M ∈ Rn×n, C ∈ Rn×n and K ∈ Rn×n are the mass matrix, damping matrix, and
stiffness matrix of the structure. T is number of sampled data points. X(t) ∈ Rn×T ,
.
X(t) ∈ Rn×T and

..
X(t) ∈ Rn×T are the time-domain sampling matrix of the displacement

response signal, velocity response signal and acceleration response signal of the structure.
F(t) ∈ Rn×T is the time-domain sampling matrix of the external excitation.

The displacement response signal X(t) = [
→
x 1(t),

→
x 2(t), · · · ,

→
x n(t)]

T
∈ Rn×T of n

DOF small damping structure in modal coordinates is:

X(t) ≈ ΦQ(t) =
d

∑
i=1

→
φ i
→
q i(t) (2)

where d is modal truncation and ranges from 1 to n. Φ = [
→
φ 1,
→
φ 2, · · · ,

→
φ i, · · · ,

→
φ d] ∈ Rn×d

is the modal shape matrix constituted by d order modal shape
→
φ i ∈ Rn×1(i = 1, 2, · · · , d).

Q(t) = [
→
q 1(t),

→
q 2(t), · · · ,

→
q i(t), · · ·

→
q d(t)]

T
∈ Rd×T is a modal response matrix constituted
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by d order modal response
→
q i(t) ∈ R1×T(i = 1, 2, · · · , d). The main idea of OMA is to

identify the modal shape matrix Φ ∈ Rn×d and modal response matrix Q(t) ∈ Rd×T of
the structure only from the vibration displacement response signal X(t) ∈ Rn×T . Finally,
the natural frequency f and damping ratio ξ are identified by using the single degree of
freedom (DOF) technique [37] from the modal response matrix Q(t) ∈ Rd×T . For example,
the natural frequency f was identified by fast Fourier transform (FFT), and the damping
ratio ξ was identified by the random decrement technique (RDT) and the Hilbert transform
(HT) from the modal response matrix Q(t) ∈ Rd×T . The idea was proposed in [38,39].

When the value of each natural frequency is different, The main modal shape
→
φ i satisfies

normalized orthogonality and the modal response
→
q i(t) of each other is independent.

ΦTΦ = Id×d (3)

Q(t)(Q(t))T = Λd×d =



→
q 1(t)(

→
q 1(t))

T
· · · 0 · · · 0

...
. . .

...
. . .

...
0 · · · →

q i(t)(
→
q i(t))

T
· · · 0

...
. . .

...
. . .

...
0 · · · 0 · · · →

q d(t)(
→
q d(t))

T


=



αk · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · αi · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · αd

 (4)

2.2. OMA of Linear Time-Invariant Structures Based on LPP

LPP is a dimensionality reduction algorithm that preserves the geometric relations
within the data set. A dataset of T real valued vectors X(t) ={→x 1(t),

→
x 2(t), · · ·

→
x k(t) · · · ,

→
x n(t)}T ∈ Rn×T ,

→
x k(t) ∈ R1×T in Rn×n space is located on a smooth d-dimensional man-

ifold (d � n). LPP calculates the low-dimensional embedding S(t) ={→s 1(t),
→
s 2(t), · · ·

→
s k(t) · · · ,

→
s d(t)}T ∈ Rd×T ,

→
s k(t) ∈ R1×T in Rd×d space, which has the same geomet-

ric properties as X(t). There is a transformation matrix A that makes
→
s i(t) =AT→x i(t),

xij ∈
→
x i(t) ∈ Rn×1, 1 ≤ i ≤ T, 1 ≤ j ≤ n,

→
s i(t) ∈ Rd×1. LPP calculates the d-dimensional

embedding process of n-dimensional data as follows.

(1) Construct an adjacent-graph G of T real valued vectors in Rn×n space: K nearest

neighbor points of the node
→
x i(t)(i = 1, 2, · · · i · · · j · · · , T) are obtained by using the

K-neighbor algorithm. If
→
x j(t) is in the K nearest neighbor of

→
x i(t), a directed edge

(
→
x i(t),

→
x j(t)) is placed.

(2) Calculate the weight of the edge: let the matrix W ∈ RT×T represents the weight

matrix, and wij is the weight of the edge (
→
x i(t),

→
x j(t)). The weights of the connected

edges are calculated by heat kernel wij = e−
‖→x i(t)−

→
x j(t)‖

2

σ . If the two nodes are not
connected, the weight is 0.

(3) Calculate transformation matrix A: the eigenvectors and eigenvalues of the general-
ized eigenvector problem are calculated as follows.

X(t)LXT(t)
→
a = λX(t)DXT(t)

→
a (5)

where the diagonal matrix D ∈ RT×T(Dii = ∑
j

wji) is the degree matrix of graph G,

L = D−W is the Laplacian matrix.
(4) Let the column vector set

{→
a 0,
→
a 1, · · · , →a d−1

}
correspond to the eigenvector of

Equation (5) to be solved, order according to their eigenvalues λ0 ≤ λ1 ≤ · · · ≤ λd−1,
The low-dimensional embedded vector

→
s i(t) of

→
x i(t) is represented as follows.

→
s i(t) =AT→x i(t) (6)
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A =
{→

a 0,
→
a 1, · · · , →a d−1

}
∈ Rn×d (7)

where Vector
→
a i(i = 1, 2, · · · , d− 1) satisfies normalized orthogonality.

ATA = Id×d (8)

Then, X(t) =
{→

x 1(t),
→
x 2(t), · · ·

→
x k(t) · · · ,

→
x n(t)

}T
∈ Rn×T can be decomposed as fol-

lows.
X(t) = (AAT)X(t) = A(ATX(t)) (9)

where A ∈ Rn×d is the transformation matrix, ATX(t) is the d-dimensional embedding
S(t) ∈ Rd×T of X(t) ∈ Rn×T . Therefore, X(t) ∈ Rn×T has the following form:

X(t) = AS(t) =
d

∑
i=1

→
a i
→
s i(t) (10)

Comparing Equations (2) and (10), we can make the conclusion that the low-dimensional
embedded S(t) ∈ Rd×T corresponds to the modal response Q(t) ∈ Rd×T , and the transfor-
mation matrix A ∈ Rn×d corresponds to the modal shape Φ ∈ Rn×d. Figure 1 illustrates
OMA of time-invariant structure based on LPP algorithm.
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f
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Mapping

ξ

Figure 1. Operational modal analysis (OMA) of time-invariant structure based on locality preserving
projections (LPP) algorithm.

Compared with State matrix eigen-decomposition, LPP algorithm builds a graph in-
corporating neighborhood information of the data set. Using the notion of the Laplacian of
the graph, LPP algorithm computes a transformation matrix which maps the data points to
a subspace. This linear transformation optimally preserves local neighborhood information
in a certain sense [36]. This feature helps retain information about the response signal.

3. OMA of Linear Time-Varying Structure Based on MWLPP
3.1. Problem of OMA of Linear Time-Varying Structure

The operational modal parameters of time-varying structures vary with time. Accord-
ing to the dynamic theory of the structure, the motion equation of a linear time-varying
structure of n degrees of freedom in the physical coordinate system in t ∈ [TBEGIN , TEND] is,

N : M(t)
..
X(t) + C(t)

.
X(t) + K(t)X(t) = F(t), t ∈ [TBEGIN , TEND] (11)
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where M(t) ∈ Rn×n, C(t) ∈ Rn×n and K(t) ∈ Rn×n are the mass matrix, damping
matrix, and stiffness matrix of the time-varying structure. X(t) ∈ Rn×T ,

.
X(t) ∈ Rn×T and

..
X(t) ∈ Rn×T are the time-domain sampling matrix of the displacement response signal,
velocity response signal and acceleration response signal of the time-varying structure.
F(t) ∈ Rn×T is the time-domain sampling matrix of the external excitation.

According to the “time-freezing” theory [40], the mass, damping ratio and stiffness
of a linear time-varying structure can be regarded as time-invariant for a short time
τ ∈ [tbegin, tend]. Therefore, Equation (11) can be expressed as a set N′ consisting of a finite
number of linear time-invariant structures N′(τ)(τ ∈ [tbegin, tend]) within the complete time
t ∈ [TBEGIN , TEND].

N′ ,
{

N′(τ) :M(τ)
..
X(τ) + M(τ)

.
X(τ) + M(τ)X(τ) = F(τ), (τ ∈ [tbegin, tend] ⊂ (t ∈ [TBEGIN , TEND])

}
τ = 1

2 (tbegin + tend) =
1
2 (tk + tk+1), k = 0, 1, · · · , K

t0 = TBEGIN , tK = TEND

(12)

The vibration response data of linear time-varying structures can be divided into a
finite number of time-invariant parts by selecting moving window with fixed length L (τ ∈
[tbegin, tend]). The displacement response signal Xi

L(τ) ∈ Rn×L in the i-th (τ ∈ [tbegin, tend])
window is decomposed into the following Equation (13) in modal coordinates.

Xi
L(τ) ≈ Φi

LQi
L(τ) =

d

∑
j=1

→
φ

i

j
→
q

i
j(τ) (13)

where Φi
L = [

→
φ

i

1,
→
φ

i

2, · · · ,
→
φ

i

d] ∈ Rn×d is the modal shape matrix formed by the modal

shape vector
→
φ

i

j(j = 1, 2, · · · , d) ∈ Rn×1 of the structure in the i-th (τ ∈
[
tbegin, tend

]
)

window. Qi
L(t) = [

→
q

i
1(t),

→
q

i
2(t), · · · ,

→
q

i
d(t)]

T
∈ Rd×L is the modal response matrix formed

by the modal response vector
→
q

i
j(t) ∈ R1×L(j = 1, 2, · · · , d) of the structure in i-th (τ ∈[

tbegin, tend

]
) window. When the order of each natural frequency is different, The main

modal shape
→
φ

i

j satisfies normalized orthogonality and the modal response
→
q

i
j of each

other is independent.
(Φi

L)
TΦi

L = Id×d (14)

Qi
L(t)(Qi

L(t))
T = Λi

d×d =



→
q

i
1(t)(

→
q

i
1(t))

T
· · · 0 · · · 0

...
. . .

...
. . .

...

0 · · · →
q

i
k′(t)(

→
q

i
k′(t))

T
· · · 0

...
. . .

...
. . .

...

0 · · · 0 · · · →
q

i
d(t)(

→
q

i
d(t))

T


=



αi
1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · αi
k′ · · · 0

...
. . .

...
. . .

...
0 · · · 0 · · · αi

d

 (15)

3.2. OMA of Linear Time-Varying Structure Based on MWLPP

Based on the “time freeze theory” and fixed window length moving windows (MW),
the non-stationary signals in each window are regarded as stationary signals. The vibration
response signals in the window are identified by using the linear time-invariant OMA
method. After OMA of the window is completed, the window moves to the right to delete
some old data and add new data to form the vibration response data of the next window.
A window corresponds to a moment, so as to identify the operational modal parameters of
that moment. Finally, the modal parameter identification results of all windows (moments)
are connected to form a continuous result. Moving windows has fixed window length L
and moving step λ. Figure 2 shows the process of moving the moving window.
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Figure 2. The process of moving the moving window.

Therefore, moving windows are used to track the time-varying properties of the
structure. Comparing Equations (2) and (13), it can be seen that the decomposition of
vibration response signals in the fixed window length window is consistent with the
decomposition of vibration response signals in the linear time-invariant structure. The low-
dimensional embedded Si

L(τ) ∈ Rd×L of Xi
L(τ) ∈ Rn×L corresponds to the modal response

Qi
L(τ) ∈ Rd×L, and the transformation matrix Ai

L ∈ Rn×d corresponds to the modal shape
Φi

L ∈ Rn×d. Suppose the data set is X(t) ∈ Rn×T , Figure 3 illustrates the moving window
principle processing with time. Figure 4 illustrates OMA of linear time-varying structure
based on MWLPP algorithm.
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Figure 4. OMA of linear time-varying structure based on moving window locality preserving projections (MWLPP)
algorithm.

3.3. The Applicable Scope of the Method

In this paper, the application scope of MWLPP for OMA of linear slow-time-varying
structure is,

(1) The method is only suitable for linear slow-time-varying structures with small damp-
ing. If the damping is too high, the modals will be complex. Reference [16] show
that the damping ratio reaches 10%, and the operational modal parameters can also
be identified by manifold learning. However, the lower the damping ratio, the bet-
ter the identification of modal parameters effect. Only for linear slow-time-varying
structures, based on the “time-freezing” theory, Equation (12) can be expressed as
Equation (13).

(2) The number of vibration response sensors n should be greater than or equal to the
d-order modal identified by the method. According to Equation (2), the displacement
response signal in modal coordinates is approximately represented by d-order modal
(d ≤ n). In addition, MWLPP can identify modal natural frequency, modal shape, and
damping ratio of one mode with only 1 sensor.

(3) The excitation vector to the structure should be approximately stationary Gaussian
white noise.

(4) The method can identify time-varying transient modal shapes, modal frequencies,
and modal damping ratios from non-stationary vibration response signals. However,
for linear slow-time-varying structures, mass reduction or motion will generate
additional damping [41,42]. Therefore, the damping ratio identified by MWLPP
cannot be directly compared with real values.
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4. Simulation Verification

To verify the identification ability of operational modal parameters of linear slow time-
varying structures based on MWLPP, a mass slow-time-varying 3-DOF structure and a
density slow-time-varying cantilever beam structure were designed. The moving window
principal component analysis (MWPCA) method was used to identify the operational
modal parameters of non-stationary vibration response simulation data for comparison.

4.1. An Introduction to Simulation Systems and Data Sets

A mass slow-time-varying 3-DOF structure and a density slow-time-varying cantilever
beam are designed in Matlab/Simulink. More simulation details are available in [28,30]. In
the simulation, all the natural frequencies in finite element analysis (FEA) are real natural
frequency, and the modal shapes in FEA are real modal shapes. In addition, 10% white
Gaussian noise is added to the vibration displacement response signal of the slow-time-
varying 3-DOF structure, and the modal parameters of the structure are identified.

4.1.1. A Mass Slow-Time-Varying 3-DOF Structure

The mass slow-time-varying 3-DOF structure is designed in Matlab/Simulink. The
model of the structure is shown in Figure 5. The dynamic equation of the structure is
shown in Equation (16). m1(t) 0 0

0 m2(t) 0

0 0 m3(t)

 ..
x1(t)
..
x2(t)
..
x3(t)

+

 c1 + c2 −c2 0

−c2 c2 + c3 −c3

0 −c3 c3

 .
x1(t)
.
x2(t)
.
x3(t)

+

 k1 + k2 −k2 0

−k2 k2 + k3 −k3

0 −k3 k3

 x1(t)

x2(t)

x3(t)

 =

 F1(t)

0

0
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1 0.0005(t 50)

1, 50s
( )

, 50s 2000s
t

m t
e t- -

ì £ïï=íï < £ïî
 (17)

1( )F t  is white Gaussian noise, and is applied to object 1m . The simulation consists 

of two parts. In 50st £ , the mass of object 1m  is constant value. In 50s 2000st< £ , the 

mass of object 1m  changes with time, and the system becomes a linear time-varying 
structure. The 3-DOF simulation structure has only third order mode at most. From Table 
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Figure 5. The mass slow-time-varying 3-DOF (degree of freedom) structure with external force.

The structural parameters are as follows: The damping ratio of the three objects is
c1 = c2 = c3 = 0.01(Ns/m); the stiffness is k1 = k2 = k3 = 1000(N/m); the initial
displacement is 0. The quality is m2 = m3 = 1kg. The mass m1 are time-varying, and the
change rule is shown in the following Equation (17).

m1(t) =
{

1, t ≤ 50 s
e−0.0005(t−50), 50 s < t ≤ 2000 s

(17)

F1(t) is white Gaussian noise, and is applied to object m1. The simulation consists
of two parts. In t ≤ 50 s, the mass of object m1 is constant value. In 50 s < t ≤ 2000 s,
the mass of object m1 changes with time, and the system becomes a linear time-varying
structure. The 3-DOF simulation structure has only third order mode at most. From Table
1, the highest natural frequency of the third order mode is relatively small, much less than
20 Hz. In general, the higher the sampling frequency is set, the more accurate the modal
parameter identification results will be. However, at the same time, the vibration response
semaphore and calculation amount of sampling will also be larger. Therefore, according
to Nyquist theorem, the sampling frequency is set to 40 Hz, and the sampling interval
of simulation is 0.025 s. The displacement response signal data set X(t) ∈ Rn×T of the
structure is obtained by Runge-Kutta algorithm in Matlab/Simulink module. The data set
X(t) ∈ Rn×T of three degrees of freedom structure is shown in Figure 6, and the sampling
duration is 2000 s. Therefore, the final data set is X(t) ∈ R3∗80,000.
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Table 1. The real natural frequency of the mass slow-time-varying 3-DOF structure when t = 50.025 s,
t = 1200 s and t = 1974.375 s.

Real Natural Frequency (Hz)

Order t = 50.025 s t = 1200 s t = 1974.375 s

1 2.24 2.29 2.31
2 6.28 7.02 7.27
3 9.07 10.56 12.26
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Figure 6. The Gaussian white noise and three object displacement response signal graphs. (a) Gaussian white noise;
(b) The first object displacement response signal; (c) The second object displacement response signal; (d) The third object
displacement response signal.

The real natural frequency of the structure is shown in Figure 7. The real natural
frequencies at t = 50.025 s, t = 1200 s and t = 1974.375 s are shown in Table 1 below. The
natural frequencies identified by MWLPP at t = 50.025 s, t = 1200 s and t = 1974.375 s are
shown in Figure 8.
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4.1.2. A Density Slow-Time-Varying Cantilever Beam Structure

The density slow-time-varying cantilever beam structure is more complicated, as
shown in Figure 9. One end of the cantilever beam is a fixed support, the other end is a
free end, and many actual engineering structure can be simplified as a cantilever beam.
Therefore, the modal parameters identified in the cantilever beam data set are also valuable.
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Figure 9. The density slow-time-varying cantilever beam structure with external force.

Assuming that the shear deformation of the cantilever beam is ignored, the cantilever
beam structure is evenly divided into 40 elements using the finite element method. At
the same time, the axial displacement of the beam is not considered, but only the vertical
displacement and rotation angle.

Parameter Settings: the beam is 1 m in length, 0.02 m in width, 0.02 m in height and
Area = width× height = 4× 10−4 m2 in cross-sectional area, second moment of area is
I = [width× (height)3]/12 = 1.3× 10−8 m4, tensile modulus is E = 2.1× 1011 N/m2,
Poisson ratio is u = 0.3, the density is ρ0 = 78.60 kg/m3, F(t) is the Gaussian white noise
excitation applied to the cantilever beam structure.
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In the finite element model of cantilever beam, the cantilever beam is divided into
40 units and the its equation of motion such as Equation (1) is established. In addition, mass
matrix Me, damping matrix Ce and stiffness matrix Ke of each window can be expressed as:

Me = ρ0 × Area×Me
c =

ρ0 × L× Area
420


156 22L 54 −13L
22L 4L2 13L2 −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2

 (18)

Ke = EIKe
c =

EI
L3


12 6L −12 6L
6L 4L2 −6L 2L2

−12L −6L 12 −6L
6L 2L2 −6L 4L2

 (19)

Ce = βMMe + βKKe (20)

where L represents window length, βM and βK are proportional coefficients. Then the mass
matrix Me, damping matrix Ce and stiffness matrix Ke are assembled into the total mass
matrix MM, damping matrix CC and stiffness matrix KK of the system:

MM = ∑e Me

CC = ∑e Ce

KK = ∑e Ke
(21)

Therefore, the modal parameter can be calculated by finite element method, and the
mode frequency, mode shape and modal damping ratio can be expressed as:

fr =

√
KKr

MMr
, r = 1, 2, · · · , N (22)

(KKr − f 2
r MMr)

→
φ r = 0, r = 1, 2, · · · , N (23)

ξr =
CCr

2
√

MMrKKr
, r = 1, 2, · · · , N (24)

where MMr, and CCr are the r-th order of modal mass matrix, modal stiffness matrix and
modal damping matrix respectively. fr,

→
φ r and ξr are the r-th order of natural frequency,

modal shape, and damping ratio. N is the number of sensor.
To achieve the slow-time-varying condition, the density of the cantilever beam is

changed with time, as shown in Equation (25).

ρ2 =

{
ρ0, 0 ≤ t ≤ 0.5 s

ρ0 [1− 0.08(t− 0.5)], 0.5 s < t ≤ 4 s
(25)

where rate of density change is 0.08, the total time is 4 s. Because the beam structure is a
continuum rather than a multi-degree of freedom system, there are theoretically infinite
modes. Even after discretization of a 40 degrees of freedom structure, there are theoretically
40 modes, the value of 700 Hz would not be sufficient then. In addition, the modal of the
structure is generally concerned with the low frequency, and the analysis is only within
2000 Hz at most. Moreover, high-frequency noise is not considered in this article, so the
sampling frequency of the structure is set at 10,000 Hz. The initial condition of the system
is 0, and the density of the cantilever beam system remains unchanged in the first 0.5 s,
in order to prevent the vibration system from being affected by random excitation in the
initial stage of vibration. We took the data after 0.5 s for the simulation After 0.5 s, white
noise excitation acts on the free end of the cantilever beam, and Newmark− β method is
adopted to collect the vibration response signal of displacement of each node on the beam.
The time step of Newmark − β method is 1/10, 000s, the parameter of β is 0.5, and the
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parameter of γ is 0.25, and the damping coefficient is βM = 4× 10−4, βK = 1× 10−7. The
numerical simulation and algorithm writing of this paper are completed by using Matlab
language and software. Finally, the displacement response X(t) ∈ R40×40,000 is obtained,
and the 1st, 20th and 40th elements are plot in Figure 10. As long as the stability of the
algorithm is guaranteed, the parameters could be set according to the requirements, unless
the algorithm is very sensitive to noise numerically and generates bias. Of course, the
higher sampling frequency, the Newmark− β method for solving the vibration response
signal of simulation data set are more accurate, the effect of modal identification are more
accurate.
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Figure 10. The Gaussian white noise (a) and 1st (b), 20th (c) and 40th (d) elements displacement response signal.

The real natural frequency variation of the first three modes of the structure is shown
in Figure 11. The real natural frequencies of t = 0.5 s, t = 2 s and t = 3.795 s are shown in
Table 2.
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Table 2. The real natural frequency of the density slow-time-varying cantilever beam structure when
t = 0.5 s, t = 2 s and t = 3.795 s.

Real Natural Frequency (Hz)

Order t = 0.5 s t = 2 s t = 3.795 s

1 16.70 17.80 19.46
2 104.66 111.56 121.96
3 293.03 312.38 341.48

4.2. The Evaluation Indexes

In the simulation, the average model assurance criterion (MACi−avg) will be used to
identify the average accuracy of modal shapes. The specific definition of MACi−avg is,

MACi−avg =
1
m

m

∑
j

(
→
φ ij

T
→
ψ ij)

2

(
→
φ ij

T
→
φ ij)(

→
ψ ij

T
→
ψ ij)

(26)

where
→
φ ij is the modal shape of j-th window of the i-th order identified by algorithm;

→
ψ ij is

real modal shape of j-th window of the i-th order identified; m is the number of windows.
It can be seen from Equation (26) that the value range of MACi−avg is 0 ≤ MACi−avg ≤ 1.
The closer the MACi−avg value is to 1, the higher the average identification accuracy of the
modal shape of i-th order.

Average error rate (δi−avg) will be used to evaluate the natural frequency identified by
algorithm. The specific definition of δi−avg is,

δi−avg =
1
m

m

∑
j

∣∣∣∣∣ fij − fij−real

fij−real

∣∣∣∣∣× 100% (27)

where fij is the natural frequency of j-th window of the i-th order identified by algorithm;
fij−real is real natural frequency of j-th window of the i-th order; m is the number of
windows. It can be seen from Equation (27) that the value range of δi−avg is δi−avg ≥ 0. The
closer the δi−avg value is to 0, the higher the average identification accuracy of the natural
frequency of i-th order.

It is important to choose an appropriate limited memory length L of moving window.
Frequency resolution4 f and average frequency variation of the i-th modal in a window
4 fL(i) was used to select window length. Window length L is proportional to sample
frequency fs and frequency resolution4 f ,4 f cannot be too small, because it cannot reflect
the change of frequency, and4 f cannot be too large, because the change of4 fL(i) cannot
be identified, at the same time,4 fL(i) cannot be larger too much than4 f , otherwise, LTV
structure cannot be regarded a LTI structure in a window. Therefore, different structures
may choose different window lengths. The idea was proposed in [28,30].

4 f =
fs

L
(28)

4 fL(i) =
L
fs
×

fend(i)− fbegin(i)
tend − tbegin

(29)

where variables fs, fend(i), fbegin(i), tend, tbegin are sample frequency, end-frequency of the
i-th modal, begin-frequency of the i-th modal, end-time, begin-time of the whole data.
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The model assurance criterion (MAC) will be used to identify the accuracy of modal
shapes. The specific definition of MAC is,

MAC =
(
→
φ

T→
ψ)

2

(
→
φ

T→
φ )(
→
ψ

T→
ψ)

(30)

where
→
φ is the modal shape identified by algorithm;

→
ψ is real modal shape. The value range

of MAC is 0 ≤ MAC ≤ 1. The closer the MAC value is to 1, the higher the identification
accuracy of the modal shape.

4.3. The Parameter Settings

In the 3-DOF structure, the window length L is 1024, sample frequency fs is 40 Hz
and sample time is 2000 s. Frequency resolution is 4 f = 0.039 Hz, the first average
frequency variation is4 fL(1) = 9.25× 10−4Hz, the second average frequency variation
is 4 fL(2) = 0.0130 Hz, the third average frequency variation is 4 fL(3) = 0.0426 Hz.
Therefore, the length L = 1024 satisfies average frequency variation4 fL(i) cannot be lager
too much than frequency resolution4 f .

In the cantilever beam structure, the window length L is 2048, sample frequency
fs is 10,000 Hz and sample time is 4 s. Frequency resolution is 4 f = 4.88 Hz, the first
average frequency variation is4 fL(1) = 0.15 Hz, the second average frequency variation
is4 fL(2) = 1.09 Hz, the third average frequency variation is4 fL(3) = 3.06 Hz. Therefore,
the length L = 2048 satisfies average frequency variation4 fL(i) cannot be lager too much
than frequency resolution 4 f . The parameter K in LPP algorithm is 40, and the low-
dimensional embedded dimension is 3.

4.4. Results
4.4.1. A mass Slow-Time-Varying 3-DOF Structure

In the linear slow-time-varying structure, the operational modal parameters of the
system change at any time. The modal shapes at all times are difficult to describe. Therefore,
in the mass slow-time-varying 3-DOF structure, we select four moments including t = 100 s,
t = 650 s, t = 1500 s and t = 1974.375 s. Table 3 shows the MAC value at the instantaneous
moment. Figure 12 shows the modal shape of the instantaneous moment. Figure 13 shows
the time-varying natural frequencies identified by the MWLPP. Figure 14 shows the time-
varying MAC values of modal shapes identified by the MWLPP. Table 4 shows the average
error δi−avg of MWLPP and MWPCA in identifying natural frequencies. Figure 15 shows
the change with time of damping ratio of slow-time-varying 3-DOF structure identified
by MWLPP. In the identification process of operational modal parameters of structures,
modal parameters of some windows (moments) are not identified, i.e., modal parameters
are missing. Those windows that modal parameters are not identified are described as
un-identified windows. Table 5 shows the number of un-identified windows between
MWLPP and MWPCA. Table 6 shows the MACi−avg of modal shapes identified by MWLPP
and MWPCA.

Table 3. The MAC (model assurance criterion) value of four moments including t = 100 s, t = 650 s,
t = 1500 s and t = 1974.375 s in the mass slow-time-varying 3-DOF structure.

Order t = 100 s t = 650 s t = 1500 s t = 1974.375 s

1 1 1 0.9908 1
2 0.9999 0.9988 0.9746 0.7391
3 0.9998 1 0.9908 0.8691
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Table 4. The average error δi−avg of MWLPP and MWPCA (moving window principal component
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Method Average Error δ1−avg Average Error δ2−avg Average Error δ3−avg

MWLPP 0.059% 0.128% 0.244%
MWPCA 0.059% 0.129% 2.45%
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Table 5. The number of un-identified windows between MWLPP and MWPCA in the mass slow-
time-varying 3-DOF structure.

Method
First Order

Un-Identified
Number

Rate
Second Order
Un-Identified

Number
Rate

Third Order
Un-Identified

Number
Rate

MWLPP 0 0 808 1.049% 747 0.970%
MWPCA 0 0 746 0.969% 1827 2.373%

Table 6. The MACi−avg of modal shapes identified by MWLPP and MWPCA in the mass slow-time-
varying 3-DOF structure.

Method MAC1−avg MAC2−avg MAC3−avg

MWLPP 0.9979 0.9344 0.9254
MWPCA 0.9982 0.9009 0.9052

4.4.2. A Density Slow-Time-Varying Cantilever Beam Structure

In the density slow-time-varying cantilever beam structure, we select four moments
including t = 0.75 s, t = 1.75 s, t = 2.75 s and t = 3.75 s. Table 7 shows the MAC value
at the instantaneous moment. Figure 16 shows the modal shapes of the instantaneous
moment. Figure 17 shows the time-varying natural frequencies identified by the MWLPP.
Figure 18 shows the time-varying MAC values of modal shapes identified by the MWLPP.
Table 8 shows the average error δi−avg of MWLPP and MWPCA in identifying natural
frequencies. Table 9 shows the number of un-identified windows between MWLPP and
MWPCA. Table 10 shows the MACi−avg of modal shapes identified by MWLPP and MW-
PCA.

Table 7. The MAC value at four moments t = 0.75 s, t = 1.75 s, t = 2.75 s and t = 3.75 s of the density
slow-time-varying cantilever beam structure.

Order t = 0.75 s t = 1.75 s t = 2.75 s t = 3.75 s

1 1 0.9998 0.9999 0.9997
2 0.9981 0.9858 0.9990 0.9988
3 0.9951 0.9742 0.9975 0.9947

Table 8. The average error δi−avg of MWLPP and MWPCA in identifying natural frequencies in the
density slow-time-varying cantilever beam structure.

Method Average Error δ1−avg Average Error δ2−avg Average Error δ3−avg

MWLPP 3.234% 0.469% 0.159%
MWPCA 3.07% 0.470% 0.161%

Table 9. The number of un-identified windows between MWLPP and MWPCA in density slow-time-
varying cantilever beam structure.

Method
First Order

Un-Identified
Number

Rate
Second Order
Un-Identified

Number
Rate

Third Order
Un-Identified

Number
Rate

MWLPP 0 0 6 0.018% 124 0.376%
MWPCA 213 0.64% 1 0.003% 66 0.2%
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Table 10. The MACi−avg of modal shapes identified by MWLPP and MWPCA in the density slow-
time-varying cantilever beam structure.

Method MAC1−avg MAC2−avg MAC3−avg

MWLPP 0.9990 0.9971 0.9789
MWPCA 0.9834 0.9773 0.8996
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Figure 16. The modal shapes identified by MWLPP at four moments including (a) t = 0.75 s, (b) t = 1.75 s, (c) t = 2.75 s and
(d) t = 3.75 s of the density slow-time-varying cantilever beam structure.
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Figure 17. The natural frequencies identified by the MWLPP in the density slow-time-varying cantilever beam structure.
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Figure 18. The MAC (model assurance criterion) value of modal shapes identified by the MWLPP in the density slow-time-
varying cantilever beam structure.

4.4.3. A Mass Slow-Time-Varying 3-DOF Structure with 10% White Gaussian Noise

Ten percent white Gaussian noise is added to the vibration displacement response
signal of the slow-time-varying 3-DOF structure, and the modal parameters of the structure
are identified.

In the mass slow-time-varying 3-DOF structure with 10% white Gaussian noise, we
also select four moments including t = 100 s, t = 650 s, t = 1500 s and t = 1974.375 s. Table 11
shows the MAC value at the instantaneous moment. Figure 19 shows the modal shape of
the instantaneous moment. Figure 20 shows the time-varying natural frequencies identified
by the MWLPP. Figure 21 shows the time-varying MAC values of modal shapes identified
by the MWLPP. Table 12 shows the average error δi−avg of MWLPP in identifying natural
frequencies. In the identification process of operational modal parameters of structures,
modal parameters of some windows (moments) are not identified, i.e., modal parameters
are missing. Those windows that modal parameters are not identified are described as
un-identified windows. Table 13 shows the number of un-identified windows by MWLPP.
Table 14 shows the MACi−avg of modal shapes identified by MWLPP.

Table 11. The MAC value of four moments including t = 100 s, t = 650 s, t = 1500 s and t = 1974.375 s
in the mass slow-time-varying 3-DOF structure with 10% white Gaussian noise.

Order t = 100 s t = 650 s t = 1500 s t = 1974.375 s

1 0.9995 1 0.9938 1
2 0.9988 0.9997 0.9707 0.8243
3 0.9970 1 0.9818 0.8731

Table 12. The average error δi−avg of MWLPP in identifying natural frequencies in the mass slow-time-varying 3-DOF
structure with 10% white Gaussian noise.

Method Average Error δ1−avg Average Error δ2−avg Average Error δ3−avg

MWLPP (with 10% white Gaussian noise) 0.059% 0.127% 0.245%
MWLPP (without white Gaussian noise) 0.059% 0.129% 2.45%
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Table 13. The number of un-identified windows by MWLPP in the mass slow-time-varying 3-DOF structure with 10%
white Gaussian noise.

Method
First Order

Un-Identified
Number

Rate
Second Order
Un-Identified

Number
Rate

Third Order
Un-Identified

Number
Rate

MWLPP
(with 10% white Gaussian noise) 0 0 674 0.876% 1062 1.380%

MWLPP
(without white Gaussian noise) 0 0 808 1.049% 747 0.970%

Table 14. The MACi−avg of modal shapes identified by MWLPP in the mass slow-time-varying 3-DOF structure with 10%
white Gaussian noise.

Method MAC1−avg MAC2−avg MAC3−avg

MWLPP
(with 10% white Gaussian noise) 0.9981 0.9260 0.9219

MWLPP
(without white Gaussian noise) 0.9979 0.9344 0.9254
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(d) t = 1974.375 s in the mass slow-time-varying 3-DOF structure with 10% white Gaussian noise.
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Figure 20. The natural frequencies identified by MWLPP in the mass slow-time-varying 3-DOF structure with 10% white
Gaussian noise.
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4.5. Analysis of Simulation Results

(1) From Figures 12–21 and Tables 3–14, the MWLPP method can identify the operational
modal parameters of the slow time-varying structure well.

(2) Comparing Figures 12 and 16, and Tables 6 and 10, MWLPP has high accuracy in
identifying modal shapes of linear slow-time-varying structures. In particular, MAC
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values of modal shapes are very close to 1 in complex density slow-time-varying
cantilever beam structures.

(3) Comparing Figures 13 and 17, the natural frequency of the linear slow-time-varying
structure changing with time, and MWLPP can well track the change of the natural
frequency. Combined with Tables 4 and 8, MWLPP has a high accuracy in identifying
the natural frequency of the linear slow-time-varying structure.

(4) Comparing Tables 5 and 9, the total number of un-identified windows in MWLPP
method is lower than that in MWPCA whether the structure is a linear mass slow-time-
varying 3-DOF structure or a complex linear density slow-time-varying cantilever
beam structure. Comparing Tables 6 and 10, the MAC value of modal shape identified
by MWLPP is higher than that MWPCA. Therefore, the MWLPP method is superior
to the MWPCA method in identifying the operational modal parameters of linear
slow time-varying structures.

(5) From Figure 17 and Table 8, the first natural frequency seems contain fluctuations
because the ordinate scale of the first mode natural frequency is small. According to
Equation (29), in the cantilever beam structure, the first average frequency variation
is 4 fL(1) = 0.15 Hz, the second average frequency variation is 4 fL(2) = 1.09 Hz,
the third average frequency variation is4 fL(3) = 3.06 Hz. The smaller the average
frequency variation is, the smaller the variation range of the natural frequency value
is. Due to the small variation range of the first order natural frequency value, the fluc-
tuation phenomenon of the first order natural frequency is obvious in Figure 15 [28].
In addition, according to Equation (27), the denominator of the first order is much
smaller than that of the second and the third order when calculating the average
error rate δi−avg of natural frequency because the natural frequency value of the first
order is smaller than that of the second and the third order. Therefore, in Table 8, the
average error rate of natural frequency calculated in the first order is greater than that
in the second and third order. In fact, the result of modal shape identification shows
that the first order identification is indeed the best.

(6) Figure 15 shows that the damping ratio identified by MWLPP algorithm fluctuates
greatly because theoretical analysis and numerical simulations indicate that a de-
creasing or moving mass and density will generate additional damping in the LTV
structures [41,42]. In addition, compared with theoretical values, the identification
accuracy of damping ratios has a certain error. It is generally predictable because the
identification of the damping ratio itself is a difficult problem in the field of structural
dynamics, and easily affected by the adopted identification algorithm. Therefore, the
time-varying transient mode damping ratio identified by MWLPP is not suitable to
compare with the mode damping ratio calculated by finite element methods.

(7) From Figures 14, 18 and 21, the MAC varies very much and have low values. The
time-domain method used in this article cannot use the average technique in the
frequency domain to identify the time-domain modes from the non-stationary random
vibration response signals. Therefore, the algorithm is unstable, and some moments
cannot identify the modal parameters, or the identified modal natural frequency and
modal shape are not good. In addition, references [16,43] indicate that the change of
damping will affect the performance of the algorithm in identifying modal parameters.
From the Figure 15, damping ratio of time-varying structure constantly changing,
which leads to low precision of modal parameter identification in some time. In
addition, References [28,30] indicate that the window length L will also affect the
identification accuracy of modal parameters. From Equation (28), the window length
L is proportional to the sample frequency fs and frequency resolution4 f . Frequency
resolution4 f cannot be too small, because it cannot reflect the change of frequency,
and cannot be too large, because the average frequency variation4 fL(i) cannot be
identified. At the same time,4 fL(i) cannot be larger too much than4 f , otherwise,
time-varying structure cannot be regarded a time-invariant structure in a window.
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(8) According to the noise simulation results of 3-DOF structure, the MWLPP algorithm
turns out to be robust to noise. This is probably LPP algorithm computes a transfor-
mation matrix which maps the data points to a subspace. This linear transformation
optimally preserves local neighborhood information in a certain sense [36]. This
feature helps retain information about the response signal.

5. Conclusions

In this paper, a new method based on MWLPP for identifying operational modal
parameters of linear slow-time-varying structures is presented. The low-dimensional
embedding calculated by LPP algorithm corresponds to the modal coordinate response
matrix, the transformation matrix corresponds to the modal shape matrix, and the op-
erational modal parameters of the linear slow-time-varying structure are identified by
the moving window method. Compared with the moving window principal component
analysis method, MWLPP has higher accuracy and less modal missing in identifying the
operational modal parameters of linear slow-time-varying structures.

However, fixed window length is an important parameter. How to determine and
change the fixed length of moving window adaptively by non-stationary vibration response
signal has not been solved completely. It is of great significance to apply this method to
practical engineering structures. In addition, a further study is to establish a practical
experiment to verify the effectiveness of the method.
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