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Abstract

A core problem in visual object learning is using a finite number of images of a new object to

accurately identify that object in future, novel images.

One longstanding, conceptual hypothesis asserts that this core problem is solved by

adult brains through two connected mechanisms: 1) the re-representation of incoming reti-

nal images as points in a fixed, multidimensional neural space, and 2) the optimization of lin-

ear decision boundaries in that space, via simple plasticity rules applied to a single

downstream layer.

Though this scheme is biologically plausible, the extent to which it explains learning

behavior in humans has been unclear—in part because of a historical lack of image-comput-

able models of the putative neural space, and in part because of a lack of measurements of

human learning behaviors in difficult, naturalistic settings.

Here, we addressed these gaps by 1) drawing from contemporary, image-computable

models of the primate ventral visual stream to create a large set of testable learning models

(n = 2,408 models), and 2) using online psychophysics to measure human learning trajecto-

ries over a varied set of tasks involving novel 3D objects (n = 371,000 trials), which we then

used to develop (and publicly release) empirical benchmarks for comparing learning models

to humans.

We evaluated each learning model on these benchmarks, and found those based on

deep, high-level representations from neural networks were surprisingly aligned with human

behavior. While no tested model explained the entirety of replicable human behavior, these

results establish that rudimentary plasticity rules, when combined with appropriate visual

representations, have high explanatory power in predicting human behavior with respect to

this core object learning problem.

Author summary

A basic conceptual hypothesis for how an adult brain learns to visually identify a new

object is: 1) it re-represents images as points in a fixed, multidimensional space, then 2) it
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learns linear decision boundaries that separate images of a new object from others, using a

single layer of plasticity. This hypothesis is considered biologically plausible, but gauging

its power to explain human learning behavior has not been straightforward. In part, this is

because it is difficult to model how brains re-represent images during object learning.

However, ongoing efforts in neuroscience have led to the identification of specific, image-

computable models that are at least partially accurate descriptions of the neural represen-

tations involved in primate vision. Here, we asked whether any of those representations,

when combined with simple plasticity rules, could make accurate predictions over a large

body of learning measurements. We found that specific models could indeed explain a

majority of those measurements, suggesting the rudimentary, biologically-plausible mech-

anisms considered here may be sufficient to explain a core aspect of human object

learning.

Introduction

People readily learn to recognize new visual objects. As an individual receives views of a new

object—new spatial patterns of photons striking their eyes—their ability to correctly recognize

new views of that object increases, possibly very rapidly. What are the mechanisms that allow

an adult human to do so?

Efforts from cognitive science, neuroscience, and machine learning have led to a diverse

array of ideas to understand and replicate this human ability, and human example-based learn-

ing in general. These works range in levels of specification, from conceptual frameworks that

do not directly offer quantitative predictions [1–5], models which depend on unspecified

intermediate computations (i.e. non-image-computable models; [6–10]), to end-to-end learn-

ing models which take images as input [11–17].

An important step in determining the extent to which any of these ideas are valid descrip-

tors of human object learning (and its underlying neural mechanisms) is to evaluate them on

the basis of their ability to predict empirical measurements of human behavior over a range of

task settings.

While such model evaluations (which we refer to as “benchmarks”) exist for visual tasks

involving known object categories (e.g. [18–20]), the field currently lacks a readily available set

of benchmarks for visual tasks involving the learning of novel objects.

To begin addressing this gap, we designed novel benchmarks for human object learning.

We focused on object learning in the context of binary discrimination tasks, in which a learner

must acquire the ability to discriminate two new objects from each other, receiving feedback

(correct or incorrect) on each trial. Though this elementary task paradigm does not encompass

all possible aspects of “object learning” per se, it exposes subjects to one of its core problems:

using a finite number of images of a new object to accurately identify that object in novel

images.

Our first experimental goal was to measure this ability in adult humans across several tasks,

each involving highly varied views of novel 3D objects. The resultant set of measured learning

curves (one for each task) formed a large set of human “behavioral signatures” which could

then be used as the basis for our first and primary benchmark. Based on the extent to which a

candidate learning model quantitatively reproduced (or failed to reproduce) those human sig-

natures, its empirical validity could be established.

Next, motivated by prior suggestions of where humans may be particularly powerful [13,

21], our secondary experimental goal was to take additional measurements of human behavior
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during the special case of “one-shot” learning, where the subject receives just a single view

(that is, a single image) of each object before being asked to generalize to unseen views. Here,

we sought to measure human generalization over a variety of identity-preserving transforma-

tions in the one-shot setting (e.g. translation, scaling, and 3D rotation), then to use those resul-

tant measurements to create our secondary benchmark, which evaluates a model’s ability to

replicate humans across the same settings.

Once we generated these two benchmarks, we used them to evaluate a longstanding con-

ceptual hypothesis for object learning, which posits that adult humans re-represent incoming

visual stimuli in a stable, multidimensional Euclidean space, learn linear categorization bound-

aries in that space, and apply this learned boundary to categorize new stimuli [5, 7, 22].

This overall framework is notable in that it has plausible neural implementations. For

example, the re-representation of an image as a location in a multidimensional space could be

expressed by the pattern of population firing rates in a visually-driven area; linear categoriza-

tion boundaries could be implemented by downstream neurons that respond to weighted

sums of upstream activity [23]; and those weights could be adjusted through simple, reward-

driven plasticity mechanisms [24–26].

However, despite the biological plausibility of this framework, it does not directly generate

quantifiable predictions of human behavior. To generate such predictions, the representational

space thought to be used by humans must first be specified, as well as the precise form of the

plasticity rule. While there are standard learning algorithms that can be written as reward-

based plasticity rules operating on a single layer (e.g. [27]), obtaining an accurate specification

of the representational space presents a larger challenge, in that this space may have a highly

complex relationship with the content of images.

Typically, this challenge has been approached by limiting the learning model to a restricted,

often simple, domain of images, then assuming that the axes of the model’s representational

space correspond to latent variables used to generate those specific images (e.g. [10]). Alterna-

tively, data-driven approaches have been used to estimate the embedding of finite subsets of

images in a representational space (see [3]). However, it has not been clear how to extend

those approaches to the domain of all arbitrary images, including the kinds of images consid-

ered here, or whether any learning models based on the proposed mechanisms would offer

accurate predictions of human behavior in more complex and naturalistic visual domains.

To address this gap, we drew from ongoing efforts in cognitive science [28–33] and visual

neuroscience [34–36] that have established correspondences between the intermediate layers

of image-computable, deep convolutional neural networks (DCNNs) and human visual behav-

ior, as well as the activity of neural populations across the primate ventral stream. We took a

large sample of those image-computable layers and combined them with several variants of

simple, reward-driven plasticity rules derived from standard algorithms from statistical learn-

ing theory and reinforcement learning.

Through these combinations of specific image representations and plasticity rules, we cre-

ated a large battery of testable learning models. If human brains indeed utilize representations

that are sufficiently well-approximated by one of those intermediate layers, and if they utilize

plasticity mechanisms that are well-described by one of these plasticity rules, then the corre-

sponding learning model should have close empirical correspondence with observed human

behaviors, as evaluated by the benchmarks here.

At the outset of this study, we reasoned that, if the behavior produced by any model was

found to be indistinguishable from that of humans, it could serve as a leading scientific

hypothesis to drive further experiments. If they were not found, predictive gaps could be used

to guide future work in improving models of human object learning. Either way, the
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benchmarks created in this work could facilitate a standard evaluation of current and future

visual object learning models.

Results

We measured human behavior over two variants of an object learning task (Experiments 1 &

2). In Experiment 1, we measured human subjects learning to discriminate pairs of novel

objects as subjects were provided with an increasing number of views of those objects, and

feedback on their choices. In Experiment 2, we also measured humans learning to discriminate

between pairs of objects, but provided only one view per object before assessing subjects’ accu-

racy on a variety of generalization tests. The results of each experiment are presented below,

along with quantitative comparisons of those results with a large set of learning models. Fur-

ther details of the experiments and the models are provided in the Materials and methods.

Experiment 1: Humans are rapid, but imperfect novel object learners

In Experiment 1, we measured a population of anonymous human subjects (n = 70) perform-

ing n = 64 learning subtasks involving novel objects rendered under high view variation (see

Fig 1A). In each subtask, human subjects learned a new object-choice behavioral contingency

(consisting of two objects) through trial-and-error feedback. Subjects had no prior exposure to

the objects nor the contingency which defined each subtask.

These subtasks proceeded in a trial-by-trial fashion. At the beginning of a trial, a test image

containing one of two possible objects was briefly presented (at�6˚of the visual field for�200

milliseconds). Then, the subject was asked to report which of the two objects was present “in”

that image through a button press, and evaluative feedback (correct or incorrect) was delivered

based on their choice (see Fig 1B). The subtask then proceeded to the next trial (for a total of

100 trials).

The core measurement we sought to obtain for each subtask was the discrimination accu-

racy of a typical subject as a function of the number of previously performed trials (i.e. the

learning curve for each subtask). To estimate the learning curve for a particular subtask, we

recorded the sequence of corrects and incorrects achieved by multiple subjects (n = 50 sub-

jects) performing n = 100 randomly sampled trials (see Fig 1C), then averaged across subjects

to estimate the learning curve for that subtask. We estimated learning curves in this manner

for all n = 64 subtasks in this experiment (depicted in Fig 1D).

Upon examination of these learning curves, we found that on average (over subjects and

subtasks), human discrimination accuracy improved immediately—i.e. after a single image

example and accompanying positive or negative feedback. By construction, accuracy on the

first trial is expected to be 50% (random guessing); but on the following trial, humans had

above-chance accuracy (mean 0.65; [0.63, 0.67] 95% bootstrapped CI), indicating behavioral

adaptation occurred immediately and rapidly. Average discrimination accuracy continued to

rise across learning: the subject-averaged, subtask-averaged accuracy on the last trial (trial 100)

was 0.87 (mean; [0.85, 0.88] 95% CI). The subject-averaged, subtask-averaged accuracy over all

100 trials was 0.82 (mean; [0.81, 0.84] 95% CI).

As anticipated, we found that different subtasks (i.e. different pairs of objects) could have

widely different learning curves. This is illustrated in Fig 1D, which shows the estimated aver-

age human learning curve for each subtask. That is, we observed that some tasks were “easy”

for humans to learn, and some were harder (e.g. mean accuracy of�0.65 for the most difficult

10% of subtasks). These variations were not artifacts of experimental variability, which we

established by estimating the value of Spearman’s rank correlation coefficient between average

subtask performances that would be expected upon repetitions of the experiment (ρ = 0.97; see
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Fig 1. Humans learning novel objects. A. Images of novel objects. Images of synthetic 3D object models were created using random viewing parameters

(background, location, scale, and rotational pose). B. Task paradigm. Subjects performed trial-and-error learning of novel object-choice contingencies (of

which they had no prior knowledge). On each trial, a randomly selected image (of one of two possible objects) was briefly shown to the subject. The subject

could then make one of two possible choices (“F” or “J”). Positive reinforcement was delivered if the subject choice was “correct”, per the object-choice

contingency (e.g., object 1 corresponds to “F”, and object 2 corresponds to “J”). C. Example subject-level learning data. Each subject performing a subtask

performed a randomly sampled sequence of 100 trials (i.e. images and their choice-reward contingencies), and we measured their sequence of correct (blue)

and incorrect (gray) choices. Image stimuli were never repeated, ensuring each trial tests the subject’s ability to generalize to unseen views of the objects. D.

Human learning curves. We averaged across human subjects to estimate accuracy as a function of trials for n = 64 subtasks (each consisting of a distinct pair

of objects). We found that some subtasks were reliably harder for humans than others; three example subtasks across the range of difficulty are highlighted.

Learning curves shown are smoothed with a moving window filter (for visualization only).

https://doi.org/10.1371/journal.pcbi.1011713.g001
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Section 1.1 in S1 Appendix). Moreover, we found our measures of human learning behavior

were robust to the experimental imprecision in online behavioral testing (e.g. from head move-

ment; variation in monitor setups) by replicating a subset of this experiment in a population of

in-lab subjects with head-fixation and eye tracking (see S1 Fig).

Overall, these observations indicate that 1) humans can acquire a significant amount of

learning with respect to novel visual object concepts with a small number of examples (e.g. 4

training examples to reach 75% correct, 6 to reach 90% of their final performance), and 2)

learning new objects is highly dependent on the 3D shapes of those objects, with many object

pairs being far from perfectly learned within 100 trials. We next asked how well a family of

models based on a standard cognitive theory of learning are—or are not—able to explain these

behavioral measurements.

Comparing image-computable learning models with humans

As described above, the core set of behavioral measurements we obtained in Experiment 1

consisted of subject-averaged learning curves for each subtask (accuracy values for 64 subtasks

across 100 trials). Our next step was to to specify a procedure that assesses how well any given

computable model of object learning can quantitatively reproduce those curves.

Given a model, this procedure consisted of 1) simulating the same set of subtasks in the

model and estimating its learning curves for those subtasks (exactly analogous to how they

were estimated in humans), and 2) computing a scalar-valued error score (MSEn) which sum-

marizes the extent to which the learning curves of the model quantitatively matches (or not)

the corresponding learning curves in humans.

We sought to evaluate models drawn from a standard model family (see Fig 2A). Each

model in this family consists of two conceptual stages: which we refer to as 1) an encoding

stage which places each incoming image into a representational space, and 2) a tunable deci-

sion stage, which generates a choice by using a linear decision boundary in that space. The

learning of new object-choice associations is guided by some plasticity rule, which processes

environmental feedback (the same feedback information provided to human subjects) to

adjust the weights of the tunable decision stage. Plasticity occurs only in the decision stage; the

encoding stage is held completely fixed.

Here, we implemented a suite of learning models based on different combinations of

encoding stage and plasticity rule. For the encoding stages, we drew from intermediate layers

of Imagenet-pretrained DCNNs [37], which are the currently leading image-computable

approximations of visual representations across the primate ventral visual stream [36]. Each

encoding stage re-represents pixel images as vectors~x in some d-dimensional space.

For the plasticity rules, we sought to test several alternatives that were 1) neurally-plausible

and simple, and 2) could be expected to optimize the weights of the decision boundary (~w) for

reward. Given those requirements, we focused on n = 7 plasticity rules that execute reward-

optimizing weight updates of a particularly simple form (~w  ~w þ b~x), depending only on a

scalar-valued modulatory signal (β) and the image representation (~x). Differences between

these plasticity rules amount to differences in how they compute the modulatory signal β (Fig

2D). Formally, each plasticity rule was based on a loss function from statistical learning or

reinforcement learning that encodes a reward optimization objective, and the associated

weight gradient step for that objective (see Baseline model family for details).

In total, we implemented models based on all possible combinations of these encoding

stages and plasticity rules (n = 2,408 learning models). We then tested each model on the same

set of subtasks as humans, simulating n = 32,000 behavioral sessions per model (n = 500 simu-

lations per subtask). We estimated each model’s learning curves for each subtask (i.e. accuracy
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Fig 2. Model family of object learning in humans. A. Model family. Each model in this family had two stages: an encoding stage which re-represents an

incoming pixel image as a vector (~x), and a tunable decision stage, which uses~x to generate a choice by computing linear choice preferences (~wc �~x), then

selecting the most preferred choice. Subsequent environmental feedback is processed to update the parameters of the decision stage. Specific models in this

family correspond to specific choices of the encoding stage and plasticity rule. B. Possible neural implementation. The functionality of the encoding stage

in A could be implemented by the ventral stream, which re-represents incoming retinal images into a pattern of distributed population activity in high

level visual areas, such as area IT. Sensorimotor learning might be mediated by plasticity in a downstream association region. Midbrain processing of

environmental feedback signals could guide plasticity via dopaminergic (DA) projections. C. Encoding stages. We built learning models based on several

encoding stages, each based on a specific intermediate layer of an Imagenet-pretrained deep convolutional neural network. D. Plasticity rules. We drew
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values over 64 subtasks and 100 trials), and scored its similarity to humans using a mean-

squared-error statistic (MSEn; details in Bias-corrected mean squared error). We show an illus-

tration of this procedure for an example model shown in Fig 3, and a histogram of MSEn

scores for all tested models is shown in Fig 4.

A higher value of MSEn means the model is a worse predictor of human learning behavior;

lower values are better. In principle, no model can be expected to have an MSEn lower than a

“noise floor” s2
h, which comes from the uncertainty in our experimental estimates of each

human learning curve (i.e. from the finite amount of human data collected). Intuitively, the

value of s2
h can be understood as the MSEn score that can be expected from the “perfect”

model of human learning behavior: one that can be expected to exactly reproduce the behav-

ioral learning dynamics of humans for all subtasks in this experiment. We made an unbiased

estimate of this noise floor (ŝ2
h � 0:003, see Noise floor estimation), then compared this to the

MSEn scores achieved by the models we tested. We note that the root value of the noise floor

(and MSEn) is a rough estimate of the expected error in the native units of the measurements

(accuracy values).

Many of the models were far from the noise floor, but we found that a subset of models

achieved relatively low error. For example, we found the best 1% of the models (which we refer

to as “strong baseline models”) had root-mean squared errors of
ffiffiffiffiffiffiffiffiffiffiffiffi
MSEn

p
� 0:08, coming rela-

tively close to the noise floor (ŝh ¼ 0:05). Still, all models, including these ones, were statisti-

cally distinguishable from humans; all models were rejected as having expected behavior

identical to humans with significance level of at least p< 0.001 (see Null hypothesis testing).

Model components affecting the score of a model. Given the range of MSEn scores we

observed, we next wished to perform a secondary analysis on how each of the two components

defining a model (its encoding stage and plasticity rule) affected its error score on the bench-

mark above. One general trend we observed was that models built with encoding stages from

deeper layers of DCNNs tended to produce more human-like learning behavior (see Fig 5B).

On the other hand, the choice of plasticity rule (which defined by the tunable decision stage)

appeared to have little effect in a model’s ability to generate human-like learning behavior (see

Fig 5A).

We quantified these observations by performing a two-way ANOVA over all model scores

(see Section 2.1 in S1 Appendix), treating the plasticity rule and encoding stage as the two fac-

tors. This analysis showed that the choice of plasticity rules explained less than 0.1% of the var-

iation in model scores; by contrast, 99.8% of the variation was driven by the encoding stage,

showing that the predominant factor affecting the alignment of the learning model with

humans was the encoding stage.

Put another way, we found that different plasticity rules (out of n = 7 rules we tested), when

combined with any given encoding stage, led to learning models with nearly identical levels of

human similarity (i.e. highly similar MSEn benchmark scores). Still, this does not necessarily

imply that all plasticity rules generated similar predictions: intuitively, each learning rule could

be equally wrong in different ways (see Fig 6A, left).

To disambiguate between these possibilities, we directly estimated the average pairwise

MSE values between learning models that shared the same encoding stage (differing only in

their plasticity rules). We found that across a range of encoding stages (Fig 6B), different plas-

ticity rules not only led to models with similar benchmark scores, but also highly similar

basic plasticity rules from statistical learning theory and reinforcement learning (see S1 Table). Each rule aims to achieve a slightly different optimization

objective (e.g., the “square” rule attempts to minimize the squared error between the choice preference and the subsequent magnitude of reward).

https://doi.org/10.1371/journal.pcbi.1011713.g002
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Fig 3. Model simulations of human learning. A. Example encoding stage representations of novel object images. Each subtask consists of images of two

novel objects (indicated in black and white dots). The first two principal components of an example, 2048-dimensional encoding stage (Inception/layer12)

are shown here (computed separately on the images for each subtask, for clarity). Linear separability can be observed, to varying degrees. B. Simulating a

single trial. Clockwise, starting from top left: the incoming stimulus image is re-represented by the encoding stage into a location in a representational space,

~x . Preferences for each choice are computed (~x � ~w J and~x � ~wF), and the most preferred choice is selected, which amounts to making the choice based on

where~x falls with respect to a linear decision boundary (~w J � ~wF). Here, the choice “J” is selected, which happens to be the correct choice for this image. The

subsequent reward causes the decision boundary to change based on the plasticity rule. C. Simulated model behavioral data. For each learning model, we

simulated a total of n = 32,000 behavioral sessions (64 subtasks, 500 simulations each), and recorded its behavior (correct or incorrect) on each trial. D.

Comparing model and human behavior. We averaged across simulations to obtain the model’s learning curves for each subtask, then compared them to

subject-averaged human learning curves, using a bias-corrected mean-squared error metric (MSEn; see Bias-corrected mean squared error) to quantify the

(dis)similarity of the model to humans.

https://doi.org/10.1371/journal.pcbi.1011713.g003
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predictions of behavior, relative to their average similarity to humans (median relative dissimi-

larity 0.04%, max: 8.26%; see Section 2.2 in S1 Appendix). In a supplementary analysis, we also

found the high level of between-rule similarity extended beyond the image-averaged behav-

ioral measures we consider above, with different rules converging to largely similar weight

solutions and image-by-image patterns of behavior (see S3 Fig). In sum, we found that the

seven plasticity rules are all equally correct (equivalently, all equally incorrect), and they are

virtually identical to each other along key functional measures.

Strong baseline models are largely, but not perfectly, correlated with human perfor-

mance patterns. The set of MSEn scores we observed indicated that all models tested had sig-

nificant differences from humans, based on their respective learning curves. There are several

ways in which these differences could originate—for example, a model might have “fast” learn-

ing curves for tasks that humans learn slowly, and “slow” learning curves for tasks that humans

learn rapidly. Alternatively, a model might have the same pattern of difficulty across subtasks

as humans, but simply be slower at learning, overall.

To gain insight into these possibilities, we performed an additional analysis in which we

compared each model to humans along two more granular statistics: 1) its overall accuracy

over all subtasks and trials tested, and 2) its consistency with the patterns of difficulty exhibited

by humans across subtasks (see Fig 7A).

Intuitively, overall accuracy is a gross measure of a learning system’s overall ability to learn,

ranging from 0.5 (chance, no learning occurs) to 0.995 (learning completed after just one

Fig 4. Bias-corrected mean-squared errors (MSEn) vs. humans for all models tested. The n = 2,408 models we

tested varied widely in the extent of their alignment with human learning (i.e. their average squared prediction error).

We denote the best 1% of such models as “strong baseline models”. The noise floor corresponds to an estimate of the

lowest possible error achievable (ŝ2
h � 0:003), given the experimental power in this study. The vertical line labeled

“random guessing” marks the error incurred by a model which produces a random behavioral output on each trial.

https://doi.org/10.1371/journal.pcbi.1011713.g004
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trial). Consistency (ρ) quantifies the extent to which a model finds the same subtasks easy and

hard as humans (per the trial-averaged accuracies for each subtask). It ranges from ρ = −1 (per-

fectly anticorrelated pattern of performance) to ρ = 1 (perfectly correlated pattern of perfor-

mance). A value of ρ = 0 indicates no correlation between the patterns of difficulty across

subtasks in a model and humans.

These metrics are theoretically unrelated to each other; given any overall accuracy, a model

may have a high or low consistency with humans, and vice versa (except for the special cases

where a model achieves 100% or 0% accuracy after a single trial for all subtasks; then consis-

tency is undefined). Nevertheless, we observed that these two metrics covaried for these mod-

els (Pearson r = 0.73); models with high overall accuracy also tended to have high consistency

(see Fig 7B). In S5 Fig, we also show that MSEn and consistency scores for these models are

highly coupled.

Fig 5. Evaluating the effect of model design choices on predictive accuracy of human learning. A. Example model scores across encoding stages and

plasticity rules. A typical example of the relative contributions of plasticity rule (y-axis) and encoding stage (x-axis) on model scores (MSEn, encoded by

color). B. Overview of all models tested. In total, we tested encoding stages drawn from a total of n = 19 DCNN architectures, varying widely in depth. A

model’s similarity to humans was highly affected by the choice of encoding stage; those based on deeper layers of DCNNs showed the most human-like

learning behavior. On the other hand, the choice of plasticity rule had a minuscule effect. C. Predictive accuracy increases as a function of relative

network depth. Learning models with encoding stages based on DCNN layers closer to the final layer of the architecture tended to be better.

https://doi.org/10.1371/journal.pcbi.1011713.g005
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Fig 6. Further testing for potential differences between plasticity rules. A. Possible scenarios, given similar benchmark scores. In the “behavioral

measurement space” of this experiment, the MSEn metric is an estimate of the (squared) distance between a human and a model. There is a spectrum of

possible scenarios consistent with the observation that a set of learning models have similar human MSEn scores. B. Rules generate highly similar

predictions across all tested encoding stages. Across a range of representational models (random subset shown, drawn from 20 equally-sized bins across

the observed MSEn range), the rule-to-rule distances are near zero, showing different rules consistently lead to highly similar predictions. The y-axis

(MSEu) is a symmetric version of the MSEn metric that performs noise correction for both arguments (see Section 2.2 in S1 Appendix).

https://doi.org/10.1371/journal.pcbi.1011713.g006

Fig 7. Comparing models to humans along more granular behavioral signatures of learning. A. Decomposing model behavior into two metrics. We

examined model behavior along two specific aspects of learning behavior: overall accuracy (top right), which is the average accuracy of the model over the

entire experiment (i.e. averaging across all 100 trials and all 64 subtasks), and consistency (bottom right), which conveys how well a model’s pattern of trial-

averaged performance over different subtasks rank-correlates with that of humans (Spearman’s rank correlation coefficient). B. Consistency and overall

accuracy for all models. Strong baseline models (top-right) matched (or exceeded) humans in terms of overall accuracy, and had similar (but not identical)

patterns of performance with humans (consistency). The gray regions are the bootstrap-estimated 95% range of each statistic between independent repetitions

of the behavioral experiment. The color map encodes the overall score (MSEn) of each model (colorbar in Fig 5A).

https://doi.org/10.1371/journal.pcbi.1011713.g007
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Humans learn new objects faster than all tested models in low-sample regimes.

Though many models matched or exceeded human-level overall accuracy (i.e. accuracy aver-

aged over trials 1–100 for all subtasks), we noticed that all models’ accuracy early on in learn-

ing consistently appeared to be below that of humans (see Fig 8A). We tested for this by

comparing the accuracy of models and humans in an initial phase of learning (trials 1–5 for all

subtasks), and indeed found that all of the models were significantly worse than humans in the

early phase of learning (all p<0.05, bootstrap hypothesis test, see Fig 8B).

We wondered whether this gap was present across levels of difficulty (e.g., that models

tended to perform particularly poorly on “hard” subtasks relative to humans, but were human-

level for other subtasks), and repeated this analysis across four different difficulty levels of sub-

tasks (where each level consisted of 16 out of the 64 total subtasks we tested, grouped by

human difficulty levels). We found models were consistently slower than humans across the

difficulty range, though we could not reject a subset (11/20) of the strong baseline models at

the easiest and hardest levels (see Fig 8B).

Fig 8. Humans outperform all strong baseline models in low-sample regimes. A. Subtask-averaged learning curves for humans and strong baseline

models. The y-axis is the percent chance that the subject made the correct object report (chance is 50%). The x-axis is the total number of image examples

shown prior to the test trial (log scale). The average learning curves for humans (black) and models (magenta) show that humans outperform all models in

low-sample learning regimes. Errorbars on the learning curves are the bootstrapped SEM; model errorbars are not visible. B. No model achieves human-

level early accuracy. We tested all models for whether they could match humans early on in learning. Several models (including all strong baseline

models) were capable of matching or exceeding late accuracy in humans (average accuracy over trials 95–100), but no model reached human-level

accuracy in the early regime (average over trials 1–5). This trend was present in subtasks across different levels of difficulty (bottom row). The gray region

shows the 95% bootstrapped CI for each statistic; 95% CIs for models are too small to be shown.

https://doi.org/10.1371/journal.pcbi.1011713.g008
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Lastly, though all models failed to match humans in the early regime, many models readily

matched or exceeded human performance late in learning (i.e. the average accuracy on trials

95–100 of the experiment).

Experiment 2: Characterizing one-shot object learning in humans

Our observation above suggested these models learn more slowly than humans in few-shot

learning regimes involving random views of novel objects. To further characterize possible dif-

ferences between models and humans in this “early learning” regime, we performed an addi-

tional behavioral experiment (Experiment 2) in which we measured the ability of humans to

generalize following experience with only a single image of each object category.

Experiment 2 followed the same task paradigm as Experiment 1 (binary discrimination

learning with evaluative feedback). Each behavioral session was based on one of 32 possible

subtasks (i.e. 32 possible pairs of novel objects), and began with a “training phase” of 10 trials

in which the subject acquired an object-response contingency using a single canonical image

for each of the two objects. After the training phase, subjects then performed trials with “test

images” consisting of unseen, transformed versions of the two training images (see One-shot

behavioral testing for further details).

These test images were generated by applying the five kinds of image variations present in

our original experiment (translation, scale, random backgrounds, in-plane object rotation, and

out-of-plane object rotation) to the test images. We also generated test images using four addi-

tional kinds of image variation that were not present in the original experiment (contrast

shifts, pixel deletion, blur, and shot noise), but might nonetheless serve as informative compar-

isons for identifying functional deficiencies in a model relative to humans. For each kind of

transformation, we tested four “levels” of variation. For example, in measuring humans’ one-

shot test accuracy to scale, we showed subjects images where the object was resized to 12.5%,

25%, 50%, and 150% of the size of the object in the original training image (see One-shot stim-

ulus image generation for details).

Under this experimental setup, the core measurements we sought to obtain was the subject-

averaged discrimination accuracy for n = 36 generalization tests (9 transformation types, 4 lev-

els of variation each). Intuitively, each of the n = 36 measurements is an estimate of a typical

human’s ability to successfully generalize to a specific kind and magnitude of view transforma-

tion (e.g. downscaling the size of an object by 50%), after exposure to a single positive and neg-

ative example of a new object. Unlike Experiment 1, here we combined observations across the

32 subtasks used in this experiment, ignoring the fact that there may be variation in these mea-

surements based on the specific objects involved. We also attempted to correct for any mem-

ory or attentional lapses in these estimates (see One-shot behavioral statistics in humans for

details).

Across these 36 test conditions, we found that humans had varied patterns of generalization

(Fig 9B). For example, we observed that accuracy varied systematically based on the level of

variation applied with respect to scale, out-of-plane rotation, and blur. On the other hand,

human subjects had nearly perfect generalization across all tested levels of variation for transla-

tions, backgrounds, contrast shifts, and in-plane rotations. Overall, these diverse patterns of

generalization were estimated with a relatively high degree of experimental precision, as quan-

tified by our estimates of the human noise floor for this experiment (root noise floor of

ŝh ¼ 0:02).

We next used these measurements to create a benchmark that could be used to compare

any computable object learning model—including the models considered in this study—

against human object learning in this one-shot setting.
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Fig 9. One-shot learning in humans. A. One-shot learning task paradigm. We performed an additional study (Experiment 2) to characterize human one-

shot learning abilities (using the same task paradigm in Fig 1). The first 10 trials were based on two images (n = 1 image per object) that were resampled in a

random order. On trials 11–20, humans were tested on transformed versions of those two images (nine types of variation, four variation levels, n = 36 total

generalization tests) B. Human and example model one-shot accuracy for all generalization tests. An example strong baseline model’s pattern of

generalization (magenta) is shown overlaid against that of humans. C. Humans outperform strong baseline models on some kinds of image variations.

We averaged human one-shot accuracy (gray) on each type of image variation, and overlaid all strong baseline models (magenta). The errorbars are the 95%

CI (basic bootstrap). D. Comparison of MSEn scores for Experiment 1 and 2. No strong baseline model could fully explain the pattern of one-shot

generalization observed in humans (Experiment 2), nor their behavior on the first benchmark (Experiment 1). The error scores are shown on the log scale.

https://doi.org/10.1371/journal.pcbi.1011713.g009
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Models show weaker one-shot generalization compared to humans

As in Experiment 1, the benchmarking procedure for Experiment 2 consisted of 1) generating

predictions of behavior from a model by having it perform the same experiment conducted in

humans, then 2) scoring the similarity of that behavior to humans using an error statistic

(MSEn). Thus, for each model, we replicated the one-shot behavioral experiment (n = 16,000

simulated sessions per model), measured their accuracy on each of the 36 generalization tests

described above, then compared those behavioral predictions to humans using MSEn.

Similar to our results from Experiment 1, here we found that models varied widely in their

alignment with human learning behavior, and again found the top 1% subset of models

achieved relatively low error (
ffiffiffiffiffiffiffiffiffiffiffiffi
MSEn

p
� 0:06, where the root noise floor is ŝh ¼ 0:02). And as

in Experiment 1, we found that all models had statistically significant differences in their

behavior relative to humans, for this experiment. We also observed a positive relationship

between the scores of the two benchmarks: models that were most human-like as evaluated by

the benchmark based on Experiment 1 also tended to be the most human-like here, in the one-

shot setting (see Fig 9D)—though no model explained human behavior in either experiment

to the limits of statistical noise.

Part of the prediction failures we observed here lay in a failure to generalize as well as

humans to several kinds of image variation. For example, we observed that all strong baseline

models (identified from the benchmark from Experiment 1) had lower one-shot accuracy than

humans in the presence of object pixel deletions, blur, shot noise, and scale shifts (see Fig 9C).

Specific individual humans outperform all models

Both benchmarks we developed in this study tested the ability of a model to predict human

object learning at the “subject-averaged” level, where behavioral measurements drawn from

several subjects are averaged together. This approach, by design, ignores any individual differ-

ences in learning behavior that may exist.

We wished to gauge the extent to which any such individual differences were present, and

we performed an analysis on our behavioral data from Experiment 1. We identified subjects

who performed all 64 subtasks in that experiment (22 out of 70 subjects total). We then

attempted to reject the null hypothesis that there was no significant variation in their overall

learning ability (see Section 1.2 in S1 Appendix). If this hypothesis were to be rejected, it

would indicate that individuals must systematically vary in their learning behavior, at least in

terms of their overall performance on these tasks. We indeed found that some subjects were

reliably better object learners than others (p< 1e- 4, permutation test).

Given this was the case, we next asked whether any of these individuals had an overall per-

formance level higher than that of the highest performing model we identified in Experiment

1 (an encoding stage based on ResNet152/avgpool, and a tunable decision stage using the

square plasticity rule). We identified n = 5 individuals whose overall accuracy significantly

exceeded that of this model (all p<1e − 5, Welch’s t-test, Bonferroni corrected). On average,

this subset of humans had an overall accuracy of 0.92± 0.01 (SEM over subjects); this was

around 4% higher than this model’s average of 0.88.

Discussion

A neurally mechanistic understanding of how humans accomplish visual object learning

remains an open scientific problem. In this study, we focused on a core behavioral phenome-

non entailed in visual object learning: the use of a finite number of image examples of new

objects to accurately identify that object in new, unseen images. A necessary step in obtaining
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descriptions of the underlying neural mechanisms of this core phenomenon is evaluating the

empirical alignment of alternative models with respect to measurements of human object

learning behavior. To facilitate this, we first collected a set of human measurements in many

tasks within this object learning setting (n = 371,000 trials), allowing us to quantify the speed

of human object learning (<10 trials to achieve close-to-asymptotic accuracy), the distinct pat-

tern of learning difficulty they have for different objects, and their extent of generalization to

specific image transformations after a single image example.

We then developed procedures to evaluate any image-computable object learning model

over those same learning settings (which we refer to as “benchmarks” for human visual object

learning), and tested a set of simple learning models (n = 2,408 models) on those benchmarks.

Each of these models consisted of two stages: 1) a fixed encoding stage, which maps incoming

images to locations in an internal representational space, followed by 2) a tunable decision

stage which aims to improve future choices by adjusting the plastic weights that convert that

representation into a choice.

Prior to this study, we did not know if some or any of these learning models might be capa-

ble of explaining human object learning as assessed on naturalistic images like those used here.

As such, we center our discussion on these models, but highlight that our raw behavioral data

(and the associated behavioral benchmarks) are now a publicly available resource for testing

image-computable object learning models beyond those evaluated here [GitHub].

Strengths and weaknesses of these object learning models

Linear learning on fixed image representations are strong baseline models of human

object learning. On our first benchmark, which compares a learning model to humans

under high view-variation learning conditions, we found a subset of models produced rela-

tively accurate predictions of human learning behavior. The observed alignment of these mod-

els with humans does not originate from the fact they successfully learn new objects—these

models also fail to rapidly learn the same objects that humans find difficult (Fig 7B), suggesting

they have nontrivial similarities with humans, at least behaviorally.

We were surprised by the extent of similarity we observed between these models and

humans, partly because some have suggested that DCNNs are unlikely to support adequate

descriptions of human learning (e.g. [15, 39–42]), and partly because of the simplicity of these

models. The results reported here suggest that learning models based on contemporary models

of high-level visual neural representations and rudimentary, one-layer plasticity rules are a

strong starting point to quantitatively account for the ability (and inability) of humans to learn

arbitrary, new objects.

We note the present work does not directly engage the ongoing issue of whether the optimi-

zation mechanism of backpropagation is somehow involved in human learning [43]. Though

the DCNN-based representations used in the learning models in this work were originally cre-

ated using backpropagation, they were kept completely “frozen” over behavioral learning, with

all behavioral learning achieved through a single layer of weight changes (which does not

require backpropagation). At a conceptual level, this work regards DCNN-based representa-

tions as estimates of the (adult) human subject’s internal neural representation at the begin-

ning of task learning, and is agnostic to how they were created before that point. In any case,

this work suggests that invoking end-to-end plasticity computational mechanisms (such as

backpropagation) may not be necessary to provide a quantitative account of human learning

behaviors, at least on the timescales we considered.

In general, the models we considered are composed only of operations that closely hew to

those executed by first-order models of neurons—namely, linear summation of upstream
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population activity, ramping nonlinearities, and adjustment of local associational strengths

using reward signals. This makes them not only plausible descriptions for the computations

executed by the brain over object learning, but, with some additional assumptions, they make

predictions of neural phenomena.

For example, the schematic shown in Fig 2B assumes that the image representations used

for object learning are neural population firing rates in IT cortex, a late stage of the ventral

stream (an assumption we find support for in a supplementary analysis, see S4 Fig). If this is

the case, these models predict that ventral stream representations used by humans over object

learning need not undergo plastic changes to mediate behavioral improvements over the dura-

tion of the experiments we conducted (seconds-to-minutes timescale). This prediction is in

line with prior studies showing adult ventral stream changes are typically moderate and take

place on longer timescales (see [44] for review).

Moreover, the entirety of the computational learning mechanisms used by these models

(i.e. the learning of thresholded, linear combinations of upstream neural activity using reward

signals) can plausibly be executed at a single visuomotor synaptic interface where reward-

based feedback signals are available. Several regions downstream of the ventral visual stream

are possible candidates for this locus of plasticity during invariant object learning; we point to

striatal regions receiving both high-level visual inputs and midbrain dopaminergic signals and

involved in premotor processing, such as the caudate nucleus, as one set of candidates [45, 46].

We considered learning models based on multiple variants of simple, reward-optimizing

plasticity rules which guide changes at the locus of plasticity (Fig 2D). In principle, each rule

variant offers distinct predictions for the learning signal (e.g. neuromodulatory signal) present

on any given trial. However, in this work, we found these rules were largely interchangeable

with respect to the primary behavioral metric we considered (Fig 2), and along more granular

metrics (Figs 6 and S3). Thus, we do not consider this work to strongly drive the belief that

one should expect one kind of learning signal over another amongst the set we tested, beyond

what is common to all rules.

Gaps between models and humans in few-shot learning. Despite the predictive strength

of some models we tested, all models tested were unable to fully explain all replicable human

behavior on either behavioral benchmark. One consistent prediction failure we observed in all

models was an inability to learn new objects as rapidly as humans in low-sample regimes. We

found this to be the case in both Experiment 1 (see Fig 8) and in Experiment 2, where we

found that all tested models had lower accuracy than humans after one-shot across a variety of

generalization tests (see Fig 9C). For example, we found that these models cannot one-shot

generalize as well to scale shifts as humans, replicating previous work [47].

Taken together, these observations show all tested learning models currently have quantita-

tive deficiencies from humans in the few-shot regime. We note that even if our experiments

have underestimated human learning speed (e.g. from increased inattention rates on Mechani-

cal Turk [48]), this inference would not change; the estimated gaps in few-shot learning abili-

ties between these models and humans would be larger than the ones we report here.

However, other aspects of similarity we found between models and humans—such as their

shared patterns of relative difficulty—would be robust to such biases in our experiment.

Future visual object learning models to be tested

There are several potential ways to improve the predictive accuracy of the models we tested in

this study (i.e. to find more human-like learning models). For example, it is possible that

another model based on the conceptual model family we considered in this work could fully

predict human learning over the benchmarks we developed, and we simply failed to
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implement and test that particular model here. If that is the case, such a model could differ

from the ones we tested along one or both of its two components: its approximation of the

visual representations used by humans during learning (i.e. its encoding stage), and/or its plas-

ticity rule.

Prior to this work, the extent to which each of these components contributed to a model’s

alignment with humans was not clear. Our results showed that the precise form of a reward-

optimizing plasticity rule has only a negligible effect on the (human) predictive power of the

resultant model (Fig 5A)—and drives nearly no behavioral variation amongst the learning

models themselves (Fig 6B), at least at the levels of analysis considered here. On the other

hand, the choice of encoding stage (that is, the choice of visual representation) overwhelmingly

drove differences between learning models, suggesting future changes to this component are

likely a more fruitful path to even more accurate models.

This view is consistent with the fact that the encoding stages we considered (Imagenet-pre-

trained DCNN representations) are known to only partially approximate the primate ventral

stream, as directly measured by electrophysiological studies [36] and inferred by behavioral

object categorization studies on images of already-learned objects [18, 32, 49]. If image-com-

putable representations that more closely adhere to human visual representations could be

built and/or identified, we anticipate they would lead to object learning models that close the

prediction gap on the benchmarks we developed here.

Stepping back, it is also possible that no model from this conceptual model family could

lead to fully accurate predictions on these benchmarks (or future benchmarks), but other types

of models might do so. For example, one influential class of cognitive theories posits that the

brain learns new objects by building structured, internal models of those objects from image

exemplars, then uses those internal models to infer the latent content of each new image [8, 11,

13, 15, 16, 50]. It is possible that models based on these alternate approaches would generate

more human-like learning over the tasks we tested here, and could be the key to achieving a

full computational description of human object learning. In any case, implementing and test-

ing these models on the benchmarks here is an important direction for future work.

Future extensions of object learning benchmarks

Extensions of task paradigm. The two benchmarks we developed here certainly do not

encompass all aspects of object learning. For example, each benchmark focused on discrimina-

tion learning between two novel objects, but humans can potentially learn and report on many

more objects simultaneously. Moreover, humans can readily learn object categories at different

levels of abstraction, each of which may encompass multiple specific objects [51]. The models

tested here scale naturally to task paradigms involving additional objects (via the incorporation

of new linear choice preferences to the decision stage), and are capable of learning categories

of varying abstraction; comparing them to humans in those richer learning settings (and iden-

tifying any of their limits in those settings) could strongly motivate the consideration of more

complex models.

Extending stimulus presentation time. For presenting stimuli, we followed conventions

used in previous visual neuroscience studies [18, 52] of object perception: achromatic images

containing single objects rendered with high view uncertainty on random backgrounds, pre-

sented at<10 degrees of visual field and for <200 milliseconds.

The chosen stimulus presentation time of 200 milliseconds is too short for a subject to initi-

ate a saccadic eye movement based on the content of the image [53]. Such a choice simplifies

the input of any model (i.e., to a single image, rather than the series of images induced by
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saccades); on the other hand, active viewing of an image via target-directed saccades might be

a central mechanism deployed by humans to mediate learning of new objects.

We note that if this is the case, our task paradigm (which would disrupt any such saccade-

based mechanisms from being used) would be overestimating the number of images needed

by humans to achieve learning on new objects, compared to a scenario in which subjects had

unlimited viewing time on each trial. Thus, removing such a bias in our experimental design

could potentially reveal larger differences between models and humans.

Beyond extending viewing time, designing tasks which more closely hew to typical object

learning contexts for humans (e.g. involving colored images and/or movies of potentially mul-

tiple objects physically embedded in natural scenes) will be an important direction for future

work.

Differences between individual subjects. We primarily focused on studying human

learning at the subject-averaged level, where behavioral measurements are averaged across sev-

eral individuals (i.e. subject-averaged learning curves; see Fig 1D). However, individual

humans may have systematic differences in their learning behavior that are (by design)

ignored with this approach.

For example, we found that individual subjects may differ in their overall learning abilities:

we identified a subpopulation of humans who were significantly more proficient at learning

compared to other humans (see Fig 10B). We did not attempt to model this individual variabil-

ity in this study; whether these differences can be explained by alterations to this model family,

Fig 10. Individual differences in learning ability. A. Individual-level learning curves. We identified 22 subjects who performed all 64 subtasks in

Experiment 1, and computed their subtask-averaged learning curves. Each gray curve corresponds to the learning curve for a different individual subject

(smoothed using state-space estimation from [38]). In humans, a range of overall learning performance is seen: some subjects consistently outperformed

others (e.g. Subject M, highest accuracy over all trials and subtasks), while others consistently underperformed (e.g. Subject L, lowest average accuracy).

In magenta are subtask-averaged learning curves corresponding to individual model simulations from the highest-performing model tested in this study

(encoding stage=ResNet152/avgpool, plasticity rule=square). B. Some individual humans outperform all models. Five out of 22 subjects had

significantly higher overall performance than the highest performing model we tested (one-tailed Welch’s t-test, Bonferroni corrected, p<0.05).

https://doi.org/10.1371/journal.pcbi.1011713.g010
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if at all, (e.g. through the introduction of random effects to the parameters of the encoding

stage and/or plasticity rules) remains an area for future study.

Moreover, performing subject-averaging is known to lead to the masking of learning

dynamics present at the level of single subjects, such as delayed rises or step increases in accu-

racy [54]. Performing analyses to compare any such learning dynamics between individual

humans and learning models is another important extension of our work.

Lastly, we did not attempt to model any systematic increases in a subject’s learning perfor-

mance as they performed more and more subtasks available to them (in either Experiment 1

or 2). This phenomenon (learning-to-learn, learning sets, or meta-learning) is well-known in

psychology [55], but to our knowledge has not been systematically measured or modeled in

the domain of human object learning. Expanding these benchmarks (and models) to measure

and account for such effects is an important future step of building models of the work done

here.

Materials and methods

Overview of experiments

For both experiments, the core measurement we sought to obtain was the discrimination per-

formance of a typical subject as they received increasing numbers of exposures to images of

the to-be-learned (i.e. new) objects.

We assumed that different pairs of objects result in potentially different rates of learning,

and we wanted to capture those differences. Thus, in Experiment 1, we aimed to survey the

empirical landscape of this human ability by acquiring this learning curve measurement for

many different pairs of objects (n = 64 pairs). Specifically, for each pair of to-be-learned objects

(referred to as a “subtask”), we aimed to measure (subject-averaged) human learning perfor-

mance across 100 learning trials, where each trial presented a test image generated by one of

the objects under high viewpoint uncertainty (e.g. random backgrounds, object location, and

scale). We refer to this 100-dimensional set of measurements as the learning curve for each

subtask.

In Experiment 2, we aimed to measure the pattern of human learning that results from

their experience with just a single canonical example of each of the to-be-learned objects (a.k.

a. “one-shot learning”). Specifically, we wished to measure the pattern of human discrimina-

tion ability over various kinds of identity-preserving image transformations (e.g, object scal-

ing, transformation, and rotation). In total, we tested nine kinds of transformations. We

anticipated that humans would show distinct patterns of generalization across these transfor-

mations, and we aimed to measure the human commonalities in those patterns (i.e. averages

across subjects).

Experiments 1 and 2 both utilized a two-way object learning task paradigm that is concep-

tually outlined in Fig 1B. The two experiments differed only in the manner in which test

images were generated and sampled for presentation, and we describe those differences in

detail in their respective sections. Before that, we provide more detail on the specific proce-

dures and parameters we used to implement the common two-way object learning task

paradigm.

Task paradigm

For both experiments, human subjects were recruited from Mechanical Turk [56], and ran

tasks on their personal computers. Demographic information (age, sex, gender, or ethnicity)

was not collected; all online subjects were anonymous. We also recruited n = 4 subjects for

testing in the lab. We designed and administered these experiments in accordance to a
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protocol approved by the Massachusetts Institute of Technology Committee on the Use of

Humans as Experimental Subjects (Protocol # 0812003043A017). Consent from online sub-

jects was obtained by displaying our consent form on their web browser, at the beginning of

any experimental session. Subjects could give their consent by pressing a button on the screen;

only subjects that gave their consent could perform the experiment, and they could withdraw

at any time. For the in-person subjects, formal consent was obtained using written forms.

Each experiment (Experiments 1 & 2) consisted of a set of subtasks. For each subtask, we

asked a population of human subjects to learn that subtask, and we refer to the collection of tri-

als corresponding to a specific subject in a subtask as a “session”.

At the beginning of each session, the subject was instructed that there would be two possible

objects—one belonging to the “F” category and the other belonging to the “J” category. The

subject’s goal was to correctly indicate the category assignment for each test image. The spe-

cific instructions were: “On each trial, you’ll view a rapidly flashed image of an object. Your

task is to figure out which button to press (either “F” or “J” on your keyboard) after viewing a

particular image. Each button corresponds to an object (for example, a car might correspond

to F, while a dog might correspond to J).”

Subjects were also informed that they would receive a monetary bonus (in addition to a

base payment) for each correctly indicated test image, incentivizing them to learn. We next

describe the structure of a single trial in detail below.

Test image presentation. Each trial began with a display start screen that was uniformly

gray except for a small black dot at the center of the screen, which indicated the future center

of each test image; note that the center of the test image is not necessarily the center of the

object. We intended for this fixation point to encourage the subject to consistently view each

test image at the center of their field of view (see S2 Fig for in-lab eye measurements). The sub-

ject then initiated the trial by pressing the space bar on their keyboard. Once pressed, a test

image (occupying� 6˚ of the visual field) belonging to one of the two possible object catego-

ries immediately appeared. That test image remained on the screen for� 200 milliseconds

before disappearing (and returning the screen to uniform gray). Note that our report of the

visual degrees of angle of the stimulus is only an estimate: we assumed our subjects used com-

puter monitors with a 16:9 aspect ratio, and naturally positioned themselves so the horizontal

extent of the monitor occupied between 40˚-70˚ degrees of their visual field. Under those

assumptions, the visual angle of the stimulus would vary between a minimum and maximum

of� 4˚ − 8˚. Given a monitor has a 60 Hz refresh rate, we expect the actual test image duration

to vary between� 183 − 217 milliseconds.

For each subject and each trial, the test image was selected by first randomly picking (with

equal probability) one of the two objects as the generator of the test image. Then, given that

selected object, an image of that object was randomly selected from a pool of pre-rendered

possible images. Test images were always selected without replacement (i.e. once selected, that

test image was removed from the pool of possible future test images for that behavioral

session).

Subject choice reporting. Fifty milliseconds after the disappearance of the test image, the

display cued the subject to report the object that was “in” the image. The display showed two

identical white circles—one on the lower left side of the fixation point and the other on the

lower right side of the fixation point. The subject was previously instructed to select either the

“F” or “J” keys on their keyboard. We randomly selected one of the two possible object-to-key

mappings prior to the start of each session, and held it fixed throughout the entire session.

This mapping was not told to the subject; thus, on the first trial, subjects were (by design) at

chance accuracy.
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To achieve perfect performance, a subject would need to associate each test image of an

object to its corresponding action choice, and not to the other choice (i.e., achieving a true pos-

itive rate of 1 and a false positive rate of 0).

Subjects had up to 10 seconds to make their choice. If they failed to make a selection within

that time, the task returned to the trial initiation phase (above) and the outcome of the trial

was regarded as being equivalent to the selection of the incorrect choice. In practice, this was

quite rare and corresponded to� 0.04% of all trials that are included in the results in this

work.

Trial feedback. As subjects received feedback which informed them whether their choice

was correct or incorrect (i.e. corresponding to the object that was present in the preceding

image or not), they could in principle learn object-choice associations that enabled them to

make correct choices on future trials.

Trial feedback was provided immediately after the subject’s choice was made. If they made

the correct choice, the display changed to a feedback screen that displayed a reward cue (a

green checkmark). If they made an error, a black “x” was displayed instead. Reward cues

remained on the screen for 50 milliseconds, and were accompanied by an increment to their

monetary reward (see above). Error cues remained on the screen for 500 milliseconds. Follow-

ing either feedback screen, a 50 millisecond delay occurred, consisting of a uniform gray back-

ground. Finally, the display returned to the start screen, and the subject was free to initiate the

next trial.

Experiment 1: Learning objects under high view variation

Our primary human learning benchmark (Experiment 1) was based on measurements of

human learning curves over subtasks involving images of novel objects rendered under high

view-variation. We describe our procedure for generating those images, collecting human

behavioral measurements, and benchmarking models against those measurements below.

High-variation stimulus image generation. We designed 3D object models (n = 128)

using the “Mutator” generative design process [57]. We generated a collection of images for

each of those 3D objects using the POV-Ray rendering program [58]. To generate each image,

we randomly selected the viewing parameters of the object, including its projected size on the

image plane (25%-50% of total image size, uniformly sampled), its location (±40% translation

from image center for both x and y planes, uniformly sampled), and its pose relative to the

camera (uniformly sampled random 3D rotations). We then superimposed this view on top of

a random, naturalistic background drawn from a database used in a previously reported study

[52]. All images used in this experiment were grayscale, and generated at a resolution of

256x256 pixels.

We show an example of 32 objects (out of 128 total) in Fig 1A, along with example stimulus

images for two of those objects on the right. Taken together, the multiple axes of variation for

the images in this experiment—i.e. random viewing parameters and backgrounds—were

intended to reproduce the kinds of variation which may be present in “real world” object

learning contexts.

Design of subtasks. We randomly allocated the 128 novel objects described above into

pairs (without replacement) to create n = 64 subtasks for Experiment 1, where each subtask

consists of a distinct pair of novel objects. Each behavioral session for a subtask consisted of

100 trials, regardless of the subject’s performance. On each trial of a session, one of the two

objects was randomly selected, and then a test image of that object was drawn randomly with-

out replacement from a pre-rendered set of 100 images of that object (generated using the pro-

cess above). That test image was then presented to the subject (as described in Test image
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presentation). We collected 50 sessions per subtask and all sessions for each subtask were

obtained from separate human subjects, each of whom we believe had not seen images of

either of the subtask’s objects before participation.

Subject recruitment and data collection. Human subjects were recruited on the Mechan-

ical Turk platform [56] through a two-step screening process. The goal of the first step was to

verify that our task software successfully ran on their personal computer, and to ensure our

subject population understood the instructions. To do this, subjects were asked to perform a

prescreening subtask with two common objects (elephant vs. bear) using 100 trials of the

behavioral task paradigm (described in Task paradigm above). If the subject failed to complete

this task with an average overall accuracy of at least 85%, we intentionally excluded them from

all subsequent experiments in this study.

The goal of the second step was to allow subjects to further familiarize themselves with the

task paradigm. To do this, we asked subjects to complete a series of four “warmup” subtasks,

each involving two novel objects (generated using the same “Mutator” software, but distinct

from the 128 described above). Subjects who completed all four of these warmup subtasks,

regardless of accuracy, were enrolled in Experiment 1. Data from these warmup subtasks were

not included in any analysis presented in this study. In total, we recruited n = 70 individual

Mechanical Turk workers for Experiment 1.

Once a subject was recruited, they were allowed to perform as many of the 64 subtasks as

they wanted, though they were not allowed to perform the same subtask more than once

(median n = 61 total subtasks completed, min = 1, max = 64). We aimed to measure 50 ses-

sions per subtask (i.e. 50 unique subjects), where each subject’s session consisted of an inde-

pendently sampled, random sequence of trials. Each of these subtasks followed the same task

paradigm (see Task paradigm), and each session lasted 100 trials. Thus, the total amount of

data we aimed to collect was 64 subtasks × 100 trials × 50 subjects = 320k measurements.

Behavioral statistics in humans. We aimed to estimate a typical subject’s accuracy at

each trial, conditioned on a specific subtask. We therefore computed 64 × 100 accuracy esti-

mates (subtask × trial) by taking the sample mean across subjects. We refer to this [64, 100]

matrix of point statistics as Ĥ . Each row vector Ĥ s has 100 entries, and corresponds to the

mean human “learning curve” for subtask s = {1, 2, . . .64}.

Because each object was equally likely (over sessions) to be shown on any given test trial,

each of these 100 values of Ĥ s may be interpreted as an estimate of the average of the true posi-

tive and true negative rates (i.e. the balanced accuracy). The balanced accuracy is related to the

concept of sensitivity from signal detection theory—the ability for a subject to discriminate

two categories of signals [59]. We note that an independent feature of signal detection behavior

is the bias—the prior probability with which the subject would report a category. We did not

attempt to quantify or compare the bias in models and humans in this study.

Simulating behavioral sessions in computational models. To obtain the learning curve

predictions of each computational model, we required that each model perform the same set

of subtasks that the humans performed, as described above.

We imposed the same requirements on the model as we did on the human subjects: that it

begins each session without knowledge of the correct object-choice contingency, that it should

generate a action choice based solely on a pixel image input, and that it can update its future

choices based on the history of scalar-valued feedback (“correct” or “incorrect”). If the choices

later in the session are more accurate than those earlier in the session, then we colloquially say

that the model has “learned”, and comparing and contrasting the learning curves of models

with those of humans was a key goal of Experiment 1.
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We ran n = 32,000 simulated behavioral sessions for each model (500 simulated sessions for

each of the 64 subtasks), where on each simulation a random sequence of trials was sampled in

an identical fashion as in humans (see above). During each simulation, we recorded the same

raw “behavioral” data as in humans (i.e. sequences of correct and incorrect choices), then

applied the same procedure we used to compute Ĥ (see above) to compute an analogous col-

lection of point statistics on the model’s raw behavior, which we refer to as M̂ .

In summary: each model followed the same experimental procedure that any given human

subject followed. The primary difference was that we permitted each model to perform any

given subtask multiple times (here 500 times), to improve our statistical estimates of the mod-

el’s expected behavior (unlike an individual human participant, a model may have its internal

state reset to “forget” the subtask it just learned).

Comparing model learning with human learning. The learning behavior generated by

the “correct” model of human learning (M̂) should minimally replicate the empirical measure-

ments of learning behavior in humans (Ĥ) to the limits of statistical noise. To identify any

such models, we developed a scoring procedure to compare the similarity of the learning

behavior in humans with any candidate learning model. We describe this procedure below.

Bias-corrected mean squared error. Given a collection of human measurements Ĥ (here,

a matrix of accuracy estimates for S = 64 subtasks over T = 100 trials) and corresponding

model measurements (M̂), we computed a standard goodness-of-fit metric, the mean-squared

error (MSE; lower is better). The formula for the MSE is given by:

MSEðM̂ ; ĤÞ ¼
1

S � T

XS

s¼1

XT

t¼1

ðM̂st � Ĥ stÞ
2

ð1Þ

Because Ĥ st and M̂st are random variables (i.e. sample means), the MSE itself is a random

variable. It can be seen that the expected value of MSEðM̂; ĤÞ consists of two conceptual com-

ponents: 1) the difference between the expected behavior of model and humans, and 2) noise

components:

E½MSEðM̂; ĤÞ� ¼
1

S � T

XS

s¼1

XT

t¼1

ðE½M̂st� � E½Ĥ st�Þ
2
þ s2ðĤ stÞ þ s

2ðM̂stÞ ð2Þ

Where E½�� denotes the expected value, and σ2(�) denotes the variance due to finite sampling (a.

k.a. “noise”).

Eq (2) shows that the expected MSE for a model depends not only on its expected predic-

tions E½M̂st�, but also its sampling variance s2ðM̂stÞ. In the present case where M̂st is the mean

over independent (but not necessarily identically distributed) Bernoulli variables, the value of

s2ðM̂stÞ happens to depend on the expected prediction of the model itself, E½M̂st�. This can be

seen by the expression for the variance of M̂st, which is a mean over independent Bernoulli

variables: s2 M̂st

� �
¼

pstð1� pstÞ
nst

, where pst ¼ E½M̂st� is the expected behavior of the model on trial t
of subtask s, and nst is the number of model simulations.

Because the sampling variance of the model depends on its predictions, it is therefore con-

ceptually possible that a model with worse (expected) predictions could achieve a lower

expected MSE, simply because its associated sampling variance term is lower (in addition to

the dependence of s2ðM̂stÞ on pst, it also depends on the number of model simulations nst—
though in this study, all models performed the same number of simulations).
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We corrected for this inferential bias by estimating, then subtracting, these variance terms

from the “raw” MSE for each model we tested. We refer to this bias-corrected error as MSEn:

MSEnðM̂; ĤÞ ¼
1

S � T

XS

s¼1

XT

t¼1

ðM̂st � Ĥ stÞ
2
� ŝ2 M̂st

� �
ð3Þ

Where ŝ2ðM̂stÞ is an unbiased estimator of the variance of M̂st. In practice, because of the high

number of simulations that were conducted, the size of the summed noise components tended

to be small relative to the size of the summed expected difference components (median relative

size, over models: 0.5%, max: 3.8%). We write the equation for ŝ2ðM̂stÞ below, where kst is the

number of observed correct choices over the nst model simulations conducted for subtask s
and trial t:

ŝ2ðM̂stÞ ¼

kst
nst

1 �
kst
nst

� �

nst � 1
ð4Þ

Because E½ŝ2ðM̂stÞ� ¼ s
2ðM̂stÞ, the expected value of MSEn can be shown to be:

E½MSEnðM̂ ; ĤÞ� ¼
1

S � T

XS

s¼1

XT

t¼1

ðE½M̂st� � E½Ĥ st�Þ
2
þ s2ðĤstÞ ð5Þ

Intuitively, MSEn is an estimate of the mean-squared error that would be achieved by a

model if we had a noiseless estimate of its predictions (i.e. had an infinite number of simula-

tions of that model been performed). We note that the value of its square root,
ffiffiffiffiffiffiffiffiffiffiffiffi
MSEn

p
, gives a

rough (i.e. statistically biased) estimate of the average deviation between a model’s prediction

and human measurements, in units of the measurements (in this study, units of accuracy).

There are potential alternatives to using the MSEn metric to compare the behavior of a

model with humans. For example, approaches based on correlational metrics have been previ-

ously used (e.g. [18, 52]). We note that correlational metrics are insensitive to arbitrary linear

rescaling and offsets. Thus, a model with behavior that is distinct from humans may potentially

achieve a high (perfect) correlation with humans. Because the goal in the present work is to

gauge the extent to which a model can exactly reproduce the learning behaviors we measured

in humans, we were motivated to develop and use the MSEn metric described above.

Noise floor estimation. It can be seen in Eq (5) that there are terms s2ðĤ stÞ, originating

from the uncertainty in our experimental estimates of human behavior. These terms are always

positive, and create a lower bound on the expected MSEn for all models. That is, even if a

model is expected to perfectly match the subject-averaged behavior of humans (where

E½Mst� ¼ E½Hst�, for all subtasks s and trials t), it cannot be expected to achieve an error below

this lower bound. We call this lower bound the “noise floor”, and use the symbol s2
h to refer to

it:

s2
h ¼

1

S � T

XS

s¼1

XT

t¼1

s2ðĤ stÞ ð6Þ

It is possible to make an unbiased estimate of the noise floor (s2
h) if one can make unbiased

estimates of each s2ðĤ stÞ term. We did so by using the unbiased estimator from Eq (4). We
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write the full expression for our estimate of the noise floor, ŝ2
h, below:

ŝ2
h ¼

1

S � T

XS

s¼1

XT

t¼1

kst
nst

1 �
kst
nst

� �

nst � 1
ð7Þ

Where kst is the number of human subjects (out of nst total subjects) that made a correct choice

on subtask s and trial t. The square root of this value, σh, gives a rough estimate of the average

deviation one would expect in our subject-averaged measurements of behavior (Ĥ st) over repe-

titions of the experiment (i.e. upon another resampling of human subjects and behavioral

sessions).

Null hypothesis testing. For each model we tested, we attempted to reject the null

hypothesis that E½Ĥ st� ¼ E½M̂st�, for all subtasks s and trials t. To do so, we first approximated

the distribution for MSEnðĤ ; M̂Þ that would be expected under this null hypothesis, using

bootstrapping.

To do so, we first computed bootstrap replicates of Ĥ and approximated samples of the null

model M̂? (where E½Ĥ st� ¼ E½M̂?
st�). A bootstrap replicate of Ĥ was constructed by first resam-

pling individual human sessions without replacement, taking the same number of resamples

per subtask as in the original experiment. We then computed the replicate ~H using the same

procedure described in Behavioral statistics in humans. Behavior from the null model cannot

be sampled directly (because we do not have the “true model” of human learning), but by defi-

nition shares the same expected behavior as a randomly sampled, individual human. We there-

fore created a bootstrap sample of the null model ~M? by (also) taking resamples of individual

human sessions, setting the number of resamples per subtask to the number of model simula-

tions conducted per subtask (here, n = 500 simulations per subtask). We then computed and

saved MSEnð
~H ; ~M?Þ for that iteration, and repeated this process for B = 1,000 iterations to

obtain an approximate null distribution for MSEn.

If a model’s actual MSEnðM̂ ; ĤÞ score fell above the α-quantile of the estimated null distri-

bution, we rejected it on the basis of having significantly more error than what would be

expected from a “true” model of humans (with estimated significance level α).

Lapse rate correction. Lastly, we corrected for any lapse rates present in the human data.

We defined the lapse rate as the probability with which a subject would randomly guess on a

trial, and we assumed this rate was constant across all trials and subtasks. To correct for any

such lapse rate in the human data, we fit a simulated lapse rate γ parameter to each model,

prior to computing its MSEn. Given a lapse rate parameter of γ (ranging between 0 and 1), a

model would, on each trial, guess randomly with probability γ. For each model, we identified

the value of γ that minimized its empirical MSEn.

We note that fitting γ can only drive the behavior of a model toward randomness; it cannot

artificially introduce improvements in its learning performance.

Experiment 2: One-shot human object learning benchmark

For the second benchmark in this study, we compared one-shot generalization in humans and

models. Our basic approach was to first allow humans to learn to distinguish between two

novel objects using a single image per object (the one-shot “training phase”), then to test them

on new, transformed views of the one-shot training set (the “testing phase”).

One-shot behavioral testing. As in Experiment 1, we used two-way object discrimination

with trial-and-error feedback as our task paradigm (described in greater detail in Task para-

digm). We created 64 object models for this experiment (randomly paired without
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replacement to give a total of 32 subtasks). These objects were different from the ones used in

the previous benchmark (described in Experiment 1: Learning objects under high view

variation).

At the beginning of each session, we randomly assigned the subject to perform one of the

32 subtasks. Identical to Experiment 1, each trial required the subject to view an image of an

object, make a choice (“F” or “J”), and receive feedback based on their choice. Each session

consisted of 20 trials total, which was split into a “training phase” (10 trials) and “testing

phase” (10 trials), which we describe below.

Training phase. During the first ten trials of a session, the subject learned a novel object-

choice contingency. Unlike Experiment 1, trials in the first 10 trials were based on only 2 dis-

tinct images (a single image for each object). These two images were therefore repeated across

ten trials (here, we ensured that each training image was repeated an equal number of times,

i.e. n = 5 times each). Trials were presented in a random order.

Testing phase. Following the one-shot training phase, the subject was tested on randomly

sampled, unseen images over the final ten trials of the session (feedback continued to be deliv-

ered throughout). We describe these test images in detail in One-shot stimulus image genera-

tion; see Fig 1B for examples. On the 15th and 20th trial, we presented “catch trials” consisting

of the original training images, to allow us to estimate inattention rates.

One-shot stimulus image generation. Here, we describe how we generated all of the

images used in Experiment 2. First, we generated each 3D object model using the Mutator pro-

cess (see High-variation stimulus image generation)). Then, for each object (n = 64 objects),

we generated a single canonical training image—a 256x256 grayscale image of the object occu-

pying� 50% of the image plane, centered on a gray background. We randomly sampled its

three axes of pose from the uniform rotational distribution.

For each training image, we generated a corresponding set of test images by applying differ-

ent kinds of image transformations we wished to measure human generalization on. In total,

we generated test images based on 9 transformation types, and we applied each transformation

type at 4 levels of “strength”. We describe those 9 types with respect to a single training image,

below.

Translation. We translated the object in the image plane of the training image. To do so,

we randomly sampled a translation vector in the image plane (uniformly sampling an angle

from θ 2 [0˚, 360˚]), and translated it r pixels in that direction. We repeated this process (inde-

pendently sampling θ each time) for r = 16, 32, 64, and 96 pixels (where the total image size

256 × 256 pixels), for two iterations (for a total of eight translated images).

Backgrounds. We gradually replaced the original, uniform gray background with a ran-

domly selected, naturalistic background. Each original background pixel bij in the training

image was gradually replaced with a naturalistic image c using the formula

b0ij ¼ ð1 � aÞbij þ acij. We varied α at four logarithmically spaced intervals, α = 0.1, 0.21, 0.46,

1. Note that at α = 1, the original gray background is completely replaced by the new, naturalis-

tic background. We generated two test images per α level, independently sampling the back-

ground on each iteration (for a total of eight images per object).

Scale. We rescaled the object’s size on the image to 12.5%, 25%, 50%, and 150% of the

original size (four images of the object at different scales).

Out-of-plane rotations. We rotated the object along equally spaced 45˚ increments, ren-

dering a test image at each increment. We did so along two separate rotational axes (horizontal

and vertical), leading to n = 13 test images total based on out-of-plane rotations.

In-plane rotation. We rotated the object inside of the image-plane, along 45˚ increments.

This resulted in n = 7 test images based on in-plane rotations.
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Contrast. We varied the contrast of the image. For each pixel pij (where pixels range in

value of 0 and 1), we adjusted the contrast using the equation p0ij ¼ 10cðpijÞ þ 0:5ð1 � 10cÞ,

varying c from −0.8, −0.4, 0.4 and 0.8.

Pixel deletion. We removed pixels corresponding to the object in the training image,

replacing them with the background color (gray). We removed 25%, 50%, 75%, and 95% of the

pixels, selecting the pixels randomly for each training image.

Blur. We blurred the training image using a Gaussian kernel. We applied blurring with

kernel radii of 2, 4, 8, and 16 pixels (with an original image resolution of 256 × 256 pixels) to

create a total of 4 blurred images.

Gaussian noise. We applied Gaussian noise to the pixels of the training image. For each

pixel pij, we added i.i.d. Gaussian noise:

p0ij ¼ pij þN ð0; sÞ ð8Þ

We applied noise with σ = 0.125, 0.25, 0.375 and 0.5 (where pixels range in luminance value

between 0 and 1). We then clipped the resultant pixels to lie between 0 and 1.

Human behavioral measurements for Experiment 2. Subject recruitment. We

used the same two-step subject recruitment procedure described above (see Subject recruit-

ment and data collection), and recruited n = 170 human subjects. Some of these subjects over-

lapped with those in Experiment 1 (n = 9 subjects participated in both experiments).

All recruited subjects were invited to participate in up to 32 behavioral sessions. We disal-

lowed them from repeating subtasks they had performed previously. Subjects were required to

perform a minimum of four such behavioral sessions. In total, we collected n = 2,547 sessions

(� 51,000 trials) for Experiment 2.

One-shot behavioral statistics in humans. We aimed to estimate the expected accuracy

of a subject on each of the 36 possible transformations, correcting for attentional and memory

lapses.

To do so, we first combined observations across the eight test trials in the testing phase to

compute accuracy estimate for each of the 36 transformations; that is, we did not attempt to

quantify how accuracy varied across the testing phase (unlike the previous benchmark). We

also combined observations across the 32 subtasks in this experiment. In doing so, we were

attempting to measure the average generalization ability for each type of transformation (at a

specific magnitude of transformation change from the training image), ignoring the fact that

generalization performance likely depends on both the objects to be discriminated (i.e. the

appearance of the objects in each subtask), the specific training images that were used, and the

testing views of each object (e.g. the specific way in which an object was rotated likely affects

generalization—not just the absolute magnitude of rotation). In total, we computed 36 point

statistics (one per transformation).

Estimating performance relative to catch performance. Here we assumed that each

human test performance measurement was based on a combination of the subject’s ability to

successfully generalize, a uniform guessing rate (i.e. the probability with which a subject exe-

cutes a 50–50 random choice), and the extent to which the subject successfully acquired and

recalled the training image-choice contingency (i.e. from the first 10 trials). We attempted to

estimate the test performance of a human subject that could 1) fully recall the association

between each training image and its correct choice during the training phase, and 2) had a

guess rate of zero on the test trials.

To do so, we used trials 15 and 20 of each session, where one of the two training images was

presented to the subject (“catch trials”). Our main assumption here was that performance on

these trials would be 100% assuming the subject had perfect recall, and had a guess rate of
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zero. Under that assumption, the actual, empirically observed accuracy pcatch would be related

to any overall guess and/or recall failure rate γ by the equation γ = 2 − 2pcatch. We then adjusted

each of the point statistics (i.e. test performances) to estimate their values had γ been equal to

zero, by applying the following formula:

p0 ¼
p

1 � g
�

g

2 � 2g

We refer to the collection of 36 point statistics (following lapse rate correction) as Ĥos .

Comparing model one-shot learning with human one-shot learning. Model simula-

tion of Experiment 2. For this benchmark, we required that a model perform a total of

16,000 simulated behavioral sessions (500 simulated sessions for each of the 32 possible sub-

tasks). Each simulated session proceeded using the same task paradigm as in humans (i.e. 10

training trials, followed by a test phase containing 8 test trials and 2 catch trials). Based on the

model’s behavior over those simulations, we computed the same set of point statistics

described above, though we did not correct for any attentional lapses or recall lapses in the

model, which we assumed was absent in models. In this manner, for each model, we obtained

a collection of point statistics reflecting their behavior on this experiment, M̂os .

Bias-corrected mean-squared error and null hypothesis testing. We used the same sta-

tistical approach for our primary benchmark (introduced in Comparing model learning with

human learning) to summarize the alignment of a model with humans. That is, we used the

bias-corrected error metric MSEn as our metric of comparison:

MSEnðM̂os ; ĤosÞ ¼
1

36

X36

i¼1

ðM̂os
i � Ĥos

i Þ
2
� ŝ2 M̂os

i

� �

We estimated the null distribution for MSEn using bootstrap resampling, following the

same procedure outlined in the first benchmark (bootstrap-resampling individual sessions).

Baseline model family

For a model to be scored on the benchmarks we described above, it must fulfill only the follow-

ing three requirements: 1) it takes in any pixel image as its only sensory input (i.e. it is image

computable), 2) it can produce an action in response to that image, and 3) it can receive scalar-

valued feedback (rewards). Here, we implemented several models which fulfill those

requirements.

All models we implemented consist of two components. First, there is an encoding stage

which re-represents the raw pixel input as a vector~x in a multidimensional Euclidean space.

The parameters of this part of the model are held fixed (i.e., no learning takes place in the

encoding stage).

The second part is a tunable decision stage, which takes that representational vector and

produces a set of C choice preferences (in this study, C = 2). The preference for each choice is

computed through a dot product ~wc �~x, where ~wc is a vector of weights for choice c. The choice

with the highest preference score is selected, and ties are broken randomly.

After the model makes its choice, the environment may respond with some feedback (e.g.

positive or negative reward). At that point, the decision stage can process that feedback and

use it to change its parameters (i.e. to learn). All learning in the models tested here takes place

only in the parameters of the decision stage (all weight vectors ~w1:::~wC); the encoding stage has

completely fixed parameters.
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In total, any given model in this study is defined by these two components—the encoding

stage and the decision stage. We provide further details for those two components below.

Encoding stages. The encoding stages were intermediate layers of deep convolutional

neural network architectures (DCNNs). We drew a selection of such layers from a pool of 19

network architectures available through the PyTorch library [60], each of which had pretrained

parameters for solving the Imagenet object classification task [37].

For each architecture, we selected a subset of these intermediate layers to test in this study,

spanning the range from early on in the architecture to the final output layer (originally

designed for Imagenet). We resized pixel images to a standard size of 224x224 pixels using

bilinear interpolation. In total, we tested n = 344 intermediate layers as encoding stages.

Dimensionality reduction. Once an input image is fed into a DCNN architecture, each of

its layers produces a representational vector of a dimensionality specified by the architecture

of the model. Depending on the layer, this dimensionality may be relatively large (>105), mak-

ing it hard to efficiently perform numerical calculations on contemporary hardware. We there-

fore performed dimensionality reduction as a preprocessing step using random Gaussian

projections to a standard size of 2048 (if the original dimensionality of the layer was greater

than this number). This procedure approximately preserves the original representational

structure of the layer (i.e., pairwise distances between points in that space) [61] and is similar

to to computing and retaining the first 2048 principal components of the representation.

Feature normalization. Once dimensionality reduction was performed, we performed

another standardization step: We computed centering and scaling parameters for each layer,

so that its activations fit inside a sphere of radius 1 centered about the origin (i.e. k~x k� 1, for

all~x).

To do so, we computed the activations of the layer over using the images from the

“warmup” tasks human subjects were exposed to prior to performing any task in this study

(i.e. 50 randomly selected images of 8 objects, see Subject recruitment and data collection). We

computed the sample mean of those activations, and set this as the new origin of the encoding

stage (i.e. the centering parameter). Then, we took the 99th quantile of the activation norms

(over those same images) to calculate the approximate radius of the representation, and set

this as our scaling parameter (i.e. dividing all activations by this number). Any activations with

a norm greater than this radius were scaled to have a norm of 1.

Other kinds of feature standardization schemes are possible: for instance, one could center

and scale the sensory representations for each subtask separately. However, such a procedure

would expose models to the statistics of subtasks that are meant to be independent tests of

their ability to learn new objects—statistics which we considered to be predictions of the

encoding stage.

Tunable decision stage. Once the encoding stage re-represents an incoming pixel image

as a multidimensional vector~x 2 Rd, a tunable decision stage takes that vector as an input,

and produces a choice as an output.

Generating a decision. To select a choice, the tunable decision stage first generates choice

preferences for each of the C possible actions, using the dot products ~wi �~x for i = 1. . .C. Then,

the choice with the highest preference is selected (c ¼ argmaxið~wi �~xÞ). If all choices have the

same preference value, a choice is randomly selected.

Learning from feedback. Once a choice is selected, the environment may convey some

scalar-valued feedback (e.g. reward or punish signals). The model may use this feedback to

change its future behavior (i.e., to learn). For all models considered here, this may be accom-

plished (only) by changing its weight vectors ~w1; :::~wC. Thus, learning on each trial can be
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summarized by the changes to each weight vector by some~dc 2 R
d
:

~wc  ~wc þ
~dc

There are many possible choices on how each~dc may be computed from feedback; here, we

focused on a set of seven rules based on the stochastic gradient descent algorithm for training

a binary classifier or regression function. In all cases except one, the underlying strategy of

each decision stage can be understood as predicting the reward following the selection of each

possible choice, and using these predictions to select the choice it believes will lead to the high-

est reward (the exception is the REINFORCE plasticity rule, which is a “policy gradient” rule

that optimizes parameters directly against the rate of reward; it does not aim to predict reward

itself).

Specifically, we tested the plasticity rules induced by the gradient descent update on the per-

ceptron, cross-entropy, exponential, square, hinge, and mean absolute error loss functions

(shown in Fig 2D), as well as the REINFORCE plasticity rule. They are summarized in S1

Table. These rules happen to induce weight updates of the particularly simple form~dc ¼ bc~x,

where~x is the current image representation, and βc is a scalar (which is computed by the plas-

ticity rule). In other words, all plasticity rules drive weight updates which consist of a (posi-

tively or negatively scaled) addition of the current image representation.

Each of these plasticity rules has a single free parameter—a learning rate. For each plasticity

rule, there is a theoretical range of learning rates that guarantees the non-divergence of the

decision stage, based on the smoothness or Lipschitz constant of each of the plasticity rule’s

associated loss function [62]. We did not investigate different learning rates in this study;

instead, we simply selected the highest learning rate possible (such that divergence would not

occur) for each plasticity rule.

Supporting information

S1 Fig. Comparison of online and in-lab learning measurements. We took measurements

for n = 16 randomly selected subtasks from Experiment 1 in a group of in-lab human subjects

(n = 4) that used a chinrest and calibrated monitor setup. In A, we show that the overall accu-

racy of these in-lab subjects fell within the empirical support of the subject distribution from

our online experiments. In B, we show that patterns of average accuracy (over subtasks) were

tightly correlated between the in-lab and online populations (Spearman’s ρ = 0.94; see Section

1.1 in S1 Appendix). Errorbars are SEM (simple bootstrap over subjects).

(TIF)

S2 Fig. Distribution of gaze locations during learning task. We passively recorded eye move-

ments from our in-lab subjects using an Eyelink 1000 Plus (monocular; desktop mounted) as

they performed the task. In A is the overall distribution of the subjects’ gaze position (shown

in blue) at the time of onset of stimulus presentation (i.e. the distribution over subjects and tri-

als). In B is the distribution of gaze distance from the stimulus center (logscale) over all sub-

jects and trials; the median distance from the center of the stimulus was 0.57˚ ± 0.13˚

(mean ± standard deviation over subjects). We found that on� 95% of trials, the subject’s

gaze was located in the test image region when it appeared on the screen.

(TIF)

S3 Fig. Quantifying shared convergence between different plasticity rules. A. Example

learning trajectories in weight space. For an example plasticity rule (square) operating on an

example representational space (ResNet50/avgpool), weight vectors near the beginning (open
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dots) and end (closed dots) of different learning simulations for a subtask are shown. One

example trajectory (gray) for a single simulation is shown. In red is a trajectory from a different

rule. B. Weight convergence. For the example encoding stage in panel A, the expected (over

subtasks, simulations) squared pairwise ℓ2 distance in weight space between independent sim-

ulations from all n = 7 plasticity rules (red) remains close to the lower limit (gray), across trials.

Shaded regions are the ± standard deviation over rules. C. Functional convergence. The prob-

ability that two distinct rules (red) generate the same behavioral prediction for a random,

held-out test image is shown, and compared to the probability a rule agrees with itself across

two independent simulations (dashed gray). D. Summary of weight convergence across all

encoding stages. Shown is a normalized rule-to-other rule distance metric (normalized

between random walk; rule-to-self) at trial 100 for all encoding stages (median: 0.02, max:

0.07). D. Summary of functional convergence. A normalized functional convergence metric

(norm. between random guessing, rule-to-self) for all encoding stages is shown (median: 0.95,

min: 0.92). See Section 2.3 in S1 Appendix for details.

(TIF)

S4 Fig. Coupling of neural and behavioral alignment across the ventral stream. A. Human

learning similarity is increasingly predicted by alignment with deeper subregions of the

ventral stream. The behavioral coupling index (ρ) is the rank correlation coefficient between

neural alignment (r2
n) and behavioral alignment (−MSEn, for Experiment 1). Errorbars are the

approximate 95% confidence interval over random train/test image split-halves, for the neural

alignment metric. B. Subregion-wise neural alignment vs. behavioral alignment. Each point

corresponds to a specific encoding stage (n = 344 total). The y-axis is a previously described

neural alignment metric (r2
n); a higher value means the encoding stage is a better linear predic-

tor of image-driven firing rates in the corresponding brain region. The x-axis reflects an

encoding stage’s expected (over plasticity rules) behavioral alignment with humans, as evalu-

ated by Experiment 1; higher means more similar to humans. The behavioral coupling index ρ
is the Spearman correlation coefficient between the two metrics, over these encoding stages.

Errorbars are the standard deviation over train/test image splits (y-axis) and plasticity rules (x-

axis). See Section 3 in S1 Appendix for details.

(TIF)

S5 Fig. Additional analyses of human consistency scores. A. Correspondence of consis-

tency- and MSEn-based model rankings. As described in the main text, the consistency score

for a model is the rank-order correlation between its trial-averaged subtask accuracies and that

of humans. Over the models tested in this study (dots), their MSEn scores (x-axis) had a semi-

linear relationship with their consistency scores (y-axis) on the primary benchmark. Overall,

we found the models’ rankings based on MSEn to be highly similar to their rankings based on

consistency (Spearman’s rank correlation coefficient ρ = −0.95); note lower MSEn means more

aligned with humans. B. Relative contributions of encoding stage and plasticity rule to con-

sistency. Shown are consistency scores for a representative collection of models (all learning

models based on VGG19 encoding stages). Similar to our findings for MSEn, we found that the

choice of plasticity rule had a negligible effect on a model’s consistency (0.25% of explained

variance in two-way ANOVA; see Section 2.1 in S1 Appendix), while encoding stages had a

dominant effect (>99% explained variance).

(TIF)

S1 Table. Summary of plasticity rules. Each plasticity rule in this study guides a weight

update ~wc  ~wc þ
~dc, based on the current input~x 2 Rd

, the selected choice c 2 {1, . . ., C},

and the subsequent environmental reward r 2 [−1, 1]. Here, we provide the equation for the
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update term~dc for each plasticity rule.

(PDF)

S1 Appendix. Supplementary methods.

(PDF)
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