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Abstract: The primary contributors to elevated line losses in low-voltage distribution networks
are three-phase load imbalances and variations in load peak–valley differentials. The conventional
manual phase sequence adjustment fails to capitalize on the temporal characteristics of the load, and
the proliferation of smart homes has opened up new scheduling possibilities for managing the load.
Consequently, this paper introduces a loss-reduction method for low-voltage distribution networks
that leverages load-timing characteristics and adjustment capabilities. This method combines dy-
namic and static methods to reduce energy consumption from different time scales. To commence,
this paper introduced a hierarchical fuzzy C-means algorithm (H-FCM), taking into account the
distance and similarity of load curves. Subsequently, a phase sequence adjustment method, grounded
in load-timing characteristics, was developed. The typical user load curve, derived from the clas-
sification of user loads, serves as the foundation for constructing a long-term commutation model,
therefore mitigating the impact of load fluctuations on artificial commutation. Following this, this
paper addressed the interruptible and transferable characteristics of various smart homes. This
paper proposed a multi-objective transferable load (TL) optimal timing task adjustment model and a
peak-shaving control strategy specifically designed for maximum sustainable power reduction of
temperature-controlled loads (TCL). These strategies aim to achieve real-time load adjustment, correct
static commutation errors, and reduce peak-to-valley differences. Finally, a simulation verification
model was established in MATLAB (R2022a). The results show that the proposed method mainly
solves the problems of three-phase imbalance and large load peak–valley difference in low-voltage
distribution networks and reduces the line loss of low-voltage distribution networks through manual
commutation and load adjustment.

Keywords: three-phase load imbalance; load peak and valley difference; long-term commutation;
smart home; energy saving

1. Introduction

The carbon dioxide emissions from the power sector constitute over 40% of the total
carbon dioxide emissions in society [1]. Energy conservation and emission reduction in
the electric power sector are pivotal for achieving dual carbon goals and will inevitably
shoulder increased transformation responsibilities. Projections indicate that the share of
new energy installed capacity is anticipated to approach 50% by 2030 and surpass 75% by
2060 [2]. This trajectory introduces heightened fluctuations in the system, necessitating
enhanced flexible adjustment capabilities. The integration of a substantial proportion of
distributed power sources holds the potential to not only reduce losses but also present
challenges such as increased line losses, three-phase imbalance, and voltage deviation.
These factors intensify the complexity of loss reduction in the distribution network [3].
Currently, primary loss-reduction measures on the distribution network side encompass
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network reconstruction [4], power flow optimization [5], three-phase imbalance control [6],
and load peak shedding [7]. In low-voltage power distribution networks, the predominant
methods typically employed are the latter two mentioned above.

Regarding the management of three-phase imbalance, the existing literature primarily
addresses the constraints posed by three-phase loads in the operation of distribution
networks. Literature [4] proposed a distribution network reconstruction method that
considers the imbalance of three-phase load distribution to mitigate the impact of numerous
distributed power sources and electric vehicles on three-phase imbalance. In a similar
vein, Literature [8] investigates an optimal dispatch method under the coordination of
Distributed Generation (DG) and Electric Vehicles (EV). It establishes a multi-objective
optimization model that considers factors such as neutral line current, energy loss, voltage
imbalance, and bus voltage, employing a differential evolution optimization algorithm
for a solution. Another strategy focuses on transformer control, as seen in [9], which
introduces a hybrid fuzzy controller-based control strategy to compensate for the neutral
current generated by unbalanced renewable energy generation in low-voltage power grids
while ensuring equal active power on both sides of the transformer. Additionally, efforts
have been made to phase-convert single-phase loads for three-phase imbalance control.
Literature [10] proposed an artificial commutation method that considers load–power
transfer indicators to achieve three-phase imbalance control. Similarly, Literature [11]
introduced a distribution network station phase sequence adjustment method, accounting
for the timing characteristics and spatial distribution of single-phase source charge, to
address three-phase imbalance at key nodes throughout the station area. While some
studies manually switch user phase sequences, others explore the feasibility of automatic
phase sequence switching. Literature [12] proposed a double-layer optimal phase switch
device (PSD) layout model for mitigating three-phase imbalance. The upper-level goal is
to minimize the total cost of PSD installation, and the lower-level goal is to minimize the
operating cost on a typical day. Furthermore, the authors in [13] investigated the optimal
number and installation locations of automatic phase commutation devices, considering
reliability and economy. Manual commutation is deemed more economical since it does not
require additional device installation. However, its real-time adjustment performance may
not match that of automatic commutation devices. Considering the quadratic relationship
between three-phase imbalance and line loss, manual phase commutation is deemed more
economical for loss reduction.

The reduction of losses in low-voltage distribution networks can be approached not
only through the balancing of three-phase loads but also by leveraging Home Energy
Management Systems (HEMS) to optimize power usage patterns for peak shaving and
valley filling [14]. In this context, the authors in [15,16] coordinate distributed photovoltaic
and demand load resources based on user behavior predictions to formulate demand
plans. Additionally, Literature [17] focuses on minimizing energy exchange with the power
grid from the perspective of demand response. When smart homes actively participate
in power grid operation and dispatch, ensuring user comfort is a crucial prerequisite [18].
Literature [19,20] introduces distinct smart home scheduling algorithms aiming to shift
the use of electrical appliances from high electricity price periods to low electricity price
periods, therefore reducing electricity bills and load peaks. The active involvement of smart
homes in operation scheduling relies on the time-of-use electricity price strategy, prompting
scholars to study optimal time-of-use electricity price strategies [21]. Furthermore, Litera-
ture [22,23] explores the formulation of optimal time-of-use electricity prices considering
reliability loss and power loss, respectively. Smart homes can also passively and directly
participate in operation scheduling through Internet of Things (IoT) technology. For in-
stance, Literature [24] proposed a non-intrusive demand response approach, introduced
advanced forecasting algorithms to predict HEMS occupancy using indirect data sources,
and studied robust optimization strategies to deal with uncertainty. In another approach,
Literature [25] considers the coordinated operation of micro-cogeneration and smart home
appliances, proposing a day-ahead dispatch optimization model that incorporates demand
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response and wind power. The authors in [26,27], respectively, studied the deployment
of HES and the reduction of residential energy consumption costs and proposed different
algorithms to deal with comprehensive uncertainties. In general, by leveraging IoT technol-
ogy, passive and direct participation in distribution network operation and dispatching
can achieve more stable and reliable load peak shaving, therefore reducing network losses
without compromising the user’s comfort level.

Presently, there is a notable gap in research concerning the integration of three-phase
imbalance control and load peak shaving for loss reduction in low-voltage distribution net-
works. Furthermore, there is a lack of strategies addressing the simultaneous consideration
of three-phase imbalance and real-time load dispatching operations. To fill this research
gap, this paper proposes a loss-reduction method for low-voltage distribution networks
based on load-timing characteristics and dispatching capabilities. Initially, considering
the distance and similarity of load curves, this paper introduces a hierarchical fuzzy C-
means algorithm (H-FCM) to classify user loads and form a typical user database. This
forms the basis for establishing a long-term three-phase imbalance governance model. The
Memetic Algorithm (MA) is employed to solve it, and the optimal access phase sequence
for users is obtained. Static adjustment of the user phase sequence is then implemented
to initially control three-phase imbalance and reduce network losses. Subsequently, ac-
knowledging the interruptible and transferable characteristics of different smart homes,
this paper presents a multi-objective transferable load (TL) optimal timing task adjustment
model and a peak-shaving control strategy tailored for the maximum sustainable power
reduction of temperature-controlled loads (TCL). For the TL timing adjustment model,
the dynamically adjusted inertia weight improved particle swarm algorithm (IDWPSO)
is utilized to solve the problem and obtain optimal timing instructions. While load peak
shaving is executed, real-time control of three-phase imbalance is also considered, leading
to a combined approach that further diminishes network losses. The overall program flow
chart is depicted in Figure 1.
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The innovation of this article lies in the following three points:

(1) Addressing the distance and similarity of load curves, this paper introduces sequence
variance to refine the clustering process. H-FCM is then proposed. The resulting typi-
cal load curve, formed after user classification, serves as the foundation for long-term
commutation, mitigating the impact of load fluctuations on artificial commutation.

(2) Recognizing the operational characteristics and adjustment methods of diverse smart
homes, this paper presents a multi-objective TL optimal timing task adjustment model.
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Additionally, a peak-shaving control strategy is proposed to achieve the maximum
sustainable power reduction for TCL.

(3) The article focuses on controlling three-phase imbalance in low-voltage distribution
networks from both static and real-time perspectives to enhance power quality. Simul-
taneously, load adjustment is employed to alter the shape of the load curve, reducing
peak–valley differences and further minimizing line losses.

2. Demand-Side Resource Modeling Based on User Source Load Characteristics
2.1. Home Energy Management System Interaction Model

HEMS possesses the capability to comprehensively analyze information related to
distributed power sources, loads, electricity prices, and more. Adjusting household loads
enhances the electricity efficiency of residents, contributing to peak shaving, load leveling,
and energy conservation [18]. The system architecture of HEMS, incorporating distributed
photovoltaic power, is illustrated in Figure 2.
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HEMS primarily governs the operation of smart home devices, each exhibiting unique
operating characteristics that pose inherent challenges during adjustment and control.
Based on the interruptability of power and the transferability of load sequences, smart
homes are categorized into three groups: uncontrollable load (UL), transferable load, and
temperature control load. Distinct control methods are employed for smart homes within
each category. Table 1 provides an overview of typical smart home devices and their
corresponding operating characteristics.

Currently, HEMS utilizes two main types of control methods for managing smart
homes: electricity price incentives and centralized control. The electricity price incentive
method relies on users’ proactive engagement, making it sensitive to electricity prices
and resulting in relatively unstable adjustment effects. In contrast, centralized control in-
volves directly managing the operational states of smart homes through the home gateway
without compromising user comfort. This method proves more effective in household
energy efficiency management compared to the electricity price incentive approach, and it
finds widespread applicability in suitable contexts. The approach proposed in this article
primarily focuses on centralized control as the research subject.
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Table 1. Typical smart home devices and their operating characteristics. Where × means not
supported;

√
means supported.

Load Type Smart Home Power Characteristics Interruptible Transferable

UL

Hair dryer

Low-power or ready-to-use devices × ×
Socket

Refrigerator

Fan

Illumination

Television

TL

Dishwasher

Constant power ×
√

Washer

Water heater

Dryer

TCL
Air conditioning

Variable power
√

×
Heating

2.2. Modeling of Household Photovoltaic Panel Output Probability Characteristics

The majority of household photovoltaic panels are situated on the user’s roof, and
their output is contingent on the lighting conditions and outdoor temperature. The light
intensity is typically modeled using a Beta distribution [16], with its probability density
function illustrated in Equation (1):

f (Sact) =
Γ(a + b)

Γ(a) + Γ(b)

(
Sact

Smax

)a−1(
1 − Sact

Smax

)b−1
(1)

where Sact is the real-time light intensity, Γ is the Gamma function, Smax is the maximum
light intensity, a and b are the two shape parameters of the Beta distribution.

The output of household photovoltaic panels is directly proportional to the light
intensity. The output at time t can be approximated by Equation (2):

PPV
n,t = PPV Sact

Sstc
[1 + αPV(Tact − Tstc)] (2)

where n is the user serial number, PPV
n,t is the household photovoltaic panel output of user n

at time t, PPV is the rated power of the household photovoltaic panel, Sstc is the rated light
intensity of the household photovoltaic panel, αPV is the power temperature coefficient
of the photovoltaic panel, Tact is the actual temperature when the photovoltaic panel is in
operation, Tstc is the rated temperature of the photovoltaic panel.

2.3. Load Resource Modeling Considering Scheduling Feasibility
2.3.1. Uncontrollable Load

Loads that remain beyond control during household load operation are termed un-
controllable loads. These loads cannot be interrupted, transferred in a time sequence,
and possess a certain degree of volatility. The load fluctuation at each time point can be
characterized by normal distribution [11], as illustrated in Equation (3):

f (PUL
n ) =

1√
2πσ

exp

(
(PUL

n − µ)
2

2σ2

)
(3)
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where PUL
n represents the size of the uncontrollable load for user n, σ is the standard

deviation of the normal distribution, µ is the mean of the normal distribution.

2.3.2. Transferable Load

The transferable load exhibits characteristics of continuous operation, constant power,
and a fixed working time. The operating period of this load type can be shifted, but it is
constrained by the working time and the shiftable interval, as depicted in Equation (4):{

−∆tmax ≤ ∆tk ≤ ∆tmax
PTL

k = circshift(PTL
k,0, ∆tk)

(4)

where k is the index of the TL device, ∆tk is the start and stop time offset of the timing task
of TL device k, ∆tmax is the start and stop time offset of the maximum timing task, PTL

k
is the power vector after the load translation of the TL device k, PTL

k,0 is the power vector
before load translation of the TL device k, circshift() is a cyclic translation array function,
which translates the vector PTL

k,0 by ∆tk positions.

2.3.3. Temperature Control Load

The operating status of the temperature-controlled load is contingent on outdoor
temperature, indoor temperature, temperature setting range, and the thermal parameters
of the house. When the device is activated, the room temperature is expected to fall within
the upper and lower limits of the set value. Air conditioning serves as a typical example of
a temperature control load. The Equivalent Thermal Parameter (ETP) model is employed to
elucidate the thermodynamic dynamic process of residential air conditioning, as illustrated
in Figure 3.
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Figure 3. Equivalent thermodynamic parameter model of a single residential air conditioner. Where
θin, θwall, θout represent indoor temperature, wall temperature, and outdoor temperature, respectively;
R1 is the equivalent resistance of indoor air and the inside of the wall, R2 is the equivalent resistance
of the outside of the wall and outdoor air; Cin, Cout are the indoor air equivalent heat capacity and
the wall equivalent heat capacity, respectively, Pcold is the cooling power of the air conditioner.

According to Figure 3, the discretized ETP model describing the room temperature
change process can be obtained, as shown in Equation (5).

θin(t + dt) = θin(t) +
dt
(

θwall(t)−θin(t)
R1

−Pcold(t)
)

Cin

θwall(t + dt) = θwall(t) +
dt
(

θout(t)−θwall(t)
R2

− θwall(t)−θin(t)
R1

)
Cwall

θin(0) = θin0, θwall(0) = θwall0

(5)

where dt represents a discrete time period, and in this article, dt is set to 1 min.
When the TCL device is activated, its internal motor monitors variations in indoor

temperature and dynamically adjusts the motor’s operational status based on whether it
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falls within the temperature control range. If the indoor temperature surpasses θup, the
motor’s working status IFLAG

j is set to 1, prompting a decrease in indoor temperature until

it reaches the lower limit θdown of the temperature control range. At this point, the motor’s
working state IFLAG

j is set to 0, allowing the indoor temperature to rise due to the influence
of outdoor temperature. The motor’s working state will be reactivated the next time the
indoor temperature reaches the upper limit of the temperature control range. The TCL
device outputs power only when both the TCL device and its internal motor are operational,
and the time interval of power output is influenced by the outdoor temperature and room
parameters. The changes in room temperature during the air conditioner’s cooling state
are illustrated in Figure 4.
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3. Phase Sequence Adjustment Method Based on Load-Timing Characteristics
3.1. Load Classification Method Considering Distance and Similarity of Load Curves

There exist similarities and complementarities in the time series characteristics of
residents’ load. By considering the load-timing characteristics shaped by users’ electricity
consumption habits, it becomes possible to minimize overall three-phase imbalance through
artificial phase modulation. The relationship between line loss and three-phase imbalance
in a low-voltage distribution network approximately follows a quadratic function. In
light of this, the reduction of line loss in the low-voltage distribution network necessitates
manual adjustment of the user phase sequence to address the three-phase imbalance issue.
This, in turn, requires precise load classification. To achieve this, the paper takes into
account the distance and curve similarity of user historical load curves. It combines the
concept of hierarchical clustering to merge similar data clusters and proposes H-FCM.

The fuzzy C-means algorithm (FCM) is an iterative clustering algorithm designed
to assign individual data samples into multiple clusters. Assume that the typical daily
historical load curve matrix Ph of a low-voltage distribution network user is:

Ph = [Ph
1 , Ph

2 , · · ·, Ph
n, · · ·, Ph

N ] (6)

where Ph
n is the typical daily historical load–power vector of user n, which is obtained by

the weighted sum of the load curves of different typical days within a period of time; N is
the total number of users.

Randomly select c rows of data from the Ph
n matrix as the initial clustering center

matrix V0.The iterative formula for the membership matrix U and the cluster center matrix
V are derived using the Lagrange multiplier method, as illustrated in Equations (7) and (8):

Uv+1
in =

(
c

∑
l=1

(dv+1
ln )

2
1−m

)−1

(dv+1
in )

2
1−m (7)



Energies 2024, 17, 1115 8 of 19

Vv+1
i =

N
∑

n=1
(Uv

in)
mPh

n

N
∑

n=1
(Uv

in)
m

(8)

where v is the number of iterations, i is the category subscript of the cluster center, Uin is
the possibility that user n belongs to category i, c is the number of classifications in the data
set, din is the Euclidean distance between i-th cluster center and user n data, representing
the similarity between vectors, m is the fuzziness, with this article setting m = 2, Vi is the
i-th clustering center vector.

When classifying users, the aforementioned FCM only takes into account the distance
between data and does not consider the similarity of load curves. To address this, the paper
introduces sequence variance to modify the clustering process. The calculation method for
sequence variance is as shown in Equation (9):

σin =

√√√√√ T
∑

t=1

(
(Ph

n,t − Vi,t)− mean(Ph
n − Vi)

)2

T − 1
(9)

where σin is the sequence variance of the typical daily load curve of type i-th cluster center
and user n, T is the total number of sampling time points of typical daily load, t is the index
of the sampling point, tϵ[1, T].

After introducing the sequence variance index, the conditions for sequence variance
identification are established. Following multiple FCM user classifications, several sets
of user clusters are obtained. Then, based on bottom-up hierarchical clustering, similar
user clusters are merged to form new user clusters, ultimately resulting in a typical load
database. Because there are numerous literature reports explaining FCM, this article focuses
solely on detailing the proposed H-FCM. The process is illustrated in Figure 5.
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Start

Calculate σin and set the sequence 
variance threshold σb

FCM

Calculate the sequence variance square matrix 
σ based on all user clusters and obtain the two 

user clusters with the minimum sequence 
variance σmin

Aggregate the pair of 
user clusters and update 
the cluster center of the 

new user cluster

End

Output clustering 
results

Nb<Nmin
Filter the user set with 
σin>σb and update the 

data set to be classified

Filter the user set with σin<σb and add it 
to the classified user clusters

σmin<σb 

bottom to top

top to bottom

 

Figure 5. H-FCM algorithm flow chart. Where Nb is the number of users in the data set to be classified,
Nmin is the minimum number of classified users, σ is the square matrix obtained by calculating the
sequence variance of the cluster center between two different user clusters, σb is the sequence variance
threshold used to assess the similarity of the curves and determine whether the algorithm setting is
met. In this article, it is uniformly set as the average value of σin obtained after using FCM clustering
for the first time. The updated clustering center of the new user cluster is determined by weighting
the clustering center of the original user cluster, with the weight being the number of user clusters.
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3.2. Three-Phase Unbalanced Long-Term Commutation Model Based on Load–Power Consumption
Characteristics

Utilizing the typical load database, the typical load of the user’s category serves as the
foundation for adjusting the user’s phase sequence. By considering the average sharing
within the same categories and mutual compensation between different categories, it
becomes possible to reduce the three-phase imbalance of the distribution network through
a single-phase sequence adjustment. This, in turn, leads to a reduction in the line loss of
the distribution network.

The unreasonable load distribution between different phase sequences and the un-
certainty of the load make the three-phase unbalanced phenomenon widely exist in the
low-voltage distribution network [28]. Assume that the three-phase unbalanced distribu-
tion network has a total of c∗ type users after H-FCM clustering, and the number of type
i users connected to phases A, B, and C are HA,i, HB,i, and HC,i, respectively. Then, the
power vector Ph

α of each phase electric load at the low-voltage side gate of the distribution
network transformer is:

Ph
α =

c∗

∑
i=1

Hα,i × Pt
i (10)

where α represents the three phases A, B, and C, Pt
i is the typical load–power vector of type

i users.
Q/GDW 1519-2014 [29] “Regulations of operating and maintenance for distribution

network” stipulates and quantifies the calculation method and balance degree of distribu-
tion transformer imbalance. The calculation of the three-phase imbalance is as follows:

g =
max(Ph

α)− min(Ph
α)

max(Ph
α)

(11)

where g is the instantaneous three-phase imbalance degree vector, max() is the maximum
value function, min() is the minimum value function.

To consider the three-phase imbalance throughout the entire period during phase
sequence adjustment, the objective is set to minimize the average three-phase imbalance
throughout the day. Consequently, a phase sequence adjustment model for long-term
control of three-phase imbalance was established, with the access phase sequence of each
user as the optimization variable.

min
αn

g =

T
∑

t=1
gt

T

s.t.



αn ∈ {A, B, C}
Hα,i = count(αn == α), ∀n ∈ Ni
c∗

∑
i=1

(HA,i + HB,i + HC,i) = N

Ph
α =

c∗

∑
i=1

Hα,i × Pt
i

(12)

where αn is the access phase sequence of user n; gt is the instantaneous three-phase uneven-
ness at time t; Ni is the sequence number set of type i users.

The MA is employed to solve the model. Previous literature has already validated the
superiority of this algorithm in addressing similar problems [11]. The pseudo-code of the
MA is provided in Appendix A.1.

4. Load Peak Shedding Method Considering Smart Home Adjustment Capabilities
4.1. Multi-Objective TL Optimal Timing Task Adjustment Model

TL achieves the purpose of smoothing load fluctuations and balancing three-phase
loads by advancing or delaying the opening time. To ensure a positive user experience, the
maximum movable time interval of TL needs to be defined, assuming it is [−∆tmax, ∆tmax].
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Taking into account the sensitivity requirements of dynamic load adjustment, the status
monitoring time scale of smart home device is set to 1 min. Through the SCADA monitoring
system and the IoT cloud platform, real-time data of the distribution network and users can
be obtained. The total load Ptotal

α of each phase, including household photovoltaic panels
and different types of smart home loads, is calculated as follows:

Ptotal
α = ∑

αn==α

PUL
n − ∑

αn==α

PPV
n + ∑

αk==α

PTL
k + ∑

αj==α

PTCL
j,0 (13)

where αk is the access phase sequence of TL device k; αj is the access phase sequence of
TCL device j; PTCL

j,0 is the power vector of TCL device j.

Then, the instantaneous total load vector Ptotal of the low-voltage distribution network is:

Ptotal = ∑
α∈{A,B,C}

Ptotal
α (14)

The average three-phase imbalance based on real-time monitoring data of the distribu-
tion network is:

g= mean

(
max(Ptotal

α )− min(Ptotal
α )

max(Ptotal
α )

)
(15)

The coefficient of variation of the total load vector is utilized to measure the degree of
load fluctuation. This is expressed as:

cv =

√
∑N

n=1

(
Ptotal

n − mean(Ptotal
))2

/N

mean(Ptotal
) (16)

Considering that the user experience is not affected as a constraint and the timing task
movement time of the TL device is an optimization variable, a multi-objective TL optimal
timing task adjustment model is established. The objective is to minimize three-phase
imbalance and reduce load fluctuations.

min
∆tk

β × g + (1 − β)× cv

s.t.
{

−∆tmax ≤ ∆tk ≤ ∆tmax
PTL

k = circshift(PTL
k,0 , ∆tk)

(17)

where β is the optimization proportion coefficient of the average three-phase imbalance
throughout the day, where βϵ[0, 1].

For the above optimization model, the feasible space of decision variables is extensive,
and there is a certain correlation between adjacent areas. Therefore, this paper utilizes
IDWPSO to address the problem. With the introduction of the differential evolution
operator, this algorithm exhibits higher solving efficiency and stronger global convergence
compared to the traditional particle swarm algorithm. The pseudo-code of the IDWPSO is
provided in Appendix A.2.

4.2. TCL’s Peak-Shaving Control Strategy for Maximum Sustainable Power Reduction Taking
Comfort into Account

TCL can leverage the changing characteristics of indoor temperature to appropriately
increase the indoor temperature during peak load periods, reducing the load without
adversely affecting the user experience. This article proposes a peak-shaving control
strategy based on the changes in the working status of the motor inside the TCL. The
strategy is designed with four fundamental requirements: temperature control interval
constraint, TCL device switching state constraint, maximum sustainable reduction power
constraint, and three-phase imbalance constraint. The primary objective of this peak-
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shaving control strategy is to identify the instantaneous start–stop state changes in the
motor inside the TCL while adhering to the specified constraints. The specific flow chart is
illustrated in Figure 6 below.
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(1) Temperature control interval constraints. According to whether the indoor tem-
perature θin

j,t of the TCL device at time t is within the temperature control interval[
Tdown, Tup], the working state vector of the motor inside the TCL device is deter-

mined as follows: {
IFLAG
j = 1 θin

j,t ≥ Tup

IFLAG
j = 0 θin

j,t ≤ Tdown (18)

(2) TCL device switching state constraint. The working state vector IFLAG of the motor
inside the TCL device is updated based on the switching state of the TCL device at
time t + 1, This is expressed as:{

IFLAG
j = 1 θin

j,t ≥ Tup&Istatus
j,t+1 == 1

IFLAG
j = 0 others

(19)

where Istatus
j,t+1 is the switching state of TCL device j at time t + 1.

(3) Maximum sustainable reduction power constraint. During the load peak shedding
period, the number Noff

1 of TCL internal motors that need to be shut down at time
t + 1 is calculated based on the preset maximum sustainable reduction power Pdown.
The calculation formula is as follows:

Noff
1 = ceil


Pdown + sum(IFLAG)−

J
∑

j=1
PTCL

j,0,t+1

PTCL
r

 (20)

where PTCL
j,0,t+1 is the power of TCL device j before regulation at time t + 1; PTCL

r is the
rated power of the TCL device.

Sort the indoor temperatures of the TCL internal motors from small to large according
to the IFLAG obtained after constraining the switch status of the TCL device. Set the motor
status corresponding to the first Noff

1 TCL device to 0, and update IFLAG.
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(4) Three-phase imbalance constraint. Combined with the operating data of the low-
voltage distribution network, calculate the instantaneous three-phase imbalance of
the low-voltage distribution network at time t + 1, the total power of each phase, the
heavy-load phase and the light-load phase in the IFLAG working mode obtained after
the previous update. According to Equations (21) and (22), the numbers Noff

2 and Non
2

of motors that need to be pre-closed and started are calculated:

Noff
2 = round

max(Ptotal
α

)
− median(Ptotal

α )

δ × PTCL
r

 (21)

Non
2 = round

median(Ptotal
α )− min(Ptotal

α

)
δ × PTCL

r

 (22)

where median() is the median function; δ is the three-phase imbalance constraint
coefficient, which represents the constraints of the three-phase imbalance control
strategy. The larger the value, the weaker the three-phase imbalance control effect,
but the better the loss-reduction effect, δϵ[1,+∞].

According to the IFLAG obtained in the previous step, sort the indoor temperatures
at which the TCL internal motor is turned on from small to large. Set the motor status
corresponding to the previous TCL device Noff

2 to 0, and update IFLAG. Then, continue
to sort the indoor temperatures from large to small for the TCL device with the internal
motor turned off and the device status turned on. Set the motor status corresponding to
the previous TCL device Non

2 to 1, and update IFLAG. The final IFLAG obtained is passed to
the TCL device through the home gateway as the TCL internal motor working state vector
at time t + 1 to complete load regulation.

5. Simulation
5.1. Simulation Conditions

There are a total of 543 users in a low-voltage distribution network, including 3258 TL
devices and 543 TCL devices. It is assumed that each household is equipped with a single-
phase photovoltaic panel. The temperature on a typical day in summer is selected as the
temperature reference. The sampling parameters of the TL and TCL device are shown in
Table 2.

Table 2. Sampling parameter table of TL and TCL device.

Load Type Opening Moment Running Time/h Use Ratio Rated Power/W

TL U{6, 23} U
{

30
60 , 40

60 , 50
60

}
100% 1200

TCL
N(10, 1)daytime N(18, 1.5) 100% 2500

N(21, 1)night N(4, 2) 60% 2500

The equivalent model parameters of the temperature change process of a typical
household (80 m2) are shown in Table 3.

Table 3. Equivalent model parameters of the temperature change process in a typical household (80 m2).

R1/(◦C/W) R2/(◦C/W) Cin/(J/◦C) Cwall/(J/◦C)

0.57 × 10−2 7.23 × 10−4 2.18 × 105 1.96 × 107
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5.2. Phase Sequence Adjustment Results

The H-FCM algorithm proposed in this article is employed to cluster the typical daily
load curves of distribution network users, resulting in the creation of a typical database, as
illustrated in Figure 7.
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Figure 7. Various types of load curves after clustering. Where the black dots are normalized load 
values, and the red lines are typical load curves. 

The established typical load database is utilized, and the MA algorithm is applied to 
solve the long-term commutation model. Additionally, the performance of the genetic al-
gorithm (GA), simulated annealing algorithm (SA), and particle swarm algorithm (PSO) 
in solving the model is compared. The initial total number of groups for various intelligent 
algorithms is set to 100, and the maximum number of iterations is 400 generations. The 
selection strategies for GA and MA are based on the roulette method, with a crossover 
probability of 0.8 and a mutation probability of 0.08. For SA, the initial temperature is set 
to 100, the temperature drop rate is 0.98, and the Metropolis criterion is used for the prob-
ability of accepting a differential solution. The algorithm evolution process when solving 
the long-term commutation model is depicted in Figure 8. 
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Figure 8. The algorithm evolution process when solving the long-term commutation model. 

Figure 7. Various types of load curves after clustering. Where the black dots are normalized load
values, and the red lines are typical load curves.

The established typical load database is utilized, and the MA algorithm is applied
to solve the long-term commutation model. Additionally, the performance of the genetic
algorithm (GA), simulated annealing algorithm (SA), and particle swarm algorithm (PSO)
in solving the model is compared. The initial total number of groups for various intelligent
algorithms is set to 100, and the maximum number of iterations is 400 generations. The
selection strategies for GA and MA are based on the roulette method, with a crossover
probability of 0.8 and a mutation probability of 0.08. For SA, the initial temperature is
set to 100, the temperature drop rate is 0.98, and the Metropolis criterion is used for the
probability of accepting a differential solution. The algorithm evolution process when
solving the long-term commutation model is depicted in Figure 8.
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As observed in Figure 8, it is evident that the MA algorithm utilized in this study
demonstrates superior convergence accuracy and speed compared to other intelligent
optimization algorithms. However, since the long-term commutation model is based on
static artificial phase modulation, it may not fully guarantee that the real-time average
three-phase imbalance meets expectations. Therefore, subsequent adjustments of the load
by smart homes are necessary to achieve the desired outcomes.
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5.3. Loss-Reduction Effect

The real-time operation data of the distribution network and the status of smart
homes, monitored by the IoT platform through SCADA, are acquired. These data are then
input into the TL optimal timing task adjustment model, and the IDWPSO is employed
to address the problem. Setting β = 0.8 is primarily aimed at minimizing real-time three-
phase imbalance. The settings for the remaining intelligent optimization algorithms are
consistent with the parameters mentioned earlier. The algorithm’s evolutionary process in
solving the TL timing optimization model is illustrated in Figure 9.
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input into the TL optimal timing task adjustment model, and the IDWPSO is employed to 
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consistent with the parameters mentioned earlier. The algorithm’s evolutionary process 
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Indeed, as depicted in Figure 9, IDWPSO exhibits commendable performance in solv-
ing the TL timing optimization model. The integration of differential evolution has proven 
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lutions and enhancing the overall global search capability. 

Regulation in accordance with the peak-clipping control strategy for TCL’s maxi-
mum sustainable power reduction resulted in instructions for controlling the TCL motors, 
as illustrated in Figure 10, which showcases a comparison of average temperatures before 
and after adjustment during TCL operation. Additionally, Figure 11 provides a histogram 
depicting the number of times the TCL motors participate in the regulation. 
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Indeed, as depicted in Figure 9, IDWPSO exhibits commendable performance in
solving the TL timing optimization model. The integration of differential evolution has
proven effective in addressing issues related to population diversity reduction in later
iterations of the particle swarm algorithm, mitigating the tendency to converge to local
optimal solutions and enhancing the overall global search capability.

Regulation in accordance with the peak-clipping control strategy for TCL’s maximum
sustainable power reduction resulted in instructions for controlling the TCL motors, as
illustrated in Figure 10, which showcases a comparison of average temperatures before
and after adjustment during TCL operation. Additionally, Figure 11 provides a histogram
depicting the number of times the TCL motors participate in the regulation.
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The comparison of instantaneous three-phase imbalance at different stages is depicted
in Figure 12. The average three-phase imbalance before governance is 54.049%. After the
phase sequence adjustment, the average three-phase imbalance decreases to 9.084%, with
162 time points exceeding the 15% limit. Following real-time treatment, the average three-
phase imbalance further reduces to 4.468%, and there are only 10 time points exceeding the
15% limit. The improvement in the three-phase imbalance is evident.
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The instantaneous power comparison at different stages is illustrated in Figure 13.
The line loss rate before treatment was 5.044%, and after phase sequence adjustment, it
decreased to 4.300%. Following load adjustment, the line loss rate further decreased to
3.949%, marking a reduction of 1.095 percentage points compared to the line loss rate before
treatment. The comprehensive power loss before treatment was 1187.541 kWh, while after
the phase sequence adjustment, it decreased to 1004.333 kWh. After load adjustment, the
comprehensive power loss further decreased to 868.856 kWh, resulting in a total saving of
318.685 kWh compared to the entire day before treatment.
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5.4. Loss-Reduction Effects in Different Scenarios

To further explore the impact of long-term commutation and smart home load ad-
justment, as well as the impact of different types of smart homes on loss reduction and
three-phase imbalance control, this article set up different experimental groups to analyze
and study this method. Set up the following four sets of comparison scenarios, and mark
the simulation scenarios mentioned above as #S5.

#S1: No long-term commutation, only adjustment of smart home load.
#S2: Only long-term phase commutation is performed, and no smart home load

adjustment is performed.
#S3: Perform long-term commutation while only adjusting the TL.
#S4: Perform long-term commutation while only adjusting the TCL.
Compare the following indicators of the treated low-voltage distribution network:

average three-phase imbalance, peak-to-valley ratio, line loss rate, and line loss. The
comparison results are shown in Table 4.

Table 4. Comparison of governance results under different simulation scenarios.

Simulation Scenarios Average Three-Phase Imbalance Peak-to-Valley Ratio Line Loss Rate Line Loss

#S1 47.661% 4.694 4.632% 1053.142 kW·h
#S2 9.084% 5.104 4.299% 1004.333 kW·h
#S3 7.828% 5.136 4.294% 1003.091 kW·h
#S4 5.747% 4.794 3.962% 873.437 kW·h
#S5 4.468% 4.800 3.949% 868.856 kW·h

From the comparison results in the above table, it can be found that long-term com-
mutation mainly reduces line losses by reducing the three-phase imbalance, and smart
home load adjustment mainly reduces line losses by reducing the peak-to-valley ratio. The
timing shift of TL mainly reduces the instantaneous three-phase imbalance, while TCL
mainly reduces the peak-to-valley ratio. In general, the treatment method proposed in this
article that combines long-term commutation and smart home load adjustment has the
most obvious effect in reducing line losses.

6. Conclusions

(1) The introduced H-FCM algorithm not only takes into account the distance of load
curves but also considers the similarity of load curves. Through load classification,
a typical load curve is derived, and a long-term commutation model is established
and solved using the MA algorithm. This approach reduces the influence of load
uncertainty on artificial commutation results, enhancing the robustness of the long-
term commutation model.
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(2) Considering the output characteristics of TL, this paper proposes a multi-objective
TL optimal timing task adjustment model solved by IDWPSO. Additionally, a peak-
cutting control strategy for maximum sustainable power reduction is introduced
based on the monitoring of indoor temperature, ensuring it does not impact the user
experience. The effectiveness of this strategy is validated through simulations.

(3) Our approach primarily addresses issues related to three-phase imbalance and signifi-
cant load peak–valley differences in low-voltage distribution networks. By incorporat-
ing manual commutation and load adjustments, this paper successfully reduces line
losses. Simulation results demonstrate a noteworthy electricity savings of 318.685 kWh
throughout the day, accompanied by a reduction of 1.095 percentage points in the line
loss rate. The overall impact on loss reduction is substantial.

The loss-reduction method presented in this paper considers two key factors influ-
encing line losses: three-phase imbalance and load peak–valley differences. By combining
dynamic and static approaches in terms of long-term commutation and real-time adjust-
ments, the line losses in the low-voltage distribution network are effectively reduced.
Simulation results demonstrate a substantial improvement in line losses after treatment,
showcasing evident economic benefits. This approach offers valuable technical guidance
for line loss management in similar scenarios. However, it is important to note that the
method outlined here has high data requirements for regulating smart home devices. In
the future, it is necessary to further classify and model smart homes, electric vehicles, and
multiple energy storage loads, and more consideration will be given to the impact of user
behavior and the interaction between different smart homes on modeling. At the same
time, the load regulation method should be more data-simplified to enhance the practicality
of load regulation.
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Appendix A

Appendix A.1

Algorithm A1. The pseudo-code of MA

SP = initPop();g = 0; % Initialize group SP
1: while g < G
2: evaluateFitness(SP); % Calculate the fitness of each individual in the group
3: E = best(SP); % Keep the best individuals in the group
4: SP’ = selectForVariation(SP); % Select operator
5: SP’ = recombine(SP’); % Crossover operator
6: SP’ = mutate (SP’); % Mutation operator
7: SP’ = localSearch(SP’); % Local search operator
8: evaluateFitness(SP’); % Calculate the fitness of each individual in the parent generation
9: SP = selectNewPop(SP + SP’); % Children and parents compete together to enter the next
generation
10: g = g + 1;
11: end
12: print(best(SP))

Appendix A.2

Algorithm A2. The pseudo-code of IDWPSO
set wmax,wmin,x,v,g = 0; % Initialize particle swarm

1: while g < G
2: Fit = evaluateFitness(x); % Calculate the fitness of each particle
3: E = best(x); % Keep optimal particle positions
4: x’ = selectForVariation(x); % Select operator
5: x’ = recombine(x’); % Crossover operator
6: if Fit < pbest % Update local optimal position
7: Renew(pbest);
8: end
9: if Fit < gbest % Update the global optimal position
10: Renew(gbest);
11: end
12: w = wmin + (wmax − wmin) × exp(−g/G) + σ × betarnd(p,q); % Dynamic adjustment of
inertia weight
13: v = w × v + c1 × rand() × (pbest − x’) + c2 × rand() × (gbest − x’); % Update particle speed
14: x = x’ + v; % Update particle position
15: g = g + 1;
16: end
17: print(best(x))
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