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Abstract

We proposed a fractional-order derivative model for Ebola virus disease (EVD) to assess the effects of control
strategies on the spread of the disease in the population. The proposed model incorporates all relevant
biological factors, health education campaigns, prevention measures, and treatment as control strategies. We
computed the basic reproduction number R0 and qualitatively used it to assess the existence of the model
states. In particular, we noted that two equilibrium points exist, the disease-free and endemic equilibrium
points which are both globally stable whenever R0 < 1 and R0 > 1 respectively. We performed sensitivity
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analysis on the key parameters that drive the EVD dynamics to determine their relative importance in EVD
transmission and prevalence. Model parameters were estimated using the 2014 Ebola outbreak in Guinea.
Further, numerical simulation results are presented using fractional Adam-Bashforth-Moulton scheme to
support the analytical findings. From the numerical simulations, we have noted that as α decreases from
unit, the solution profiles of the model attain its stability much faster than at α = 1. Furthermore, the results
demonstrated that the aforementioned control strategies have the potential to reduce the transmission of
EVD in the population.

Keywords: Lyapunov; control strategies; Ebola model; fractional-order derivatives; model stability; data fitting;
model validation.
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1 Introduction

Ebola virus disease (EVD) is a disease caused by Ebola virus in humans and other non-human primates like
gorillas, chimpanzees and duikers. The virus originated in fruit bats and jumped to humans through animals
such as chimpanzees [1, 2]. The disease first appeared in 1976 in two outbreaks, one in Sudan and the other in
Democratic Republic of Congo (DRC). Since then, the disease has continued to appear in Africa several times,
for example, in Ivory Coast and Gabon in 1994; in Uganda in 2000; in Guinea in 2014; and again in DRC in
2019.

The EVD outbreaks, particularly in Western part of Africa, continue to present substantial challenges to health
and health-care resources in the region and beyond. According to the World Health organization (WHO), more
than 11000 people died in the region between 2013 and 2016 due to the outbreak of EVD [3]. In particular,
Sierra Leone alone recorded more than 14,100 Ebola cases which resulted in over 3900 deaths, and more than
30000 individuals were quarantined due to possible Ebola exposure [4].

Although several factors such as poor health facilities and highly populated urban areas have been attributed to
perpetuate EVD during an outbreak, funeral and burial practices anchored in certain traditional and religious
practices of the West African communities are regarded as one of the leading factors that fuel the spread of
EVD in the region [5, 6]. As most communities in West Africa believe in life after death, funeral and burial
practices are given a lot of significance and perceived as crucial steps in transitioning from the world of the
living to the spiritual world [7]. Individuals from this region believe that the transition should be facilitated by
surviving relatives through funeral and burial rituals. Communities perceive that if the deceased does not attain
the elevated rank of ancestral spirit, their spirit may return and punish the living relatives [6]. Hence, several
unique funeral and burial practices that more often involve excessive contact with a corpse are often performed
to appease the dead. In its global alert and response report of WHO concurred with this assertion by suggesting
that nearly 60% of all Ebola cases in Guinea between 2013 and 2014 were a result of traditional burial practices
[8]. Cognizant of this, it is essential to gain a better and more comprehensive understanding of the impact of
funeral and burial practices during EVD outbreaks to develop feasible intervention and management strategies.
Among the several tools and techniques that can be used to explore this phenomenon is mathematical modeling.

Mathematical modelling, as a powerful tool in quantifying the complex and numerous factors, has been widely
developed to explore the transmission of EVD [9, 10, 11]. Mathematical modeling is described as the conversion
of a real problem in a mathematical form. Modeling, therefore, involves the formulation of the real-life situations
or converting the problems in mathematical explanations to a real or believable situation (see for example [12, 13].

Mathematical models with classical-order differential equations have especially received great attention (see,
[14, 15, 16, 17, 18, 19, 20, 21, 22]) and have widely been used in disease modeling. However, recent studies
suggest that models with integer-order derivatives do not adequately capture hereditary properties, long-range
interactions, and memory effects that exist in biological systems which have many applications in the fields of
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science, compared to fractional-order derivatives [23, 24, 25, 26, 27]. It is documented literature that models
that utilize fractional-order derivatives capture hereditary properties, memory effects, and enlarge the region
of stability [27]. Previous studies suggest that without memory effects evolution and control of diseases in
communities can not be considered [28]. In particular, whenever the disease spreads in societies, humans gain
experience which influence in control of spread disease in the community [27, 29]. Additionally, cell membrane of
living organisms contain some fractional order-electrical conductance which are classified in groups of fractional
order models [23, 28].

Recently, Ivan et al. [30], Muhammad et al. [31], Dokuyucua and Dutta [32], Farman et al.[33], Singh[34] and Pan
et al. [35] used the fractional-order derivatives to study the effect of memory on EVD dynamics. Dokuyucua
and Dutta [32] utilised Caputo fractional-order differential equations without singular kernel to explore the
effects of memory on spread of Ebola in Africa. Among several other outcomes, they found out that their model
solutions were in agreement with reality. Muhammad et al. [31] proposed and studied a nonlinear time-fractional
mathematical model of the Ebola Virus to understand the outbreak of disease in the community. Their model
analysis included both Caputo and Atangana Baleanu fractional derivative operators to solve the solution of
the system of fractional differential equations. One of the key findings from their work was that fractional-order
derivative showed significant changes and memory effects compared to classical-order derivatives. Farman et al.
[33] studied a nonlinear fractional order Ebola virus mathematical model to explore the effects control strategies
on the spread of disease in the population. They used Laplace with Adomian Decomposition to solved the
fractional differential systems. Their results revealed that, as the order of derivative decreased, the disease
died out in the population. Area et al. [30] used both classical and fractional order Ebola epidemic model
to fit the real data of Ebola cases reported in Guinea, Liberia and Sierra Leone. In numerical simulations,
they found that the fractional-order model gave a better prediction of the disease compared to classical order
derivatives. Mathematical studies of fractional order differential equations in disease modeling are also found in
[28, 36, 37, 38, 39, 40, 41, 42] and the references therein.

Mathematical modelling, as a powerful tool in quantifying the complex and numerous factors, has widely been
developed to explore the transmission dynamics of EVD [9, 10, 11]. One of the emerging areas in biological
research is to understand the role of memory effects on the short and long-term dynamics of infectious diseases.
Thus, in this study a mathematical model for EVD based on Fractional Calculus is proposed and analyzed.
Although this is not the first study to incorporate Fractional Calculus in analyzing EVD transmission (see, for
example [30, 34, 43], the proposed model is unique from those in literature in that it also incorporates the direct
and indirect disease transmission rates, and effects of cultural beliefs and educational campaigns on funeral
and burial practices. Here, EVD transmission rate is being modeled by the mass action incidence which is
appropriate when the population is not too large [44]. One of the most commonly performed funeral rituals,
which significantly contributes to the spread of Ebola, is the washing and cleaning of dead bodies. Another
burial ritual involves relatives of the deceased washing their hands in a common bowl after which they touch the
face of the deceased in what is perceived as a ‘love touch’ that cements unity between the living and ancestral
spirits [45]. We assume that the transmission rate of EVD is dependent on the size of the population attending
funerals and the burial practices which implies that the contact rate is an increasing function of the population.
The mass action incidence is density- dependent since contact rate per infective is proportional to the density
of infectious hosts.

Motivated by the above-mentioned works, we derive a fractional-order model for EVD based on the Caputo
derivative. The choice of Caputo derivative is also aided by the fact that the Caputo derivative for a given
function which is constant is zero. Thus, the Caputo operator computes an ordinary differential equation,
followed by a fractional integral to obtain the desired order of fractional derivative [37, 46, 47]. Most importantly,
the Caputo fractional derivative allows the use of local initial conditions to be included in the derivation of the
model [29, 34, 47, 48].

In Section 2, we present the preliminaries on the Caputo fractional calculus. The proposed model and analytical
results are presented in Section 3. In Section 4, the numerical simulations are done to verify the theoretical
results presented in the study. Finally, a concluding remark rounds up the paper.
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2 Preliminary Results

The basic idea of fractional order derivative was first initiated by Riemann and Liouville, and another by
Caputo which is based on the exponential kernel. The main advantage of Caputo fractional order derivative
over Riemann-Liouville fractional operator is that: Caputo fractional order derivative provides standard initial
conditions which have clear physical interpretation of the problem. Besides, Caputo fractional order derivative
is bounded, meaning that the derivative of any constant function is zero. Motivated by the benefits of Caputo
fractional operator over the other operators, the proposed model in this study is based on the Caputo fractional
derivatives which is an important tool for describing the memory and heredity properties.

2.1 Mathematical concepts of fractional order

In this section we start with mathematical concepts of of Caputo fractional order derivatives which will be used
in analysis of proposed Ebola model (see,[28, 49]). The details can be obtained in Appendix A.

3 Materials and Methods

3.1 Description of model and analytical results

Motivated by the works in [9, 10, 11, 30, 43, 34], we are concerned with the impact of educational campaigns on
funeral and burial practices. We subdivide the total population of humans N(t) into categories of: susceptible
population unaware of the disease fighting means S(t), susceptible population aware of the disease fighting means
E(t); infected individuals who are displaying clinical signs of the disease and are infectious I(t), individuals who
have recovered from infection R(t), and the deceased population D(t). Let P (t) denote the pathogen population
in the environment.

The EVD transmission rate is modeled by the mass action incidence which is appropriate when N(t) is not too
large [44]. We assume that the transmission rate is dependent on the size of the population which implies that
the contact rate is an increasing function of the population. The mass action incidence is density- dependent
since the contact rate per infective is proportional to the density of the infectious host.

The proposed fractional-order derivatives EVD model is given by:

Dα
t0S(t) = Λ− (β1I(t) + β2D(t) + λP (t))S(t) + φE(t)− (µ+ ψ)S(t),

Dα
t0E(t) = ψS(t)− γ(β1I(t) + β2D(t) + λP (t))E(t)− (φ+ µ)E(t),

Dα
t0I(t) = (β1I(t) + β2D(t) + λP (t))(S(t) + γE(t))− (µ+ σ + δ)I(t),

Dα
t0R(t) = σI(t)− µR(t),

Dα
t0D(t) = (µ+ δ)I(t)− εD(t),

Dα
t0P (t) = ρI(t) + θD(t)− (τ + η)P (t),


(1)

where Dα
t0 denotes the Caputo-fractional calculus and α with 0 < α ≤ 1 is the fractional order. The model flow

diagram is depicted in Fig. 1.

Additional biological and epidemiological assumptions that govern the model (1) are::

(i) Model (1) exhibits some time dimension problems between left-and right-hand sides of the equations. On
the left, the dimension is (time)−α, whereas on the right-hand side the dimension is (time)−1. To balance
the model, the corrected system corresponding to model (1) is as follows:

Dα
t0S(t) = Λα − (βα1 I(t) + βα2 D(t) + λαP (t))S(t) + φαE(t)− (µα + ψα)S(t),

Dα
t0E(t) = ψαS(t)− γα(βα1 I(t) + βα2 D(t) + λαP )E(t)− (φα + µα)E(t),

Dα
t0I(t) = (βα1 I(t) + βα2 D(t) + λαP (t))(S(t) + γαE(t))− (µα + σα + δα)I(t),

Dα
t0R(t) = σαI(t)− µαR(t),

Dα
t0D(t) = (µα + δα)I(t)− εαD(t),

Dα
t0P (t) = ραI(t) + θαD(t)− (τα + ηα)P (t),


(2)
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(ii) All new recruits are assumed to be susceptible and unaware of the disease and recruited at the rate Λ.
Natural mortality occurs at the rate µ. Meanwhile, the susceptible populations are educated at the rate ψ
per-day and some educated populations can stop following the preventive measures at the rate φ. There
is evidence in [50, 51] that Ebola outbreak can last for more than two years which allows the demographic
process to take place. Therefore, we have included vital dynamics in our model since the 2014 Ebola
outbreak in Guinea.

(iii) Susceptible unaware individuals become aware of the infection through educational campaigns at the rate
ψ. Due to memory fading and/or carelessness, susceptible aware individuals become unaware individuals
at the rate φ:

(iv) Susceptible individuals are assumed to acquire the infection either directly (through contact with either
infectious individuals or deceased EVD patients) or, indirectly through contaminated environment. Model
parameters β1, β2 and λ account for disease transmission when susceptible individuals come into contact
with infectious individuals, deceased patients and the environment respectively. Susceptible aware individuals
are assumed to have reduced chances of contracting the disease, modeled by 0 < γ < 1, where γ is the
disease modification factor that accounts for the impact of educational campaigns on disease transmission.

(v) Infected individuals either recover from infection permanently (at the rate σ) or, succumb to disease-
related death at the rate δ. The deceased individual are buried after ε−1 days. Infectious and deceased
EVD patients contaminate the environment at the rates ρ and θ, respectively. The population of pathogens
in the environment decreases due to natural decay (at the rate τ ) or decontamination (at the rate η).

Fig. 1. Flow chart for Ebola virus disease

3.1.1 Non-negativity and boundedness of model solutions

Since model (2) investigate human population, it is important to demonstrate that all model solutions are
bounded and positive for all t ≥ 0. From the computations presented in Appendix B we obtained the following
results.

Theorem 3.1. Model (2) has unique and non-negative solutions which turn into region Γ+ as t → ∞, where

Γ+ is defined by: Γ+ =

{
(S(t), E(t), I(t), R(t), D(t), P (t)) ∈ R6

+;S(t) +E(t) + I(t) +R(t) +D(t) +P (t) = N =

Λα

µα
, D =

(µα + δα)Λα

µαεα
, P =

εαραΛα + θα(µα + δα)Λα

µαεα(τα + ηα)

}
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3.1.2 The basic reproduction number

In this section, we study the basic reproduction number and the existence of a disease-free equilibrium and an
endemic equilibrium of the model (2). The model (2) always has a disease-free equilibrium

E0 = (S0, E0, I0, D0, P 0, R0) = (S0, E0, 0, 0, 0, 0)

, with S0 =
Λα(φα + µα)

µα(µα + φα + ψα)
, E0 =

Λαψα

µα(µα + φα + ψα)
, and S0 + γαE0 =

Λα(φα + µα + γαψα)

µα(µα + φα + ψα)
. By means

of the next generation matrix (see, for example, van den Driessche and Watmough [18], one obtains the basic
reproduction number of the model (2) as follows:

R0 =
(S0 + γαE0)βα1
(µα + σα + δα)

+
(S0 + γαE0)(µα + δα)βα2

εα(µα + σα + δα)
+

(S0 + γαE0)θα(µα + δα)λα

εα(τα + ηα)(µα + σα + δα)

+
(S0 + γαE0)ραλα

(τα + ηα)(µα + σα + δα)
(3)

Biologically, the basic reproduction number R0 represents the average number of new or secondary EVD
infections caused by the introduction of an infectious individual into a totally susceptible population. It follows
that model (2) has a disease-free equilibrium point E0 = (S0, E0, I0, D0, P 0, R0) which exists whenever R0 < 1
and it provides a criterion for the extinction of the disease. In addition to the disease-free equilibrium E0, the
model (2) has a unique endemic equilibrium point E∗ = (S∗, E∗, I∗, D∗, P ∗, R∗), which exists whenever R0 > 1,
the EVD infection persists, where:

S∗ =
Λα[γα(βα1 I

∗ + βα2 D
∗ + λαP ∗) + (µα + φα)]

n1n2 − φαψα
, (4)

E∗ =
Λαψα

n1n2 − φαψα
, (5)

with n1 = [(βα1 I
∗ + βα2 D

∗ + λαP ∗) + (µα + ψα)] and n2 = [γα(βα1 I
∗ + βα2 D

∗ + λαP ∗) + (µα + φα)]

D∗ =
(µα + δα)I∗

εα
, R∗ =

ραI∗

µα
, and

P ∗ =
ραI∗

(τα + ηα)
+
θα(µα + δα)I∗

εα(τα + ηα)
. (6)

Substituting equation (6) into the third equation in (2), gives:

βα1 I
∗(S∗ + γαE∗) +

βα2 (µα + δα)I∗(S∗ + γαE∗)

εα
+
λαραI∗(S∗ + γαE∗)

(τα + ηα)

+
λαθα(µα + δα)I∗(S∗ + γαE∗)

εα(τα + ηα)
− (µα + σα + δα)I∗ = 0. (7)

From (31), we have:(
βα1 I

∗(S∗ + γαE∗)

(µα + σα + δα)
+
βα2 (µα + δα)I∗(S∗ + γαE∗)

εα(µα + σα + δα)
+

λαραI∗(S∗ + γαE∗)

(τα + ηα)(µα + σα + δα)

+
λαθα(µα + δα)I∗(S∗ + γαE∗)

εα(τα + ηα)(µα + σα + δα)
− 1

)
×(µα + σα + δα)I∗ = 0.

It follows that:

I∗ = 0, or
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(S∗ + γαE∗) =
εα(τα + ηα)(µα + σα + δα)

r
, (8)

with r = βα1 ε
α(τα + ηα) + βα2 η

α(µα + δα) + λαεαρα + θαλα(µα + δα). Substituting the value of S∗ and E∗ into
(32), yields:

g(I∗) = A(I∗)2 +BI∗ + C, (9)

where:

A = εα(τα + ηα)(µα + σα + δα)γαλ2α ×
[

ρα

(τα + ηα)
+
θα(µα + δα)

εα(τα + ηα)

]2

+εα(τα + ηα)(µα + σα + δα)γαβcα1 +
(τα + ηα)(µα + σα + δα)γαβ2α

2 (µα + δα)2

εα

+2(τα + ηα)(µα + σα + δα)(µα + δα)γαβα1 β
α
2 + 2γαβα1 λ

α(µα + σα + δα)(ραεα + θα(µα

+δα)) + 2γαβα2 λ
α(µα + σα + δα)(µα + δα ×

(
ρα +

θα(µα + δα)

εα

)
,

B =

[
γαµα + (µα + φα + γαψα)− M

εα(τα + ηα)(µα + σα + δα)

]
×(µα + σα + δα)[βα1 ε

α(τα + ηα) + βα2 (τα + ηα)(µα + δα) + λαεαρα + θαλα(µα + δα)],

C = εαµα(τα + ηα)(µα + σα + δα)(µα + φα + ψα) [1−R0] , where,

M = γαΛα(βα1 ε
α(τα + ηα) + βα2 (τα + ηα)(µα + δα) + λαεαρα + θαλα(µα + δα)).

Using the fact that all parameters in the model (2) are positive for t ≥ 0, it follows from Equation (9) that A > 0.
Furthermore, C > 0 when R0 < 1. Therefore, the number of possible positive real roots of the polynomial (9)
hinges on the signs of B and C. By applying the Descartes rule of signs on the polynomial (9) g(I∗) = 0, given
in (9), we list the various possibilities for the roots of g(I∗) in Table 1:

Table. 1. Number of various possibilities for the roots of g(I∗) for R0 < 1 and R0 > 1.

Case A B C R0 No. of sign changes No. of various possibilities for the roots

1 + + + R0 < 1 0 0

2 + + - R0 > 1 1 1

3 + - + R0 < 1 2 0,2

4 + - - R0 > 1 1 1

Based on the various possibilities in Table 1, we have the following results:

Theorem 3.2. The model (2) admits that:

(i) a unique endemic equilibrium E∗ if R0 > 1 and Cases 2 and 4 are satisfied,

(ii) more than one endemic equilibrium if R0 < 1 part of Case 3 holds,

(iii) no endemic equilibrium if R0 < 1, and Cases 1 and part of Case 3 are satisfied.

3.1.3 Global stability

In this section, we are concerned with the global stability of the disease-free equilibrium E0 = (S0, E0, 0, 0, 0, 0)
and the endemic equilibrium E∗ = (S∗, E∗, I∗, D∗, P ∗, R∗) of the model (2). To investigate the global stability
of the model steady states we will construct appropriate Lyapunov functionals. Since the recovered/removed

26



Lolika et al.; J. Adv. Math. Com. Sci., vol. 39, no. 2, pp. 20-51, 2024; Article no.JAMCS.110718

population does not contribute to the generation of secondary infections one can ignore that fourth equation of
model (2) when examining the global stability and consider the following reduced system:

Dα
t0S(t) = Λα − (βα1 I(t) + βα2 D(t) + λαP (t))S(t) + φαE(t)−m1S(t),

Dα
t0E(t) = ψαS(t)− γα(βα1 I(t) + βα2 D(t) + λαP )E(t)−m2E(t),

Dα
t0I(t) = [(βα1 I(t) + βα2 D(t) + λαP (t))S(t) + γα(βα1 I(t) + βα2 D(t) + λαP )E(t)]

−m3I(t),
Dα
t0D(t) = m4I(t)− εαD(t),

Dα
t0P (t) = ραI(t) + θαD(t)−m5P (t),


(10)

with m1 = (µα + ψα), m2 = (φα + µα) , m3 = (µα + σα + δα), m4 = (µα + δα), and m5 = (τα + ηα).

To investigate the global stability of the disease-free equilibrium point E0 and the endemic equilibrium E∗ of
model (10), we utilize the Lyapunov function whose origin is ecology but was extended to epidemiology models
and then effectively applied to a variety of compartment models (see for example [56] ).

We begin by introducing the following definition of positive definite function (see, [57]) that we use to develop
the Lyapunov’s function.

Definition 1. (Positive definite function [57]) Let V(t) : Rn −→ R be a continuously differentiable real
valued function. Then V(t) is said to be positive definite function if:

1. V(t0) = 0, and:

2. V(t) > 0 for all t 6= t0

Theorem 3.3. (Fractional La-Salle invariance principle [28, 49]). Let x∗ ∈ Γ ⊂ Rn be an equilibrium point
for the non-autonomous fractional order system Dα

t0 = f(t, x). Let L : [0,∞) × Γ → R be a continuously
differentiable function such that:

M1(x) ≤ L(t, x(t)) ≤M2(x)

and:

Dα
t0L(t, x(t)) ≤ −M3(x),

for all α ∈ (0, 1) and all x ∈ Γ, where M1(x), M2(x) and M3(x) are continuous positive definite functions on
Γ. Then the equilibrium point x∗ is uniformly asymptotically stable.

Now using Theorem (3.3) we will show that the disease-free equilibrium E0 and the endemic equilibrium point
E∗ of system (10) are globally asymptotically stable

Theorem 3.4. For α ∈ (0, 1], the disease-free equilibrium E0 of system (10) is globally asymptotically stable
whenever R0 ≤ 1.

Proof. Consider the following appropriate Lyapunov function:

V(t) =

(
βα1
m3

+
βα2 m4

εαm3
+
θαλαm4

εαm5m3
+

λαρα

m5m3

)
I(t) +

(
βα2
εα

+
θαλα

εαm5

)
D(t) +

λα

m5
P (t).

Then the time fractional order derivative of V(t) along solutions of model (10):

Dα
t0V(t) =

(
βα1
m3

+
βα2 m4

εαm3
+
θαλαm4

εαm5m3
+

λαρα

m5m3

)
×

(
βα1 I(t) + βα2 D(t) + λαP (t)

)

×

(
S(t) + γαE(t)

)
−

(
βα1 I(t) + βα2 D(t) + λαP (t)

)
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=

[(
βα1
m3

+
βα2 m4

εαm3
+
θαλαm4

εαm5m3
+

λαρα

m5m3

)
×

(
S(t) + γαE(t)

)
− 1

]

×

[
βα1 I(t) + βα2 D(t) + λαP (t)

]
.

Since S0 ≤ S(t), E0 ≤ E(t),
(
S0 + γαE0 = Λα(φα+µα+γαψα)

µα(µα+φα+ψα)

)
for t ≥ 0 we have:

Dα
t0V(t) ≤

[(
βα1
m3

+
βα2 m4

εαm3
+
θαλαm4

εαm5m3
+

λαρα

m5m3

)
×

(
Λα(φα + µα + γαψα)

µα(µα + φα + ψα)

)
− 1

]

×

[
βα1 I(t) + βα2 D(t) + λαP (t)

]

=

[
R0 − 1

][
βα1 I(t) + βα2 D(t) + λαP (t)

]
. (11)

Therefore, Dα
t0V(t) < 0 holds if R0 < 1. Furthermore if R0 = 1, Dα

t0V(t) = 0 if and only if S(t) = S0, E(t) = E0,
I(t) = D(t) = P (t) = 0. Thus, the largest compact invariant set in U1 =

{
(S0, E0, 0, 0, 0) ∈ Γ : Dα

t0V(t) = 0
}

is
a singleton set containing the disease-free equilibrium E0. Therefore, by Theorem (3.3), we conclude that the
disease-free equilibrium is globally asymptotically stable in Γ.

Next, we investigate the global stability of the endemic equilibrium point E∗ of model (10) when R0 > 1.

Theorem 3.5. For α ∈ (0, 1], whenever R0 > 1, then model (10) has a globally asymptotically stable endemic
equilibrium point E∗.

Proof. Let us consider the following appropriate Lyapunov function:

W(t) =

{
S(t)− S∗ − S∗ ln

(
S(t)

S∗

)}
+

{
E(t)− E∗ − E∗ ln

(
E(t)

E∗

)}
+

{
I(t)− I∗ − I∗ ln

(
I(t)

I∗

)}
+

[βα2 D
∗(ραI∗ + θαD∗) + λαP ∗θαD∗] (S∗ + γαE∗)

m4I∗[ραI∗ + θαD∗]

×
{
D(t)−D∗ −D∗ ln

(
D(t)

D∗

)}
+
λαP ∗(S∗ + γαE∗)

[ραI∗ + θαD∗]

×
{
P (t)− P ∗ − P ∗ ln

(
P (t)

P ∗

)}
(12)

The time fractional order derivatives of W(t) are given by:

Dα
t0W(t) =

(
1− S∗

S(t)

)
Dα
t0S(t) +

(
1− E∗

E(t)

)
Dα
t0E(t) +

(
1− I∗

I(t)

)
Dα
t0I(t)

+
[βα2 D

∗(ραI∗ + θαD∗) + λαP ∗θαD∗]

m4I∗[ραI∗ + θαD∗]
× (S∗ + γαE∗)

(
1− D∗

D(t)

)
Dα
t0D(t)

+
λαP ∗(S∗ + γαE∗)

[ραI∗ + θαD∗]

(
1− P ∗

P (t)

)
Dα
t0P (t). (13)

Substituting the appropriate derivatives according to equations (10), we have:

Dα
t0W(t) =

{
1− S∗

S(t)

}{
ψαS(t)− γα(βα1 I(t) + βα2 D(t) + λαP )E(t)− (φα + µα)E(t)

}
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+
{

1− E∗

E(t)

}{
ψαS(t)− φαE(t)− µαE − γαβα1 I(t)E(t)− γαβα2 D1(t)E(t)

}
+
{

1− I∗

I(t)

}{
[(βα1 I(t) + βα2 D(t) + λαP (t))S(t) + γα(βα1 I(t) + βα2 D(t)

+λαP )E(t)]

−(µα + σα + δα)I(t)
}

+
[βα2 D

∗(ραI∗ + θαD∗) + λαP ∗θαD∗] (S∗ + γαE∗)

m4I∗[ραI∗ + θαD∗]

×
{

1− D∗

D(t)

}{
(µα + δα)I(t)− εαD(t)

}
+
λαP ∗(S∗ + γαE∗)

[ραI∗ + θαD∗]

{
1− P ∗

P (t)

}
×
{
ραI(t) + θαD(t)− (τα + ηα)P (t)

}
. (14)

At endemic equilibrium, we have:

Λα = βα1 I
∗S∗ + βα2 D

∗S∗ + λαP ∗S∗ + µαS∗ + ψαS∗ − φαE∗,
ψαS∗ = φαE∗ + µαE∗ + γαβα1 I

∗E(t) + γαβα2 D
∗E∗ + γαλαP ∗E∗,

(µα + σα + δα)I∗ = βα1 I
∗S∗ + βα2 D

∗S∗ + λαP ∗S∗ + γαβα1 I
∗E∗ + γαβα2 D

∗E∗

+γαλαP ∗E∗,
εαD∗ = (µα + δα)I∗,
(τα + ηα)P ∗ = ραI∗ + θαD∗.

(15)

Using the above constants at endemic equilibrium, we have:

Dα
t0W(t) = (µα + βα1 I

∗)S∗
{

2− S(t)

S∗
− S∗

S(t)

}
+ (µα + γαβα1 I

∗)E∗
{

3− S(t)

S∗
.
E∗

E(t)

− S∗

S(t)
− E(t)

E∗

}
+φαE∗

{
2− S(t)

S∗
.
E∗

E(t)
− S∗

S(t)
.
E(t)

E∗

}
+

λαP ∗S∗ραI∗

(ραI∗ + θαD∗)

{
3− S∗

S(t)
− I(t)

I∗
.
P ∗

P (t)
− P (t)

P ∗
.
I∗

I(t)
.
S(t)

S∗

}
+
γαλαP ∗E∗ραI∗

(ραI∗ + θαD∗)

{
4− S∗

S(t)
− I(t)

I∗
.
P ∗

P (t)
− S(t)

S∗
.
E∗

E(t)
− P (t)

P ∗
.
I∗

I(t)
.
E(t)

E∗

}
+
λαP ∗S∗θαD∗

(ραI∗ + θαD∗)

{
4− S∗

S(t)
− I(t)

I∗
.
D∗

D(t)
− D(t)

D∗
.
P ∗

P (t)
− P (t)

P ∗
.
I∗

I(t)
.
S(t)

S∗

}
+
γαλαP ∗E∗θαD∗

(ραI∗ + θαD∗)

{
5− S∗

S(t)
− I(t)

I∗
.
D∗

D(t)
− D(t)

D∗
.
P ∗

P (t)
− S(t)

S∗
E∗

E(t)

−P (t)

P ∗
.
I∗

I(t)
.
E(t)

E∗

}
+βα2 S

∗D∗
{

3− S∗

S(t)
− I(t)

I∗
.
D∗

D(t)
− D(t)

D∗
.
I∗

I(t)
.
S(t)

S∗

}
+γαβα2 E

∗D∗
{

4− S∗

S(t)
− S(t)

S∗
.
E∗

E(t)
− I(t)

I∗
.
D∗

D(t)
− D(t)

D∗
.
I∗

I(t)
.
E(t)

E∗

}
. (16)

By the property that the arithmetic mean is greater than or equal to the geometric mean:

2 ≤ S(t)

S∗
+

S∗

S(t)
, 2 ≤ S(t)

S∗
.
E∗

E(t)
+

S∗

S(t)
.
E(t)

E∗
, 3 ≤ S(t)

S∗
.
E∗

E(t)
+

S∗

S(t)
+
E(t)

E∗
,

3 ≤ S∗

S(t)
+
I(t)

I∗
.
P ∗

P (t)
+
P (t)

P ∗
.
I∗

I(t)
.
S(t)

S∗
,

4 ≤ S∗

S(t)
+
I(t)

I∗
.
P ∗

P (t)
+
S(t)

S∗
.
E∗

E(t)
+
P (t)

P ∗
.
I∗

I(t)
.
E(t)

E∗
,

4 ≤ S∗

S(t)
+
I(t)

I∗
.
D∗

D(t)
+
D(t)

D∗
.
P ∗

P (t)
+
P (t)

P ∗
.
I∗

I(t)
.
S(t)

S∗
,
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5 ≤ S∗

S(t)
+
I(t)

I∗
.
D∗

D(t)
+
D(t)

D∗
.
P ∗

P (t)
+
S(t)

S∗
E∗

E(t)
+
P (t)

P ∗
.
I∗

I(t)
.
E(t)

E∗
,

3 ≤ S∗

S(t)
+
I(t)

I∗
.
D∗

D(t)
+
D(t)

D∗
.
I∗

I(t)
.
S(t)

S∗
,

4 ≤ S∗

S(t)
+
S(t)

S∗
.
E∗

E(t)
+
I(t)

I∗
.
D∗

D(t)
+
D(t)

D∗
.
I∗

I(t)
.
E(t)

E∗
,

for all S(t) > 0, E(t) > 0, I(t) > 0, D(t) > 0 and P (t) > 0, because the arithmetic mean is greater than or equal
to the geometric mean. HenceW(t) ≤ 0 and consequently, Dα

t0W(t) ≤ 0. Moreover, the largest compact invariant
set in U2 = {(S∗, E∗, I∗, D∗, P ∗) ∈ Γ : Dα

t0W(t) = 0} is a singleton set containing the endemic equilibrium E∗,
where S(t) ≡ S∗, E(t) ≡ E∗, I(t) ≡ I∗, D(t) ≡ D∗, and P (t) ≡ P ∗. Using Theorem (3.3), we conclude that the
endemic equilibrium point E∗ is globally asymptotically stable if R0 > 1.

4 Numerical Simulations and Discussions

In this section, we performed the numerical simulations of the model (2) to justify the analytical results. Most
of the parameter values which are not available in literature have been estimated within the reasonable realistic
situation, the cumulative number of EVD monthly cases from March to August of the 2014 Ebola outbreak in
Guinea was utilized (see [9]). We performed the numerical simulations using fractional Adam-Bashforth-Moulton
scheme [47] as illustrated in equation (17):

For any differential equation:
Dα
t0x(t) = g(t, x(t)), 0 ≤ t ≤ T, (17)

with the following initial conditions:

xi(0) = xi0, i = 0, 1, 2, 3, ...[α]− 1. (18)

Operating by the fractional integral operator on equation (17) we obtain the solution x(t) by solving equation
(19):

x(t) =

[α]−1∑
i=0

xi0
i!
ti +

1

Γ(α)

∫ t

0

(t− τ)α−1g(τ, x(τ))dτ. (19)

Diethelm [58] used the predictor-corrector scheme based on the Adam-Bashforth-Moulton algorithm to numerically
solve equation (19). Setting h = T

N
, tn = nh, and n = 0, 1, 2, 3, ..N ∈ Z+, we discretized equation (19) as a

fractional variant of the one step Adam-Bashforth-Moulton scheme as shown in equation (20):

xh(tn+1) =

|α|−1∑
i=0

xi0
i!
tin+1 +

hα

Γ(α+ 2)

n∑
q=0

aq,n+1g(tq, xq)

+
hα

Γ(α+ 2)
g(tn+1, x

p
n+1), (20)

where: aq,n+1 =


nα+1 − (n− α)(n+ α)α, q = 0,
(n− q + 2)α+1 + (n− q)α+1 − 2(n− q + 1)α+1, 1 ≤ q ≤ n,
1, q = n+ 1,

and the predicted value xph(tn+1) is determined by:

xh(tn+1) =

|α|−1∑
i=0

xi0
i!
tin+1 +

1

Γ(α)

n∑
q=0

bq,n+1g(tq, xh(tq)), (21)
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with:

bq,n+1 =
hα

α
((n+ 1− q)α − (n− q)α. (22)

The error estimate is:

max
0≤q≤k

|x(tq)− xh(tq)| = O(hp), (23)

with k ∈ N and p = min(2, 1 + α).

4.1 Application of Adam-Bashforth-Moulton Scheme to the proposed model

Most of the fractional order derivatives α ∈ (0, 1) that describe the real-world problems are highly complicated
and difficult to obtain its numerical approximations due to the existence of their non-local in nature compared
to the integer order derivatives. Adam-Bashforth-Moulton scheme have been recognized as a powerful numerical
scheme to solve nonlinear fractional order problems due to its stability compared to other methods. Therefore, in
this section we utilize the Adam-Bashforth-Moulton scheme to numerically solve the nonlinear fractional model
(2). In the view to the generalized Adam-Bashforth-Moulton scheme, the proposed model (2) has the following
form:

S(tn+1) = S0 +
hα

Γ(α+ 2)

(
Λα − (βα1 I

p(tn+1) + βα2 D
p(tn+1) + λαP p(tn+1))Sp(tn+1)

+φαEp(tn+1) −m1Sp(tn+1)
)

+
hα

Γ(α+ 2)

n∑
q=0

aq,n+1

(
Λα − (βα1 I(tq) + βα2 D(tq) + λαP (tq))S(tq)

+φαE(tq) −m1S(tq)
)
,

E(tn+1) = E0 +
hα

Γ(α+ 2)

(
ψαSp(tn+1) − γα(βα1 I

p(tn+1) + βα2 D
p(tn+1)

+λαP p(tn+1))Ep(tn+1) −m2Ep(tn+1)
)

+
hα

Γ(α+ 2)

n∑
q=0

aq,n+1

(
ψαS(tq) − γα(βα1 I(tq) + βα2 D(tq)

+λαP (tq))E(tq) −m2E(tq)
)
,

I(tn+1) = I0 +
hα

Γ(α+ 2)

(
[(βα1 I

p(tn+1) + βα2 D
p(tn+1) + λαP p(tn+1))Sp(tn+1)

+γα(βα1 I
p(tn+1) + βα2 D

p(tn+1) + λαP p(tn+1))Ep(tn+1)] −m3Ip(tn+1)
)

+
hα

Γ(α+ 2)

n∑
q=0

aq,n+1

(
[(βα1 I(tq) + βα2 D(tq) + λαP (tq))S(tq)

+γα(βα1 I(tq) + βα2 D(tq) + λαP (tq))E(tq)] −m3I(tq)
)

R(tn+1) = R0 +
hα

Γ(α+ 2)

(
σαIp(tn+1) − µαRp(tn+1)

)
+

hα

Γ(α+ 2)

n∑
q=0

aq,n+1

(
σαI(tq) − µαR(tq)

)
D(tn+1) = D0 +

hα

Γ(α+ 2)

(
m4I

p(tn+1) − εαDp(tn+1)
)

+
hα

Γ(α+ 2)

n∑
q=0

aq,n+1

(
m4I(tq) − εαD(tq)

)
P (tn+1) = P0 +

hα

Γ(α+ 2)

(
ραIp(tn+1) + θαDp(tn+1) −m5P

p(tn+1)
)

+
hα

Γ(α+ 2)

n∑
q=0

aq,n+1

(
ραI(tq) + θαD(tq) −m5P (tq)

)
,



(24)
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where:

Sp(tn+1) = S0 +
hα

Γ(α)

n∑
q=0

bq,n+1

(
Λα − (βα1 I(tq) + βα2 D(tq) + λαP (tq))S(tq)

+φαE(tq) −m1S(tq)
)
,

Ep(tn+1) = E0 +
hα

Γ(α)

n∑
q=0

bq,n+1

(
ψαS(tq) − γα(βα1 I(tq) + βα2 D(tq)

+λαP (tq))E(tq) −m2E(tq)
)
,

Ip(tn+1) = I0 +
hα

Γ(α)

n∑
q=0

bq,n+1

(
[(βα1 I(tq) + βα2 D(tq) + λαP (tq))S(tq)

+γα(βα1 I(tq) + βα2 D(tq) + λαP (tq))E(tq)] −m3I(tq)
)

Rp(tn+1) = R0 +
hα

Γ(α)

n∑
q=0

bq,n+1

(
σαI(tq) − µαR(tq)

)
Dp(tn+1) = D0 +

hα

Γ(α)

n∑
q=0

bq,n+1

(
m4I(tq) − εαD(tq)

)
P p(tn+1) = P0 +

hα

Γ(α)

n∑
q=0

bq,n+1

(
ραI(tq) + θαD(tq) −m5P (tq)

)
.



(25)

In simulating the model (2) we assume the initial condition that S(0) = 10000, E(0) = 290, I(0) =
10, R(0) = 50, D(0) = 0 and P (0) = 0.

Table. 2. Parameters and values

Symbol Definition Range/ Value Units Source

δ Disease death rate 0.4-0.9 day−1 [50, 59, 60]
η Environmental decontamination rate 0.06 day−1 fitted
β1 Transmission rate of infectious humans variable day−1 [59, 61, 62]
β2 Transmission rate of deceased humans variable day−1 [60, 62]
λ Transmission rate of Ebola virus variable day−1 fitted
τ Pathogen decay rate (0,∞) day−1 [63, 64]
ρ Shading rate of infectious humans 0.0004 day−1 fitted
θ Shading rate of deceased humans 0.004 day−1 fitted
ε Burial rate of deceased humans (0, 1) day−1 [62, 65]
µ Natural death rate (0, 1) day−1 [66]
φ Lost of education rate 0.025 day−1 fitted
γ Modification factor 0.7 - fitted
Λ Recruitment rate variable day−1 fitted
ψ Education rate 0.31 day−1 fitted
σ Recovery rate of humans (0, 1) day−1 [59, 61, 62]

4.2 Sensitivity Analysis

In this section, we perform the sensitivity analysis of the model (2). The threshold quantity R0 known as basic
reproduction number is an important parameter to determine the persistence and extinction of EVD in the
population. Parameter values of the Ebola model in Equation (2) taken from literature as presented in Table
?? and while some are estimated, therefore, sensitivity analysis will be useful on identifying parameters with
greatest influence to change the magnitude of threshold quantity R0.

Definition 2. (See, [67]) The normalized sensitivity index of R0 which depends on differentiability of parameter
ω is defined as equation (26):
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ΨR0
ω =

∂R0

∂ω
× ω

R0
, (26)

where ω is the generic parameter of system (2).

Table. 3. Sensitivity index of the model (2)

Parameter β1 β2 λ φ

Index +0.4154 +0.371 +0.2125 +0.0106

Parameter σ δ ρ θ

Index -0.0107 -0.2939 +0.0023 +0.2102

Parameter ψ µ γ

Index -0.0154 -0.1054 −0.1579

Parameter τ η ε

Index -0.008 0 -0.5823

Fig. 2. Sensitivity index of the model (2)

We observed that model parameters such as β1, β2, λ, φ, ρ, and θ, have a positive influence on the magnitude
of R0, that is, whenever they are increased, the magnitude of R0 increases. In Fig. 2. it can be observed that
an increase in the values of β1, β2, λ, φ, ρ, and θ by 10% increases the magnitude of R0 by 4.154%, 3.721%,
2.125%, 0.106%, 0.023%, and 2.102%, respectively. While model parameters with negative index values have a
negative influence on the magnitude of R0 an increase in the values of ψ, µ, γ, σ, δ, τ and ε by 10% decreases the
magnitude of R0 by 0.154%, 1.054%, 1.579%, 0.107%, 2.939%, 0.08%, and 5.823%, respectively. These results
suggest that the burial rate of deceased humans ε, has the highest negative influence on the magnitude of R0.
In addition, an increase in the indirect transmission rate of Ebola virus λ, increases the magnitude of R0.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Numerical results of model (2) showing effects of varying (a) burial rate of deceased
humans ε, on R0 (b) pathogen decay rate of Ebola virus τ, on R0 (c) transmission rate from

infectious human β1, on R0 (d) transmission rate of deceased humans β2, on R0 (e) transmission
rate of Ebola virus λ, on R0 (f) shading rate of deceased humans θ, on R0.

We simulated model (2) to evaluate the effects of (a) burial rate of deceased humans ε, on R0, at different
values of ε, (b) pathogen decay rate of Ebola virus τ, on R0, at different values of τ, (c) transmission rate from
infectious human β1, on R0, at different values of β1 (d) transmission rate of deceased humans β2, on R0, at
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different values of β2, (e) transmission rate of Ebola virus λ, on R0, at different values of λ (f) shading rate of
deceased humans θ, on R0, at different values of θ. The other parameters are fixed in all cases as in Table 3.

The numerical results in Fig. 3 (a) show burial rate of deceased humans ε, on R0. We noted that increasing the
burial rate on the deceased humans reduces the size of R0. Additionally, whenever ε is greater than 0.02, the
EVD dies in the community. In Fig. 3 (b), we assess the effect of pathogen decay rate of Ebola virus τ, on R0.
We noted that whenever τ > 0.01, the disease dies in the population.

The numerical results in Fig. 3 (c) show transmission rate from infectious β1, on R0. We noted that increasing
the transmission rate from infectious human increases the magnitude of R0. In particular, whenever β1 is greater
than 0.025, the disease persists in the community. In Fig. 3 (d), we investigated the influence of transmission
rate of deceased humans β2, on R0. We observed that whenever β2 > 0.02, the disease persists in the population.

The numerical results in Fig. 3 (e) show transmission rate of Ebola virus λ, on R0. We observed that increasing
the transmission rate of Ebola virus increases the size of R0. In particular, whenever λ is greater than 0.1,
the disease persists in the community. In Fig. 3 (f), we investigated the influence of shading rate of deceased
humans θ, on R0. We noted that whenever θ > 0.03, the disease persists in the community.

Fig. 4. Numerical results of model (2) showing contour graph of R0 as the function of
prevention measures and educational campaigns. We simulated the model (2) at

ε = 0.074, φ = 0.0004, β1 = 1× 10−8, and β2 = 9.7× 10−6.

Fig. 4. shows the contour graph of R0 as the function of educational campaigns and prevention measures. We
simulated the model (2) at ε = 0.074, φ = 0.0004, β1 = 1× 10−8, and β2 = 9.7× 10−6. The results showed
that as the rate of prevention measures and educational campaigns increases, the value of R0 decreases. This
shows that both prevention measures and educational campaigns have the potential to reduce the spread of
EVD in the community.
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Fig. 5. Numerical results of model (2) showing contour graph of R0 as the function of
prevention measures and treatment of infected individuals. We simulated the model (2) at

ε = 0.08, ψ = 0.025, β1 = 1× 10−8, and β2 = 9.7× 10−6.

Fig. 5. shows the contour graph of R0 as the function of prevention measures and recovery rate due to the
treatment of infected individuals . We simulated the model (2) at ε = 0.08, ψ = 0.025, β1 = 1 × 10−8,
and β2 = 9.7 × 10−6. We observe that increasing the rate of prevention measures and recovery rate due to the
treatment of infected individuals lead to decreased magnitude of R0. This demonstrates the effect of prevention
measures and treatment of infected individuals in reducing the transmission of Ebola in the population.

Fig. 6. Mesh plot of R0 as the function of educational campaigns and recovery rate due to the
treatment of infected individuals. We simulated the model (2) at

ε = 0.094, φ = 0.071, β1 = 1× 10−8, and β2 = 9.7× 10−6.
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Fig. 6. shows the mesh plot of R0 as the function of educational campaigns and recovery rate due to the
treatment of infected individuals . We simulated the model (2) at ε = 0.094, φ = 0.071, β1 = 1× 10−8, and
β2 = 9.7 × 10−6. It was noted that increasing the rate of educational campaigns and recovery rate due to the
treatment of infected individuals lead to decreased magnitude of R0. This demonstrates the effect of educational
campaigns and treatment of infected individuals reduce the transmission of Ebola in the population.

4.3 Parameter estimation

In this section, we numerically solve the proposed model (2) and estimate the parameters η, λ, ρ, θ, φ, γ, Λ,
ψ that minimize the deviation of real data from the prediction model (2) using the least squares (RMSE) and
Nelder mead algorithm techniques, and while the rest are fitted. The real data of Ebola cases used are reported
in [9]. Despite the challenges in model fitting and parameter estimations, model fitting and parameter estimation
in fractional order models is an integral part in the disease modeling. The present data were reported in Guinea
from 22 March to 16 August 2014, and the cumulative new infections predicted by the model (2) is obtained
using the equation (27):

Dα
t0C(t) = (βα1 I(t) + βα2 D(t) + λαP (t))(S(t) + γαE(t)) (27)

Further, we use the following function to compute the best fitting:

F : R8
(η,λ,ρ,θ,φ,γ,Λ,ψ) → R(η,λ,ρ,θ,φ,γ,Λ,ψ) (28)

where η, λ, ρ, θ, φ, γ,Λ, ψ are variables such that:

(1) For a given (η, λ, ρ, θ, φ, γ,Λ, ψ), solve numerically the model differential equations (2) to obtain a solution
Ŷi(t) = (Ŝ, Ê, Î, R̂, P̂ , D̂) which is an approximation of the reported Ebola cases Y (t).

(2) Set t0 = 1 (the model fitting starts in March 22) and for t = 2, 3, ..., 53, corresponding to the number of
weeks where data are available, obtain the computed numerical solution for ih(t); that is., Î(1), Î(2),
Î(3),....., Î(53).

(3) Compute the (RMSE) of the difference between Î(1), Îh(2), ...., Îh(53) and observed cases. This function F
yields the RMSE where

RMSE =

√√√√ 1

n

53∑
k=1

(I(k)− Î(k))2, (29)

(4) By using Nelder-Mead algorithm determine a global minimum for the RMSE .

The function F takes values in R8 and yields a positive real number, the RMSE that measures the closeness of
the model predictions to the observed data. Using the formula in equation (29), the RMSE was found to be
0.1353. This shows that the proposed model had 13.53% deviations from observed values. It concluded that the
model was approximately 86.47% efficient. On performing the fitting process, we assume the following initial
conditions S(0) = 1000, E(0) = 290, I(0) = 10, R(0) = 50, D(0) = 0, and P (0) = 0 and the model parameters
in Table 1.

Fig. 7. shows the cumulative detected cases of Ebola in Guinea. We used the monthly report of Ebola cases
reported in [9] to fit the model (2) at α = 0.83. The results demonstrated that the model (2) fits well the
monthly Ebola cases reported in Guinea from 22 March to 16 August 2014.

The numerical results in Fig. 8(a) shows the real data fitted with the fractional model at the order of derivatives
α = 0.81, 0.82, 0.83, 0.84, 0.85. We noted that the model had better fit at α = 0.83. Fig. 8(b), we plotted
the variation of order of derivative against the sum of square error cumulative (SSEC). Overall, the model had
minimum sum of square error cumulative at α = 0.83 which agree with results in Fig. 8(b). Thus, the model
had better fits at α = 0.83.
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Fig. 7. The model (2) fitted to Ebola cases reported in Guinea from 22 March to 16 August
2014 at α = 0.83.

(a) (b)

Fig. 8. Numerical results of model 2 (a) shows the real data fitted at different order of
derivatives (b) plots of order derivatives against the sum of square error cumulative (SSEC)

4.4 Numerical Results

Next, we simulate the model (2), we varied different model parameters and the order α of the caputo operator
in order to explain the role of various parameters and memory index on the disease transmission patterns and
control to support the analytical results. We first simulate the model at R0 > 1, followed by simulation at
R0 < 1 to show the dynamics of the disease in the population.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Simulation of the model (2) showing the convergence of infected individuals at the
endemic equilibria point.

Fig. 9. is a simulation of the model (2) to demonstrate the solution profile of individuals at the endemic
equilibrium point. To explore the effects of different derivative orders, α, on the dynamics of the disease, we
simulated the model at R0 = 1.7520, with the parameter values in Table 2 for α = 0.5, α = 0.7, α = 0.9,
and α = 1. As we can note, with baseline values in Table 2, the disease will persist. Firstly, the results show
that the variables for infected epidemiological compartments I(t), D(t), and P (t) in Fig. 9 (b), 9 (c), and 9
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(d) respectively, will increase the infection gradually and after about 300 days, the infection settle and attain
stability at the endemic equilibrium at I(t) ≈ 1200, D(t) ≈ 1050, and P (t) ≈ 49. A Similar pattern are
observed for the compartment R(t) in Fig. (9)(e). In addition, the variables for susceptible epidemiological
compartments S(t), and E(t) in Fig. 9(a) and 9(f) respectively, show that susceptibility will decrease gradually
and after about 300 days, the susceptibility settle and attain stability at the endemic equilibrium at S(t) ≈ 600,
and E(t) ≈ 290. One can observe that as the value of the fractional-order α approaches unity, the time taken by
model variables to converge to their respective unique endemic equilibrium point increases. These results agree
with the analytical analysis of global stability for endemic equilibrium point in Theorem 3.4. It was further
noted that at the fractional-order derivatives α, the human population attain its stability faster than at the
classical integer.

(a) (b)

Fig. 10. Simulation of the model (2) to show the convergence of infected humans and dead
bodies at the disease free equilibrium point. We simulate the model (2) at R0 = 0.6916 with

β1 = 1× 10−8, β2 = 9.7× 10−6, φ = 0.85, ψ = 0.71. At different values of fractional-order derivatives,
the number of infected individuals generated over the period of 150 days converge to the disease

free equilibrium point.

Fig. 10. shows the simulation of the model (2) to demonstrate the convergence of infected human population
to the disease-free equilibrium point. To examine the effects of different derivative orders, α, on the dynamics
of the disease, we simulated the model at R0 = 0.6916, with β1 = 1× 10−8, β2 = 9.7× 10−6, φ = 0.85, ψ = 0.71
and the remainder retained the baseline values in Table 2. for α = 0.5, α = 0.7, α = 0.9, and α = 1. As
we can note, with baseline values in Table 2, the disease will die. We can note that, the variables for infected
epidemiological compartments I(t), and D(t) in Fig. 10(a), and 10(b), respectively, show that the infection
will decrease gradually and after about 100 days, the infection settle and attain stability at the disease-free
equilibrium at I(t) = 0, and D(t) = 0. Furthermore, as the value of the fractional-order α approaches unity, the
time taken by the model variables to converge to their respective unique disease-free equilibrium point increases.
The results demonstrate that in a long-range interaction of people in the population, all infected individuals
converge to one point which is the disease-free equilibrium point. This agrees with the analytical results on the
existence of global stability for disease-free equilibrium point for the model (2) in Theorem 3.5. Also we have
noted that as the fractional-order derivatives α decrease from integer and infected humans attain stability much
faster than at α = 1. This shows the importance of using fractional-order derivatives in modeling biological
systems.

5 Concluding Remarks

In this article, a Caputo derivative model for EVD with intervention strategies is proposed and analyzed. A
Majority of mathematical models for EVD in literature are based on integer-ordinary differential equations,
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and much has not been done to investigate the role of memory effects on EVD dynamics. Thus, the main
aim of this study was to develop a more realistic EVD model that incorporate memory effects. The formulated
model subdivides the total human population based on epidemiological status as susceptible population unaware
of the disease fighting, susceptible population aware of disease fighting; infected individuals who are clinically
displaying signs of the disease and are infectious, individuals who have recovered from infection, and deceased
population. The studied model has an additional compartment that captures the concentration of pathogens
in the environment. We perform the sensitivity analysis to demonstrate the influence of each parameter on the
magnitude of threshold quantity R0. The results show that that model parameters such as β1, β2, λ, φ, ρ, and
θ, have a positive correlation with the magnitude of R0, that is, whenever they are increased, the magnitude of
R0 increases. Furthermore, an increase in the values of β1, β2, λ, φ, ρ, and θ by 10% will increase the magnitude
of R0 by 4.154%, 3.721%, 2.125%, 0.106%, 0.023%, and 2.102%, respectively. While model parameters with
negative index values have a negative correlation with the magnitude of R0, we observed that an increase in
the values of ψ, µ, γ, σ, δ, τ and ε by 10% decreases the magnitude of R0 by 0.154%, 1.054%, 1.579%, 0.107%,
2.939%, 0.08%, and 5.823%, respectively. These results suggest that the burial rate of deceased humans ε, has
the highest negative influence on the magnitude of R0. In addition, an increase in the indirect transmission rate
of Ebola virus λ, will increase the magnitude of R0.

The analytical results obtained in this study demonstrate that the fractional-order model has a globally asympto-
tically stable disease-free equilibrium whenever R0 < 1. However, if R0 > 1, the fractional-order model has an
endemic equilibrium which is globally asymptotically stable.

Subsequently, we fitted the model parameters with the Ebola cases reported in Guinea from 22 March to 16
August 2014 at α = 0.82, 0.83, 0.84 and 0.85. From our numerical results, the model fits well with cases reported
and health education campaigns, prevention measures and treatments have the potential to minimize the spread
of Ebola in the population. As the memory effect α decreases from unity, the solution profiles of the model
(2) attain stability much faster than at α = 1. In addition, the different values of the fractional-order have no
effect on the stability of the model (2) but influence the time taken for stability to be attained. These results
demonstrate the importance of fractional-order over the classical integer in modeling biological systems.

As the modelling of EVD is not sufficiently developed, this work offers many opportunities in improvements for
future research where the model can be extended to incorporate a patch structure to account for the circulation
of the disease in many countries as it is the case in Western Africa. In addition we expect to improve this study
in the future by developing EVD model(s) with a time delay that will enable the comparison of the Caputo
derivative and time delay approach.
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Appendix

Appendix A: Mathematical concepts of fractional order

Consider the following differential equation of any dynamical system:

df(t)

dt
= βf(t) (30)

where β is any constant or parameter. In order to capture the influence of memory effects, we rewrite the
differential equation (30) in terms of dependent integral as follows:

df(t)

dt
= β

∫ t

t0

k(t− ξ)f(ξ)dξ (31)

In this case, k(t− ξ) plays the role of the time dependent kernel and is equivalent to a delta δ(t− ξ) in a classical
Markov process. This type of kernel provides the existence of important features which exist in real problems.
Now let us consider the following power-law correlation function for k(t− ξ):

k(t− ξ) =
1

Γ(α− 1)
(t− ξ)α−2 (32)

where Γ(α) denotes the Gamma function and 0 < α ≤ 1. In this case, the choice of coefficient Γ(α− 2) and the
exponent α− 1 allow to write the differential equation (30) to the form of fractional order derivative in Caputo
sense. Substituting this kernel in (30) the right hand side of function leads to the fractional integral of order

(α− 1) on the interval [b, t], denoted by bD
−(α−1)
t0

. Applying a fractional Caputo derivative of order (α− 1) in
(30) and using the fact that both Caputo fractional derivative and fractional integral are inverse operators, one
gets the following fractional differential equation:

Dα
t0f(t) = βαf(t)dt (33)

where Dα
t0f(t) denotes the Caputo fractional derivative of order α ∈ (0, 1), defined for an arbitrary function f(t)

as:

Dα
t0f(t) =

1

Γ(1− α)

∫ t

0

ḟ(ξ)

(t− ξ)α dξ. (34)

Thus, the function (34) defines the fractional order derivatives in Caputo sense.
Remarks : Note that, In order to avoid flaws regarding the time dimension, we introduce the α in parameter β
(right-hand side) of the differential equation (33) so that the dimension of the parameter β become (time)−α

which agree with the left-hand side of the differential equation.

Definition 3. For the differential equation described in (30)

(i) The trivial solution is said to be stable if, for every t0 ∈ R and every ε > 0, there exists δ = δ(t0, ε) such
that ||x(t0)|| < δ → ||x(t)|| < ε for all t > t0.

(ii) The trivial solution is said to be symptomatically stable if it is stable and, for any t0 ∈ R and any ε > 0,
there exists δa = δa(t0, ε) > 0 such that ||x(t)|| < δa → limt→∞ ||x(t)|| = 0

(iii) The trivial solution is said to be uniformly stable if it is stable and δ = δ(ε) > 0 can be chosen independently
of t0.

(iv) The trivial solution is uniformly symptomatically stable if it is uniformly stable and there exists δa
independently of t0, such that if ||x(t)|| < δa, then limt→∞ ||x(t)|| = 0.

(iii) The trivial solution is said to be uniformly stable if it is stable and δ = δ(ε) > 0 can be chosen independently
of t0.

(v) The trivial solution is globally symptomatically stable if it is symptomatically stable and δa can be any
arbitrarily large finite number.
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Appendix B: Non-negativity and boundedness of model solutions

In this section, we present the existence, uniqueness, positivity and boundedness of the solutions of model (2).
We commence our discussion by demonstrating existence and uniqueness of solutions. Our approach is based
on the fixed-point theory. Let B be a Banach space of real-valued continuous functions defined on an interval I
with the associated norm:

‖S,E, I,R,D, P‖ = ‖S‖+ ‖E‖+ ‖I‖+ ‖R‖+ ‖D‖+ ‖P‖ (35)

where ‖S‖ = sup{|S(t)| : t ∈ I, ‖E‖ = sup{|E(t)| : t ∈ I, ‖I‖ = sup{|I(t)| : t ∈ I, ‖R‖ = sup{|R(t)| : t ∈ I,
‖D‖ = sup{|D(t)| : t ∈ I, ‖P‖ = sup{|P (t)| : t ∈ I, and B = E(I)× E(I)× E(I)× E(I)× E(I)× E(I)× E(I),
with E(I) denoting the Banach space of real-valued continuous functions on I and the associated sup norm.
The model system (2) can be rewritten in the the following form:

Dα
t0S(t) = G1(t, S),

Dα
t0E(t) = G2(t, E),

Dα
t0I(t) = G3(t, I),

Dα
t0R(t) = G4(t, R),

Dα
t0D(t) = G5(t,D),

Dα
t0P (t) = G6(t, P ),


. (36)

By applying the Caputo fractional integral operator, system (36), reduces to the following integral equation of
Volterra type with Caputo fractional integral of order 0 < α < 1,

S(t)− S(0) = 1
Γ(α)

∫ t
0

(t− χ)α−1G1(χ, S)dχ,

E(t)− E(0) = 1
Γ(α)

∫ t
0

(t− χ)α−1G2(χ,E)dχ,

I(t)− I(0) = 1
Γ(α)

∫ t
0

(t− χ)α−1G3(χ, I)dχ,

R(t)−R(0) = 1
Γ(α)

∫ t
0

(t− χ)α−1G4(χ, I)dχ,

D(t)−D(0) = 1
Γ(α)

∫ t
0

(t− χ)α−1G5(χ,D)dχ,

P (t)− P (0) = 1
Γ(α)

∫ t
0

(t− χ)α−1G6(χ, P )dχ,


(37)

What follows, we prove that the kernels Gi, i = 1, 2, 3, 4, 5, 6 fulfill the Lipschitz condition and contraction under
some assumptions. In the following theorem, we have demonstrated for G1 and one can easily verify for the
remainder.

Theorem 5.1. Let us consider the following inequality

0 ≤ (β1k1 + β2k2 + λk3 + µ+ ψ) < 1.

The kernel G1 satisfies the Lipschitz condition as well as contraction if the above inequality is satisfied.

Proof. For S and S1 we proceed as below.

‖G1(t, S)−G1(t, S1)‖ = ‖ − ((β1k1 + β2k2 + λk3 + µ+ ψ)))(S(t)− S1(t))
= (µ+ ψ)‖S − S1‖+ β1I + β2D + λP )‖(S − S1)‖. (38)

Since I(t), D(t) and P (t) are bounded functions, i.e, ‖I‖ ≤ k1‖, ‖D‖ ≤ k2 and ‖P‖ ≤ k3, by the property of
norm functions, the above inequality (38) can be written as

‖G1(t, S)−G1(t, S1)‖ ≤ η1‖S(t)− S1(t)‖, (39)

where η1 = β1k1 + β2k2 + λk3 + µ+ ψ. Hence for G1 the Lipschitz condition is obtained and if an additionally
0 ≤ β1k1 + β2k2 + λk3 + µ+ ψ < 1, we obtain a contraction. The Lipschitz condition for the other kernels are

‖G2(t, E)−G2(t, E1)‖ ≤ η2‖E(t)− E1(t)‖,
‖G3(t, I)−G3(t, I1)‖ ≤ η3‖I(t)− I1(t)‖,
‖G4(t, R)−G4(t, R1)‖ ≤ η4‖R(t)−R1(t)‖,
‖G5(t,D)−G5(t,D1)‖ ≤ η5‖D(t)−D1(t)‖,
‖G6(t, P )−G6(t, P1)‖ ≤ η6‖P (t)− P1(t)‖,

 (40)
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Recursively, the expression in (37) can be written as

Sn(t)− S(0) = 1
Γ(α)

∫ t
0

(t− χ)α−1G1(χ, Sn−1)dχ,

En(t)− E(0) = 1
Γ(α)

∫ t
0

(t− χ)α−1G2(χ,En−1)dχ,

In(t)− I(0) = 1
Γ(α)

∫ t
0

(t− χ)α−1G3(χ, In−1)dχ,

Rn(t)−R(0) = 1
Γ(α)

∫ t
0

(t− χ)α−1G4(χ,Rn−1)dχ,

Dn(t)−D(0) = 1
Γ(α)

∫ t
0

(t− χ)α−1G5(χ,Dn−1)dχ,

Pn(t)− P (0) = 1
Γ(α)

∫ t
0

(t− χ)α−1G6(χ, Pn−1)dχ,


(41)

The difference between successive terms of system (36) in recursive form is given below:

φ1n = Sn(t)− Sn−1(t)

= 1
Γ(α)

∫ t
0

(t− χ)α−1(G1(χ, Sn−1)−G1(χ, Sn−2))dχ,

φ2n = En(t)− En−1(t)

= 1
Γ(α)

∫ t
0

(t− χ)α−1(G2(χ,En−1)−G2(χ,En−2))dχ,

φ3n = In(t)− In−1(t)

= 1
Γ(α)

∫ t
0

(t− χ)α−1(G3(χ, In−1)−G3(χ, In−2))dχ,

φ4n = Rn(t)−Rn−1(t)

= 1
Γ(α)

∫ t
0

(t− χ)α−1(G4(χ,Rn−1)−G4(χ,Rn−2))dχ,

φ5n = Dn(t)−Dn−1(t)

= 1
Γ(α)

∫ t
0

(t− χ)α−1(G5(χ,Dn−1)−G5(χ,Dn−2))dχ,

φ6n = Pn(t)− Pn−1(t)

= 1
Γ(α)

∫ t
0

(t− χ)α−1(G6(χ, Pn−1)−G6(χ, Pn−2))dχ,



(42)

with the initial conditions S0(t) = S(0), E0(t) = E(0), I0(t) = I, R0(t) = R(0), D0(t) = D(0) and P0(t) = P0.
Taking the norm of the first equation of (42), we obtain

‖φ1n(t)‖ = ‖Sn(t)− Sn−1(t)‖

= ‖ 1

Γ(α)

∫ t

0

(t− χ)α−1(G1(χ, Sn−1)−G1(χ, Sn−2))dχ‖

≤ 1

Γ(α)
‖
∫ t

0

(t− χ)α−1(G1(χ, Sn−1)−G1(χ, Sn−2))dχ‖. (43)

Applying the Lipschitz condition (39) one gets

‖Sn(t)− Sn−1(t)‖ ≤ 1

Γ(α)
η1

∫ t

0

(t− χ)α−1‖Sn−1 − Sn−2‖dχ. (44)

Thus, we have

‖φ1n(t)‖ ≤ 1

Γ(α)
η1

∫ t

0

(t− χ)α−1‖φ1n(t)‖dχ. (45)

Similarly, for the remainder of the equations in system (2) we have

‖φ2n(t)‖ ≤ 1
Γ(α)

η2

∫ t
0

(t− χ)α−1‖φ2n(t)‖dχ,
‖φ3n(t)‖ ≤ 1

Γ(α)
η3

∫ t
0

(t− χ)α−1‖φ3n(t)‖dχ,
‖φ4n(t)‖ ≤ 1

Γ(α)
η4

∫ t
0

(t− χ)α−1‖φ4n(t)‖dχ,
‖φ5n(t)‖ ≤ 1

Γ(α)
η5

∫ t
0

(t− χ)α−1‖φ5n(t)‖dχ,
‖φ6n(t)‖ ≤ 1

Γ(α)
η6

∫ t
0

(t− χ)α−1‖φ6n(t)‖dχ,


(46)
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From (46) one can write

Sn(t) =
∑n
i=1 φ1i(t), En(t) =

∑n
i=1 φ2i(t), In(t) =

∑n
i=1 φ3i(t),

Rn(t) =
∑n
i=1 φ4i(t), Dn(t) =

∑n
i=1 φ5i(t), Pn(t) =

∑n
i=1 φ6i(t),

}
(47)

Now, we claim the following result which guaranteed the uniqueness of solution of model (2).

Theorem 5.2. The proposed fractional epidemic model (2) has a unique solution for t ∈ [0, T ] if the following
inequality holds

1

Γ(α)
bαηi < 1, i = 1, 2, ....., 7. (48)

Proof. Earlier we have shown that the kernels conditions given in Eqs. (39) and (40) holds. Thus by considering
the Eqs. (46) and (48), and by applying the recursive technique we obtained the succeeding results as below:

‖φ1n(t)‖ ≤ ‖S0(t)‖

[
1

Γ(α)
bαη1

]n
, ‖φ2n(t)‖ ≤ ‖E0(t)‖

[
1

Γ(α)
bαη2

]n
,

‖φ3n(t)‖ ≤ ‖I0(t)‖

[
1

Γ(α)
bαη3

]n
,

‖φ4n(t)‖ ≤ ‖R0(t)‖

[
1

Γ(α)
bαη4

]n
, ‖φ5n(t)‖ ≤ ‖D0(t)‖

[
1

Γ(α)
bαη5

]n
,

‖φ6n(t)‖ ≤ ‖P0(t)‖

[
1

Γ(α)
bαη6

]n
,



(49)

Therefore, the above mentioned sequences exist and satisfy ‖φ1n(t)‖ → 0, ‖φ2n(t)‖ → 0, ‖φ3n(t)‖ → 0,
‖φ4n(t)‖ → 0, ‖φ5n(t)‖ → 0, and ‖φ6n(t)‖ → 0. Furthermore, from Eq. (49) and employing the triangle
inequality for any k, we one gets

‖Sn+k(t)− Sn(t)‖ ≤
n+k∑
j=n+1

T j1 =
Tn+1

1 − Tn+k+1
1

1− T1
,

‖En+k(t)− En(t)‖ ≤
n+k∑
j=n+1

T j2 =
Tn+1

2 − Tn+k+1
2

1− T2
,

‖In+k(t)− In(t)‖ ≤
n+k∑
j=n+1

T j3 =
Tn+1

3 − Tn+k+1
3

1− T3
,

‖Rn+k(t)−Rn(t)‖ ≤
n+k∑
j=n+1

T j4 =
Tn+1

4 − Tn+k+1
4

1− T4
,

‖Dn+k(t)−Dn(t)‖ ≤
n+k∑
j=n+1

T j5 =
Tn+1

5 − Tn+k+1
5

1− T5
,

‖Pn+k(t)− Pn(t)‖ ≤
n+k∑
j=n+1

T j6 =
Tn+1

6 − Tn+k+1
6

1− T6
,



(50)

where Ti = 1
Γ(q)

bqηi < 1 by hypothesis. Therefore, Sn, En, In, Rn, Dn and Pn are regardedas Cauchy sequences

in the Banach space B(J). Hence they are uniformly convergent as described in [52]. Applying the limit theory on
Eq. (41) when n→∞ affirms that the limit of these sequences is the unique solution of system (2). Ultimately,
the existence of a unique solution for system (2) has been achieved.

We now demonstrate the positivity of solutions for all t ≥ 0. To prove positivity and boundedness of solutions,
we need the following Generalized Mean Value Theorem in [?] and corollary.
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Lemma 1. Suppose that f(x) ∈ C[a, b] and Dα
t0f(x) ∈ C[a, b], for 0 < α ≤ 1, then we have

f(x) = f(a) +
1

Γ(α)
(Dα

t0f)(ξ)(x− a)α (51)

with a ≤ ξx, ∀x ∈ (a, b] and Γ(·) is the gamma function.

Corollary 1. Suppose that f(x) ∈ C[a, b] and Dα
t0f(x) ∈ C(a, b], for 0 < α ≤ 1. If Dα

t0f(x) ≥ 0, ∀x ∈ (a, b),
then f(x) is non-decreasing for each x ∈ [a, b]. If Dα

t0f(x) ≤ 0, ∀x ∈ (a, b), then f(x) is non-increasing for each
x ∈ [a, b].

We now prove that the non-negative orthant R6
+ is positively invariant region. To do this, we need to show that

on each hyperplane bounding the non-negative orthant, the vector field points to R6
+. From model (2), one gets:

Dα
t0S(t)|S=0 = Λα ≥ 0, (52)

Dα
t0E(t)|E=0 = ψαS(t) ≥ 0, (53)

Dα
t0I(t)|I=0 = (βα1 I(t) + βα2 D(t) + λαP (t))(S(t) + γαE(t)) ≥ 0, (54)

Dα
t0R(t)|R=0 = σαI(t) ≥ 0, (55)

Dα
t0D(t)|D=0 = (µα + δα)I(t) ≥ 0, (56)

Dα
t0P (t)|P=0 = ραI(t) + θαD(t) ≥ 0, (57)

Thus, by Corollary 1, the solution of model (2) are always positive for t ≥ 0. We now demonstrate that all
solutions of model (2) are bounded above for all t ≥ 0. To do this, we need the following Lemma 2 and Lemma
3.

Lemma 2. (see [53]). Let α > 0, n − 1 < α < n − N. Suppose that f(t), f ′(t), ..., f (n−1)(t) are continuous on
[t0,∞) and the exponential order and that Dα

t0f(t) is piecewise continuous on [t0,∞). Then

L{Dα
t0f(t)} = sαF(s)−

n−1∑
k=0

sα−k−1f (k)(t0) (58)

where F(s) = L{f(t)}.

Lemma 3. (see [54]). Let C be the complex plane. For any α > 0 β > 0, and A ∈ Cn×n, we have

L{tβ−1Eα,β(Atα)} = sα−β(sα −A)−1,

for Rs > ‖A‖
1
α , where Rs represents the real part of the complex number s, and Eα,β is the Mittag-Leffler

function [55].

Since all solutions of model system (2) have been shown to be positively invariant and have a lower bound zero
(52)-(57), we now proceed to demonstrate that these solutions are bounded above. By summing all equations
of system (2) one gets:

Dα
t0N(t) = Λα − µαN(t)− εαD(t)− (τα + ηα)P (t)

≤ Λα − µαN(t). (59)

Taking the Laplace transform of (59) leads to:

sαL(N(t))− sα−1N(0) ≤ Λα

s
− µαL(N(t)). (60)

Combining like terms and arranging leads to

L(N(t)) ≤ Λα
s−1

sα + µα
+N(0)

sα−1

sα + µα
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= Λα
sα−(1+α)

sα + µα
+N(0)

sα−1

sα + µα
. (61)

Applying the inverse Laplace transform leads to

N(t) ≤ L−1

{
Λα

s−1

sα + µα
+N(0)

sα−1

sα + µα

}
+ L−1

{
N(0)

sα−1

sα + µα

}
≤ ΛαtαEα,α+1(−µtα) +N(0)Eα,1(−µtα)

≤ Λv

µα
µαtαEα,α+1(−µtα) +N(0)Eα,1(−µtα)

≤ max

{
Λα

µα
, N(0)

}
(µαtαEα,α+1(−µtα) + Eα,1(−µtα))

=
C

Γ(1)
= C, (62)

where C = max

{
Λα

µα , N(0)

}
. Thus, N(t) is bounded from above. This completes the proof of Theorem (3.1).
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