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Abstract: The shape and topology of pores have significant impacts on the gas storage properties of
nanoporous materials. Metal–organic frameworks (MOFs) are ideal materials with which to tailor
to the needs of specific applications, due to properties such as their tunable structure and high
specific surface area. It is, therefore, particularly important to develop descriptors that accurately
identify the topological features of MOF pores. In this work, a topological data analysis method was
used to develop a topological descriptor, based on the pore topology, which was combined with the
Extreme Gradient Boosting (XGBoost) algorithm to predict the adsorption performance of MOFs
for methane/ethane/propane. The final results show that this descriptor can accurately predict the
performance of MOFs, and the introduction of the topological descriptor also significantly improves
the accuracy of the model, resulting in an increase of up to 17.55% in the R2 value of the model
and a decrease of up to 46.1% in the RMSE, compared to commonly used models that are based
on the structural descriptor. The results of this study contribute to a deeper understanding of the
relationship between the performance and structure of MOFs and provide useful guidelines and
strategies for the design of high-performance separation materials.

Keywords: topological data analysis (TDA); metal–organic frameworks (MOFs); topology of pores;
petroleum; adsorption

1. Introduction

In nanoporous materials, the pore structure has a significant impact on the perfor-
mance of the material, which can affect the strength, thermal conductivity, adsorption
capacity, and other key properties of the material. By adjusting the pore size, distribution,
and shape, the functionality and performance of the material can be precisely modulated.
Yongjin [1] found that the performance of porous materials for carbon capture or methane
storage could be improved by several orders of magnitude simply by modifying the pore
structure. Conventional porous materials, such as zeolites and activated carbons, have
applications in separation and adsorption, but their pore structures are usually fixed. In
contrast, metal–organic frameworks (MOFs), which are composed of organic ligands and
metal clusters, have highly tunable pore structures. MOFs represent a class of porous
materials composed of metal ions or clusters combined with organic ligands, and their
high degree of tunability and excellent pore structures have made them highly interesting,
cutting-edge materials in the field of gas separation. The unique properties and versatility
of MOF materials offer great potential for applications in natural gas separation [2] and
storage [3], as well as in gas adsorption [4], separation [5], and transport [6].

The rapid development of the global economy and population growth have led to an
increase in energy consumption, resulting in a sharp rise in the emissions of greenhouse
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gases and pollutants. Countries all over the world have been at the forefront of efforts
to mitigate this problem. For instance, in China, the government strongly advocates for
low-carbon and green energy, leading to increased attention and investment in the natural
gas sector. In recent years, natural gas production and consumption have shown strong
upward trends [7]. Clean and efficient natural gas is currently considered one of the most
strategic options for optimizing energy structures, saving energy, and reducing emissions.
However, natural gas typically contains a range of hydrocarbon components with different
carbon chain lengths: methane (C1) typically makes up 70 to 90 percent of natural gas, while
ethane (C2) and propane (C3) are also important components, with contents ranging from
0 to 22 percent. These components are critical for energy supply, chemical production, and
industrial applications. Methane is an essential component of natural gas for transportation
and storage and is widely used for domestic and industrial heating, and as a fuel. Pure
ethane, on the other hand, is an important raw material in the petrochemical industry, used
in the synthesis of ethylene and other chemicals, including plastics and synthetic rubber.
Pure propane can be used to produce liquefied petroleum gas (LPG) and is also used in
the synthesis of chemicals, such as propylene and propylene glycol. Efficient separation of
the C1/C2/C3 components, which is recognized as one of the seven separation processes
that have had a significant impact on the world [8], is critical to the production, processing,
and transportation of natural gas. Conventional methods for separating C1, C2, and C3
face several challenges [9,10]. Firstly, conventional distillation and adsorption methods
require high temperatures and pressure, resulting in increased energy consumption, costs,
and greenhouse gas emissions. Secondly, due to the high similarity among the components,
conventional methods have limited separation efficiency, making it difficult to achieve high-
purity separation. However, using adsorption separation technology [11,12] to separate C1,
C2, and C3 offers several advantages, including high selectivity, renewability, controllability,
and environmental friendliness. Chen’s group [13–15] synthesized a series of MOFs, called
USTA, to separate C1–C3 through adsorption; Zhang et al. [16] synthesized a hydrophobic
metal–organic framework, UPC-21, using polyaromatic units, for efficient separation of
C2/C1; Li’s group [17] proposed a new strategy for the synthesis of MIL-100 (Fe), facilitated
by room temperature oxidizing radicals for the separation of C1–C3 ternary gas mixtures.

In recent years, machine learning (ML) has been increasingly used to screen high-
performance MOFs, especially in the field of material design and discovery. Luo et al. [18]
used automated data mining and machine learning models to predict the rationalization
of MOF synthesis conditions, which accelerated the discovery process for MOFs; Wang
et al. [19] discovered a high-performance MOF for ethane/ethylene separation using in-
terpretable machine learning; Hakan et al. [20] performed a computational screening of
MOFs for acetylene separation and found that anionic columnar MOFs exhibited high
performance; Hilal et al. [21] developed a machine learning model that accurately predicted
the adsorption and diffusion characteristics of six gases (He/H2, He/N2, He/CH4, H2/N2,
H2/CH4, and N2/CH4) in MOFs. ML can rapidly analyze the structure and properties of
MOFs to help screen the most promising candidates from large MOF databases, speeding
up the material screening process and reducing the cost of trial and error. In addition,
ML can reveal the complex relationship between the structure and properties of MOFs,
automating the material design process. This can help in the discovery of new material de-
sign principles and improve the efficiency of material design, leading to new opportunities
and breakthroughs in material science. In most applications of MOFs, the pore topology
has as important an impact on the performance of an MOF as its chemical composition,
but less research has been conducted on the relationship between pore topology and the
performance of MOFs.

In this work, we developed a topological descriptor, based on the persistence barcodes
of MOF pore structures, which are representations of the pore topological information of
MOFs, obtained through topological data analysis techniques, and constructed an auto-
mated processing software, which can automatically generate the topological descriptor
based on the crystallographic information file (.cif) of MOFs. Then, we predicted the
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performance of MOFs and investigated the performance of the machine learning model
with different combinations of descriptors. The topological descriptor was found to have a
more important influence in predicting the performance of materials. Finally, the feature
importance of different target gas adsorption predictions was analyzed by combining the
machine learning feature importance method.

2. Model and Methods
2.1. Molecular Model

In this study, we used a large crystallographic dataset of 137,953 hMOFs, as derived
by Wilmer et al. [22]. To eliminate the influence of highly hydrophilic hMOFs, we screened
31,399 hydrophobic hMOFs, based on their Henry coefficients of water vapor. We then used
high-throughput molecular simulations to calculate the structural descriptors of the MOFs,
which included their porosity (φ), density (ρ), volumetric surface area (VSA), and largest
cavity diameter (LCD). The LCDs were calculated using Zeo++ version 0.3 software [23].
The VSA and φ were calculated using RASPA version 1.9.15 software [24], using He with a
diameter of 2.58 Å and N2 with a diameter of 3.64 Å as probe molecules. The N2 model is
an uncharged spherical model.

The interaction between the adsorbate atoms and the MOF was described using the
Lennard-Jones (LJ) and electrostatic potentials:

uLJ+elec(r) = ∑ 4εij

(σij

rij

)12

−
(

σij

rij

)6
+ ∑

qiqj

4πε0rij
(1)

where uLJ+elec(r) is the interaction potential energy between atom i and atom j; εij and σij
denote the depth of the potential energy and the location where the LJ potential energy is
zero (also known as the point of contact), respectively; rij denotes the distance between
the interacting atoms; σij represents the equilibrium distance between the atoms; qi and
qj denote the atoms’ charges; ε0= 8.8542 × 10−12C2·N−1 denotes the vacuum permittivity.
The LJ potential energy parameters of all hMOFs come from the Universal Force Field
(UFF) [25], as shown in Table S1 (Supplementary Materials). The atomic charges of MOFs
were calculated using the MEPO-Qeq method.

2.2. GCMC Simulation

In this work, GCMC simulations of the adsorption properties of C1, C2, and C3 gas
mixtures in natural gas were calculated by simulating hMOFs at 298 K and 1 × 106 Pa,
for which the ratio of the amount of substance of the ternary gas mixtures C1, C2, and C3
was 7:2:1. The RASPA package was used for the simulation process, and each MOF was
simulated independently. The MOF structure remained rigid throughout each simulation.
The interactions between the MOFs and the gas mixture were calculated using the Lorentz-
Berthelot rule. The cells were simulated with periodic boundary conditions along each
direction, extended to at least 24 Å in the x, y, and z directions. LJ interactions were calcu-
lated by setting the spherical truncation radius to 12 Å. The Ewald summation method was
employed for electrostatic interactions in the calculation of the Henry’s coefficient for water.
Electrostatic interactions were calculated using the Ewald summation method. All GCMC
simulations were performed using the RASPA software. The simulations were conducted
for 200,000 cycles for each MOF. The first 100,000 cycles were used for equilibration, and
the last 100,000 cycles were used for ensemble averages. Each cycle comprised n GCMC
experimental moves (where n is the number of adsorbate molecules). The GCMC moves
included translation, rotation, regeneration, and exchange. The simulation’s accuracy
was also verified by testing different numbers of GCMC cycles. It was discovered that
increasing the number of cycles had little impact on the simulation results.
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2.3. Datamining the Topology of MOF Pores
2.3.1. Topological Data Analysis

MOF crystals possess unique pore topology. To analyze the topological features
of MOFs with large amounts of data, we use Topological Data Analysis (TDA), which
employs persistent homology [26] to calculate the topological features of data at different
scales. The main objective is to record the topological invariants of the structure, such
as β0, β1, and β2, as the atomic scale changes. These invariants are denoted as persistent
barcodes. The persistent barcodes generated correspond to topological features such as
connected components, holes, and higher dimensional counterparts (e.g., cavities) in the
data. Professors Pan and Wei [27] have introduced a mathematical method into material
science that utilizes persistent homology. This method maps material structures from
high-dimensional space to low-dimensional topological space, thus accelerating the study
of the relationship between topology and material properties.

2.3.2. Persistent Homology

Persistent homology is widely used to understand features in data, especially when
dealing with complex structures and multi-scale data. Persistent homology [28,29] is a
technique used in topological data analysis to capture topological structures in a dataset and
measure their persistence or stability at different scales. As the filtering radius increases,
connections between points generate simplexes. These simplexes include 0-simplexes
(points), 1-simplexes (line segments), 2-simplexes (triangles), 3-simplexes (tetrahedra), and
so on. These simplexes combine to form higher-dimensional simplexes, and persistent
homology captures the state of these composites at different filtering radii. In homology
theory, a homology group is an algebraic structure used to characterize the topology of
a space. The homology groups’ dimensions and generators provide information on the
topological structures present in the dataset, such as connected components, holes, and
voids in space. The homology group Hk(X) is represented by an abstract generating element
that reflects the k-dimensional topology. The dimension bk(X) (i.e., βk) indicates the number
of linearly independent generating elements in the k-dimensional homology group. For
example, in the case of the 0-dimensional homology group, the generating element is
the connected component, and the dimension is the number of connected components.
For each homology group, we can visualize how the homology features vary with the
filter radius by constructing a persistence barcode. The horizontal axis in the persistence
barcode represents the radius. The bar represents the process, from birth to death, of a
topological feature, and the length of the bar (death–birth) represents the persistence of
this topological feature.

2.3.3. Pore Topology Persistence Barcode

Persistence barcodes are used to characterize the pore structures of materials by
encoding information about the pore structure of MOFs into the unique form of data. They
were used to data-materialize the topology of the MOFs, and they can be used as descriptors
to provide representations of the pore structures of MOFs. To obtain the persistence barcode
for each MOF, the atomic coordinates were first acquired using the pymatgen [30] tool, and
then the persistence barcode was computed by inputting the atomic coordinates into the
persistence homology point cloud of the topology machine learning tool giotto-tda [31].
Finally, the homology group and connectivity number of each MOF were output in the
dimensions corresponding to β0, β1, and β2 for isolated components, holes, and cavities
(Figure 1a).
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Figure 1. (a) Flowchart of the development of the topological descriptor for hMOF5035530 (the
horizontal coordinate in the pore geometry barcode represents the filter radius and the vertical
coordinate represents the number of barcodes). (b–d) Structure of hMOF5035530. Red balls represent
oxygen atoms, grey balls represent carbon atoms, white balls represent hydrogen atoms, green
balls represent chlorine atoms, blue balls represent nitrogen atoms and grey-blue balls represent
zinc atoms.

During the persistent homology computation, point-to-point connections lead to the
birth and death of topological features as the distance parameter increases, and each topo-
logical feature is assigned a birth time and a death time; features with longer durations
(death–birth) are usually of significant relevance, while features with shorter persistence du-
rations are usually considered noise. Figure 1b–d show the pore structure of hMOF5035530,
in which the 1D long-spaced barcodes in Figure 1a represent the number of channels in
the pore system of the MOFs, and the 2D long-spaced barcodes represent the number of
connecting cavities between the lamellar channels. It is often important to track the birth,
death, and duration of each barcode, as this information is related to the bond lengths, rings
(or channels), and cavity sizes of the unique structures in the MOFs. To extract features
from the generated material barcodes and obtain vectorized feature vectors, we counted
the number of minimums, maximum, mean, standard deviation, and sum, as well as the
birth–death pairs of birth, death, and persistence information for each barcode in different
dimensions. Thus, for each MOF, we have a total of 42 topological representations specific
to its pore structure, as shown in Table S2 (Supplementary Materials). These descriptors
capture the structural topological information of the MOF materials, including the pore
structure, the type of connectivity, and the location of the functionalized groups, and they
are able to quantitatively materialize the structural features of the MOF materials.

3. Results and Discussion
3.1. Structure–Performance Relationships

Following the high-throughput calculations, univariate analyses were conducted to
investigate the correlation between the material structure and the separation performance
of the complex ternary gas mixtures of C1, C2, and C3 in the MOFs. Figure 2a–c illustrate
the relationship between the adsorption of C1, C2, and C3 components and LCD. When
LCD is less than 2.5 Å, the adsorption of alkanes by MOFs is limited by the space between
alkane molecules and pore walls, resulting in almost no adsorption. When the length of
the shortest distance between the alkane molecules and the skeleton molecules of MOFs is
between 2.5 Å and 6 Å, the intermolecular relative force increases with the length of the
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shortest distance, and the amount of adsorption also increases. A peak appears, known as
the first peak, corresponding to the LCD, which is slightly larger than the kinetic diameter
of the C1/C2/C3 molecule (C1~3.8 Å, C2~3.9 Å, and C3~4.3 Å). As the LCD increases, the
interaction between the backbone molecules and the alkane molecules weakens, causing
NC1–NC3 to decrease. Surprisingly, the adsorption increases again when the LCD is between
6.5 Å and 12.5 Å, forming a relatively strong peak known as the second peak. The second
peak corresponds to approximately three times the kinetic diameter of the C1/C2/C3
molecule. The intensities of the first and second peaks gradually increase with the growth
of the carbon chain. In the univariate analysis, we analyzed the relationships between
the selectivity of individual components C1, C2, and C3 and LCD. Log transformations
were applied to reduce the effects of extreme values due to the wide distribution of the
variable SC1/C2+C3. Figure 2d–e show the relationships between the selectivity of C1, C2,
and C3 components and LCD. The selectivity distribution plots of C1, C2, and C3 exhibit
significant peaks at different values of LCD, corresponding to the kinetic diameter of the
C1/C2/C3 molecule. This peak gradually shifts backward with the growth of the carbon
chain. The selectivity peak appears at smaller LCD values because the molecular radii
of C1, C2, and C3 gradually increase, and C1 molecules with shorter carbon chains can
enter smaller pores more easily. As the carbon chain length increases, the molecules of C2
and C3 require larger pores to be adsorbed efficiently, causing the selectivity peaks to shift
gradually back to larger LCD values. The discovery of the second peak in the constitutive
analysis is similar to the work of Yuan et al. [32] and effectively broadens the scope of the
structural design of high-performance materials.
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(d) log SC1/C2+C3 and LCD, (e) SC2/C1+C3 and LCD, and (f) SC3/C1+C2 and LCD.

3.2. Machine Learning

In order to analyze the behaviors of MOFs for the separation of ternary C1, C2, and C3
gas mixtures and to evaluate their overall performance, we have introduced the variable
TSN (trade-off between SC3/C1+C2 and NC3) as an adsorption-selectivity trade-off variable,
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which was previously used by Shah et al. [33] to evaluate the performance of molecular
sieve adsorbents for the removal of H2S. The formula for calculating TSN is as follows:

TSN = Ni × ln S i
j1+j2

(2)

We added the topological and structural descriptors as descriptors to predict the
adsorption separation performance of MOFs against a ternary gas mixture of C1/C2/C3.
To test the accuracy, robustness, and efficiency of the topological features, we employed the
XGBoost [34] algorithm. This integrated learning algorithm is an extension of the gradient
boosting algorithm, which improves the model’s generalization ability and prediction
accuracy by integrating multiple weak learners. The XGBoost algorithm simplifies the
model by using the regular term technique to avoid overfitting. The hyperparameters used
in XGBoost are detailed in the Supplementary Materials. Chen et al. [35] also considered
XGBoost to be the optimal method for predicting the MOFs’ adsorption systems. The ML
model was constructed using scikit-learn version 1.2.1 [36] software. In this work, data
from 31,399 hydrophobic hMOFs were divided into training and testing sets in the ratio of
8:2. The model was evaluated using the root mean square error (RMSE) and the coefficient
of determination (R2), as shown in Supplementary Materials.

The accuracy and versatility of the topological descriptors were evaluated by using the
XGBoost algorithm to predict the N, S, and TSN of C1, C2, and C3. The results of the models
trained with the structural descriptors, topological descriptors, and the combination of
these descriptors (S + T) were computed for different target gases (Table 1 and Table S3
(Supplementary Materials)). (i) the addition of topological descriptors helps to improve
the overall model performance and reduce model-related errors, but the selective holistic
models for C1 and C2 show poor prediction results (R2 < 0.67). (ii) The model shows
a general prediction (R2 > 0.80) for the SC3, which can be attributed to the fact that the
topological descriptors more accurately capture the pore geometry of the MOFs, thus
providing a better explanation and prediction of the adsorption behavior of C3 long-chain
molecules. (iii) The overall model demonstrates improved prediction for C1, C2, and
C3 adsorption quantities. The R2 value of the model exceeds 0.88 when using only the
structural or topological descriptor. When combining S + T descriptors, the R2 value
of the model exceeds 0.97 (as shown in Figure 3d), which suggests that S + T play a
synergistic role in the prediction of adsorption quantities, and improve the performance
of the model because the topological descriptor records the sizes of all channels in the
MOFs, as well as the size information of different cavities, which can capture information
not contained in the structural descriptor. Topological descriptors can capture multi-scale
geometrical information of the material, enabling the model to consider the multi-faceted
features of the molecular structure comprehensively [37]. (iv) The prediction of TSN is
highly accurate for TSNC1 and TSNC3 (R2 > 0.93), and TSNC2 can also achieve an R2

> 0.84. This is because the topological descriptor can capture multi-scale geometrical
information of the material, enabling the model to consider the multifaceted features of the
molecular structure comprehensively, resulting in more accurate TSN predictions. The use
of topological descriptors makes them more appropriate for predicting the performance of
the C1/C2/C3-MOFs system. Therefore, XGBoost, supplemented with the combination of
S + T variables, can accurately predict the performance of the C1/C2/C3-MOF system. The
findings suggest that topological descriptors are superior in predicting the performance of
the C1/C2/C3-MOF system. Therefore, using the XGBoost algorithm in combination with
S + T variables is an efficient and accurate strategy for predicting the system’s performance.
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Table 1. Evaluation of XGBoost for NC1, NC2, NC3, TSNC1, TSNC2, and TSNC3 (∆ represents the
percentage of improvement in the model, measured by the increase in R2 and the decrease in RMSE).

Performance
R2 Scores RMSE

Structural Topological T + S ∆ Structural Topological T + S ∆

NC1 0.975 0.896 0.986 1.13% 0.123 0.250 0.093 24.88%
NC2 0.943 0.889 0.980 3.92% 0.231 0.323 0.137 40.92%
NC3 0.923 0.885 0.978 5.96% 0.536 0.656 0.289 46.10%

TSNC1 0.928 0.863 0.971 4.63% 0.361 0.498 0.231 36.11%
TSNC2 0.718 0.715 0.844 17.55% 0.253 0.255 0.189 25.53%
TSNC3 0.812 0.837 0.937 15.39% 1.871 1.742 1.083 42.12%
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Figure 3a–c and Figure S1 (Supplementary Materials) display the distributions of
calculated and predicted data for the XGBoost algorithm using different feature sets to
predict the N, S, and TSN for C1, C2, and C3. The figure shows that, after adding the
topological descriptor, the yellow points are more concentrated on the diagonal than the
green points, improving the overall prediction effect, especially for the medium–high
performance region (N greater than 1.5 mol/kg), where the prediction accuracy is signif-
icantly improved. The medium–high performance region refers to MOF materials with
better adsorption and separation properties. This study aims to improve the prediction
of performance parameters, as accurate prediction is critical for component separation
applications in natural gas. Another key improvement is that we observe an improved
convergence between the simulated and predicted data; as shown in Table 1, the R2 value
of the model has increased and the RMSE value has decreased, indicating a better fit of
the model to the data. This improvement results in predicted values that are closer to the
actual observed values, and the model performs better. The topological descriptor of the
material can provide multi-scale structural information to comprehensively describe its
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characteristics. This has a significant impact on the MOF-C1C2C3 system, improving the fit
of the XGBoost model to actual MOF performance data, and making it more consistent with
theoretical simulations. Ensuring the reliability of performance predictions on unknown
materials is crucial for the credibility and practicality of our model.

3.3. Analysis of the Relative Importance of Features

To investigate the influences of topological descriptors on MOFs’ performance, we
analyzed and quantified their relative importance using the XGBoost algorithm. In this
work, the topological descriptors include three types of features: zero-dimensional features,
with information such as bond lengths in the MOFs crystal structure; one-dimensional
features, describing the ring and channel distributions; and two-dimensional features,
describing the voids. The structural descriptors include the LCD, ρ, VSA, and φ. Figure 4a
shows the relative importance values of the topological descriptors for the adsorption of the
three components, C1, C2, and C3. We observe that the relative weight of the topological
descriptors gradually increases as the carbon chain length increases. This suggests that
MOF topological descriptors have more pronounced influences on the adsorption behavior
of molecules with larger molecular sizes and longer carbon chains for the following reasons:
(i) enhanced pore adaptation: as the carbon chain length increases, long-chain molecules
require larger pores for effective adsorption, and the topological descriptors can capture the
pore sizes, shapes, and, especially, the connectivity levels of the MOF materials to improve
the prediction; (ii) with the increase in carbon chain length, the long-chain molecules
will occupy more space in the structures of MOF materials, with higher contact area and
stronger interaction with the pore walls, and the topological features can describe the
two-dimensional spatial characteristics between MOF pores, thus reflecting the adsorption
structure of long-chain molecules and improving prediction accuracy. Figure 4b shows that
the topological descriptors are all the second most important descriptors in predicting the
adsorption of different components, a result indicating that the topological descriptors play
important roles in predicting gas adsorption. Therefore, the topological descriptors can be
used to accurately predict the selective adsorption properties of C1, C2, and, especially, C3
gases, which is helpful for further screening the optimal MOFs suitable for the adsorption
and separation of C3 and guiding the experimental synthesis.

For the C1/C2/C3 components, our ML model shows excellent predictive ability,
which is reflected in the prediction of S, N, and TSN, especially for long-chain C3, and for
SC3 and TSNC3; the model performance based on the topological descriptor outperforms
that based on the structural descriptor, and the combination of both performs better, as
shown in Figure 4c,d. Furthermore, the effects of different topological features for N, S,
and TSN of long-chain C3 are quantified and discussed, and the results are shown in
Figure 5. Firstly, in this work, topological descriptors showed absolute importance in
the prediction of SC3 and TSNC3 (see Figure 5a). Topological descriptors are datamined
representations used to describe crystal structures, and they capture topological features of
MOF crystals, such as connectivity and ring structure. These descriptors provide critical
information about an MOF’s crystal structure and internal pores, which are essential for
understanding adsorption properties and selectivity. Secondly, we found that, among the
42-bit topological descriptors, the 2D topological descriptors are significant in predicting
SC3 and TSNC3 (see Figure 5b). Notably, the most important descriptors in the 1D and
2D topological descriptors for the prediction of TSNC3 were identified as the maximum
death time values (21-bit and 38-bit descriptors) in the 1D and 2D topological descriptors,
respectively, as shown in Figure S2 (Supplementary Materials). Data points in a persistent
barcode correspond to gaps and channels of a certain size in the material. In 2D persistent
barcodes, the point (b, d) is generated by the cavity of a maximum sphere, with a fitted
radius of d, and the radius of the largest sphere that can enter the cavity is b. In 1D
persistent barcodes, the point (b, d) reflects a one-dimensional channel in the material,
specifically the narrowest ‘bottleneck’ in the channel. The d value here records the radius
of the largest sphere that can pass through the bottleneck, and the b value records the
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minimum distance between the atoms that make up the bottleneck. These two descriptors
represent the radius of the largest sphere that can enter the 2D voids and the radius of the
largest sphere that can pass through the narrowest channel, respectively, which are closely
related to the LCD and PLD of the MOF and play key roles in the performance of machine
learning models. On this basis, we further explored the relationships between the most
significant descriptors and the MOFs performance (see Figure 5c) and observed that the
MOF materials exhibited significant peaks in the adsorption separation performance for C3
at values of 10~15 for the maximum death time in the 1D and 2D topological descriptors.
This can be attributed to the fact that the adsorption separation of gases benefits from a
more homogeneous pore structure, i.e., the closer the ratio of the maximum pore size to the
minimum pore size is to 1, the more homogeneous a state the pore structure of the MOF
material exhibits (see Figure 5d), which effectively facilitates the adsorption separation
process of the C3 component, a result that has also been verified in a previous study [38].
This provides important guidance and insights for deepening the understanding of the
factors influencing the adsorption performance of MOF materials, as well as for the rational
design of efficient gas adsorption materials.
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(b) Relative importance values of topological features of different dimensions. (c) Relationships
between 1D latest time of death, 2D latest time of death, and NC3, SC3, and TSNC3. The green dots
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xz-plane, the star symbol represent the N of each MOF, the larger the N, the larger the star, and S is
represented by the color mapping on the right of the figure. (d) Pore structure of hMOF5058511.

4. Conclusions

In this work, to further identify the pore topology of MOFs, we successfully quantified
the pore topology of MOFs based on the topological data analysis method and constructed
an automated processing software capable of automatically generating topological de-
scriptors, based on the input cif files of MOF materials. For the methane/ethane/propane
adsorption performance of MOFs, the XGBoost model showed accurate prediction (R2 =
0.986), indicating that the model was able to accurately predict the performance of MOFs.
The results of the XGBoost feature significance analysis showed that the topological de-
scriptors play key roles in predicting the performance of the model, and in the course of
our study, we found that the relative importance of the topological descriptors gradually
increased with the increase in the carbon chain length. The relative importance of the
topological descriptor gradually increases, a finding that reveals an important relation-
ship between structure and performance and provides us with a deeper understanding
of MOFs. The inclusion of this descriptor significantly improves the performance of the
overall machine learning model, compared to the traditional structural descriptor, and
the overall performance of the topological descriptor is even significantly better than the
performance of the traditional structural descriptor in the predictions of TSNC3 and SC3.
The topological descriptors are generic and can be used to predict the gas adsorption
properties of different systems. Our study provides insights into the relationship between
the performance and structure of MOFs and offers useful guidelines and strategies for the
design of high-performance separation materials. These findings not only advance the
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understanding of MOFs, but also provide new directions for future research in material
design and application.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano14030298/s1, Table S1: Lennard-Jones parameters of MOFs;
Table S2: 42 Features Extracted from Barcodes; Table S3: Evaluation of XGBoost for SC1, SC2, SC3;
Table S4: Lennard-Jones parameters of adsorbates; Figure S1: Distribution of computed and predicted
data when the XGBoost algorithm predicts (a) SC1, (b) SC2, (c) SC3, (d) TSNC1, (e) TSNC2, and (f)
TSNC3 using different combinations of features; Figure S2: Relative importance values of topological
descriptors in the predicted TSNC3 (blue bars are the most important descriptors among 1D and 2D
topological descriptors); Figure S3: Relative importance of the topological descriptor in predicting
SC3; Figure S4: Relative importance of the topological descriptor in predicting NC3.
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