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Abstract: Ship course-keeping control is of great significance to both navigation efficiency and
safety. Nevertheless, the complex navigational conditions, unknown time-varying environmental
disturbances, and complex dynamic characteristics of ships pose great difficulties for ship course-
keeping. Thus, a PSO-based predictive PID-backstepping (P-PB) controller is proposed in this paper to
realize the efficient and rapid course-keeping of ships. The proposed controller takes the ship’s target
course, current course, yawing speed, as well as predictive motion parameters into consideration. In
the design of the proposed controller, the PID controller is improved by introducing predictive control.
Then, the improved controller is combined with a backstepping controller to balance the efficiency
and stability of the control. Subsequently, the parameters in the proposed course-keeping controller
are optimized by utilizing Particle Swarm Optimization (PSO), which can adaptively adjust the value
of parameters in various scenarios, and thus further increase its efficiency. Finally, the improved
controller is validated by carrying out simulation tests in various scenarios. The results show that it
improves the course-keeping error and time-response specification by 4.19% and 9.71% on average,
respectively, which can efficiently achieve the course-keeping of ships under various scenarios.

Keywords: ship course-keeping; MMG; PID control; predictive control; backstepping control; particle
swarm optimization

1. Introduction

Maritime transportation holds a pivotal share of international trade [1,2]. As the most
economical and effective tool of marine transport, it is essential that shipping increases
constantly with the development of the national economy and international trade [3–5].
However, complex navigational conditions and unknown time-varying environmental
disturbances pose a significant difficulty in the operation of ships [6–8]. Meanwhile, the
complex dynamic characteristics (e.g., multiple degrees-of-freedom (DOF), nonlinearity,
limitation in rudder angle) further increase the uncertainty of the ship’s motion [9–14]. As
a result, it is difficult to lead ships moving along a target course efficiently and accurately,
especially under harsh environmental conditions [9,15–17]. Thus, it becomes indispensable
to carry out research related to ship course-keeping.

To date, research on the course-keeping of ships mainly focuses on (a) improved
traditional controllers and (b) data-driven controllers.

Improved traditional controllers are considered an effective approach to realize the
course-keeping of ships. Some common methods include improved sliding mode con-
trollers [18–21], improved PID controllers [20,22–24], improved backstepping
controllers [9,25–27], and improved bipolar sigmoid functions [28,29]. These methods
mainly improve traditional controllers by introducing adaptive control, synergetic control,
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control formula improvement, and parameter optimization. However, these methods
contain limitations such as a lack of course-keeping accuracy under environmental dis-
turbances and inefficiency in reaching the target course, which may lead to additional
course-keeping errors in some scenarios. At the same time, some controllers are complex to
build and therefore less available.

Data-driven controllers become feasible for ship course-keeping control with the de-
velopment of data acquisition and processing technologies. Methods adopted are known
as expert knowledge controllers [30], artificial neural networks [31–35], neuro-fuzzy sys-
tems [36], and multi-agent systems [37]. These controllers are established based on em-
pirical knowledge or navigation data. Researchers fused ship motion and operation data
and processed it using various statistical and intelligent modeling methods to establish
automatic ship course-keeping controllers. To improve the accuracy of course-keeping,
these controllers have high requirements for the amount and quality of data in particular
scenarios. As a result, such controllers are more effective in scenarios with a large amount
of data on similar ships. Conversely, it is hard to realize accurate ship course-keeping in
scenarios with less navigation data. Meanwhile, the selection of empirical knowledge or
navigation data has a substantial impact on the effectiveness of ship course-keeping control,
which further increases the uncertainty of the controller.

The above-mentioned controllers for the course-keeping of ships have been applied
and validated. Nevertheless, difficulties such as obtaining the data required to train, and the
high complexity to establish, limit the accuracy of the course-keeping controllers mentioned
above. Additionally, some of the studies lack accuracy in establishing ship motion and
environmental disturbance models for simulation tests, which prevents the effectiveness of
those course-keeping controllers from being effectively verified [24,27].

Given these research gaps, in this paper, a PSO-based predictive PID-backstepping
(P-PB) controller is introduced for the course-keeping of ships. The P-PB controller is
designed on the basis of PID and backstepping controllers, thus retaining the simplicity
and interpretability of traditional controllers. At the same time, course-overshoot of the
controller is avoided by introducing a predictive PID control, which improves the accuracy
of course-keeping. Subsequently, the parameters in the P-PB controller are optimized via
PSO, which is characterized by its efficiency, and is widely used in the field of ship control
to improve its applicability in various scenarios [38–40].

In Section 2, a nonlinear ship model is first introduced, which is adapted for ship
motion prediction and simulation tests. Then, the improved PID controller and the back-
stepping controller are combined to design the P-PB controller. Further, PSO is introduced
to optimize parameters in the proposed controller. Section 3 provides comparison tests
with other controllers, demonstrating the effectiveness of our approach in various scenarios
by using a case ship called KVLCC2. Section 4 serves as the conclusion, which engages in a
discussion concerning the distinctive features and advantages of our proposed method, as
applied to the field of ship course-keeping.

2. Methodology

The framework of the proposed P-PB controller for ship course-keeping (Figure 1)
comprises three steps:

Step (i): Nonlinear ship model. A nonlinear ship model is established based on the
MMG model. Consequently, an environmental disturbance model is introduced to simulate
ship motion under time-varying disturbance conditions.

Step (ii): Course-keeping controller design. First, the PID control is improved based
on a predictive control method. Then, the ship course-keeping controller is established by
combining the improved PID and backstepping controllers, thus combining the advantages
of both.

Step (iii): Parameter optimization of the ship course-keeping controller. The parame-
ters in the proposed controller are adopted as input, and the minimization of the cumulative
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course-keeping error is used as a fitness index. Then, the optimal control parameters for
course-keeping in a particular scenario are obtained based on PSO.
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Figure 1. The framework of the proposed P-PB control method for ship course-keeping.

2.1. Nonlinear Ship Model

To simulate ship motion accurately, the ship motion model is established based on
the MMG model. Then, the environmental disturbance model is introduced to simulate
ship motion under various scenarios. A ship is typically considered a rigid body with
six degrees of freedom (DOF) in motion. However, a three-degrees of freedom (3-DOF)
ship dynamic model can be used when it comes to the control of ship motion along the
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horizontal plane [41–43]. The course-keeping controller mainly changes the ship’s motion
along the horizontal plane; therefore, this paper is based on a 3-DOF nonlinear ship model.

The establishment of a nonlinear ship model contains three steps: the establishment of
a ship motion coordinate system, kinematic modeling, and environmental disturbance modeling.

2.1.1. Ship Motion Coordinate System

The space-fixed coordinate system O0 − x0y0 and the ship-fixed coordinate system
O − xy are established, respectively, where the x0 axis points directly north and the y0 axis
points directly east. In terms of the ship-fixed system, the x and y axes point towards the
ship’s bow and starboard, respectively.

u, v, and r are the ship’s surge speed, sway speed, and yawing speed, respectively. ψ
is the ship’s course, which is defined as the angle between the x0 and x axes. ψT is the wind
direction. Finally, the ship-motion coordinate system is set up as in Figure 2.
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2.1.2. Kinematic Model

The MMG model divides a ship into hull, propeller, and rudder. In addition, the effect
of environmental disturbances on the ship’s motion is also considered. Thus, the motion of
a ship can be expressed as Equation (1):

dxt/dt = u cos(ψ)− v sin(ψ)
dyt/dt = u sin(ψ) + v cos(ψ)
dψ/dt = r
(m + mx)

.
u −

(
m + my

)
vr = XH + XP + XR + Xwind(

m + my
) .
v + (m + mx)ur = YH + YP + YR + Ywind

(IZZ + JZZ)
.
r = NH + NP + NR + Nwind

(1)

where xt and yt are the position coordinates of origin in time t in the earth-fixed coordinate
system. m is ship’s mass. mx and my are the added masses of the x and y axis directions.
IZZ is the inertia moment of the ship, JZZ is the added moment of inertia. XH , YH , and NH
are the surge force, sway force, and yaw moment acting on the ship’s hull, respectively. XP,
YP, and NP are the surge force, sway force, and yaw moment generated by the propeller.
XR, YR, and NR are the surge force, sway force, and yaw moment generated by the rudder.
Xwind, Ywind, and Nwind are the wind load in the surge, sway, and yaw direction.

The calculation method of hull fluid force is shown in Equation (2).
XH = X(u) + Xvvv2 + Xvrvr + Xrrr2

YH = Yvv + Yrr + Y|v|v

∣∣∣v∣∣∣v + Y|v|r

∣∣∣v∣∣∣r + Y|r|r

∣∣∣r∣∣∣r
NH = Nvv + Nrr + N|v|v

∣∣∣v∣∣∣v + Nvvrv2r + Nvrrvr2

(2)

X(u), Xvv, Xvr, Xrr, Yv, Yr, Y|v|v, Y|v|r, Y|r|r, Nv, Nr, N|v|v, Nvvr, and Nvrr are the hydro-
dynamic factors, which are determined by the empirical formulas proposed by Kijima [44].
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By combining the methods proposed by Jia, Yang, and Brogliacan [45,46], the propeller
force is calculated using Equation (3):

XP = ρn2
pD4

P(1 − tP)KT(JP)

YP = ρn2
pD4

PKT sin(arccos(u/v))/3
NP= 0.083YP

(3)

where ρ is the density of water, tP is the thrust deduction factor, DP is the propeller
diameter, JP is the propeller advanced ratio, np is the propeller revolution, and KT is the
thrust coefficient of the propeller.

Subsequently, the rudder force is determined using Equation (4) [45]:
XR = (1 − tR)FN sin δ
YR = (1 + αH)FN cos δ
NR = (xR + αHxH)FN cos δ

(4)

where tR is the steering resistance deduction factor, αH is the rudder force increase factor,
xR is the longitudinal coordinate of rudder position, xH is the longitudinal coordinate of
the acting point of the additional lateral force, FN is the rudder normal force, and δ is the
current rudder angle.

Additionally, due to the large resistance to movement, the turning speed of the rudder
is limited [47]. Thus, the ship’s rudder movement is characterized in Equation (5).

TE
.
δ = δE − δ (5)

where TE is the time constant,
.
δ is the rudder turning speed, and δE is the command

rudder angle.

2.1.3. Environmental Disturbance Model

The operational performance of a ship is significantly vulnerable to external distur-
bances induced by wind, waves, and currents. However, a disturbance by currents mainly
changes a ship’s surge and sway speed and has less effect on its yawing moment, thus it
can be ignored when it comes to control of a ship’s course. In terms of waves, their height
and frequency are closely related to the interference of wind. Therefore, the performance of
a ship’s course-keeping controller under wind disturbance represents a control effect under
waves, to a certain extent. Moreover, it is difficult to accurately simulate the effect of wave
disturbance on a ship’s motion [48]. Consequently, the environmental disturbance model is
established based on wind disturbance.

Wind disturbance can be divided into average wind and pulse wind. Between them,
average wind is calculated according to the empirical formula in Equation (6) [49],

αR = −arctan( −v−VR sin(ψT−ψ)
−u−VR cos(ψT−ψ)

)− υ

FXwind = 0.5Cx(αR)ρaV2
R AF

FYwind = 0.5Cy(αR)ρaV2
R AL

Nwind = 0.5Cm(αR)ρaV2
R ALL

(6)

where αR is the angle between the ship’s course and the wind direction; υ is the compen-
sation angle of wind; Cx(αR), Cy(αR), Cm(αR) is the wind load factor in surge, sway, and
yaw direction; ρa is the density of air; VR is the wind speed; AF, AL is the area of the ship
exposed to wind in surge and sway direction; and L is the length of ship.

Then, white noise is introduced to calculate the pulse wind, which is calculated in
Equation (7) [50]:

H(s) = 0.4198s/(s2 + 0.3638s + 0.3675) (7)

where s is the Laplace operator.
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2.2. P-PB Course-Keeping Controller Design

The PID controller and the backstepping controller have their own advantages in
various scenarios. In this paper, both the PID controller and the backstepping controller
are taken into account when building the P-PB controller; thus, the advantages of the two
controllers can be combined. The framework for the course-keeping controller is shown in
Figure 3.
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The inputs and outputs are defined first in order to design the course-keeping con-
troller. The main principle of a course-keeping controller is to minimize course-keeping
error by adjusting the rudder angle. Therefore, course-keeping error and target rudder
angle are selected as the input and output of the proposed controller, respectively.

The course-keeping error is expressed in Equation (8),

e(t) = ψm − ψ (8)

where e(t) is the course-keeping error in time t, and ψm is the target course.
Then, the improved PID controller and the backstepping controller are combined to

design the P-PB controller.

2.2.1. Improved PID Controller

PID control is a simple and reliable method that is widely adopted in the motion
control of ships [22]. The basic formulation of the PID controller can be expressed as
Equation (9),

u(t) = KP[e(t) +
∫ t

0
e(t)dt/Ti + Td(de(t)/dt)] (9)

where u(t) is the output of the PID controller. KP, Ti, and Td are the proportional parameter,
integral parameter, and derivative parameter, respectively.

To integrate the PID controller with the ship’s rudder control, Equation (9) is modified
as Equation (10):

δE = δ + KP[e(t) +
∫ t

0
e(t)dt/Ti + Td(de(t)/dt)] (10)

Then, to prevent control overshooting caused by the delayed ship motion, the PID
controller is improved by introducing predictive control based on the MMG model [5,48].
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Synthesizing the simplicity and interpretation of the controller, the improved PID
controller is expressed as Equation (11),

δEP = δ + KP[e(tx3) +
∫ t

0 e(tx3)dt/Ti + Td(de(t x3

)
/dt)]

−KP[e(tx2) +
∫ t

0 e(tx2)dt/Ti + Td(de(t x2

)
/dt)] e(tx3) >c f 2e(t0)

+KP[e(tx1) +
∫ t

0 e(tx1)dt/Ti + Td(de(t x1

)
/dt)]

δEP = δ + c f 1KP[e(tx3) +
∫ t

0 e(tx3)dt/Ti + Td(de(t x3

)
/dt)]

−c f 1KP[e(tx2) +
∫ t

0 e(tx2)dt/Ti + Td(de(t x2

)
/dt)] c f 2e(t0) > e(tx3) >c f 3e(t0)

+c f 1KP[e(tx1) +
∫ t

0 e(tx1)dt/Ti + Td(de(t x1

)
/dt)]

δEP = 0 e(tx3) <c f 3e(t0)

(11)

where δEP is the target rudder angle calculated by the improved PID controller, e(tx) is the
course-keeping error predicted by the MMG model after x seconds, and c f is the control
factor with a value between 0 and 1.

2.2.2. Backstepping Controller

The formula of the backstepping controller is expressed as Equation (12),{
uBS = mBS

..
xBS + cBS

.
xBS + dBS

yBS = xBS
(12)

where mBS, cBS, and dBS are the variable parameters, uBS is the input of the controller, and
yBS is the output of the backstepping controller.

Using the set x1,BS = xBS, x2,BS =
.
xBS, Equation (12) can be changed to Equation (13).

.
x1,BS = x2,BS.
x2,BS = 1/mBS(uBS − cBSx2,BS − dBS)
yBS = x1,BS

(13)

Next, the systematic error z1,BS is calculated.

z1,BS = yBS − yd,BS (14)

where yd,BS is the desired output.
Subsequently, the Lyapunov function V1,BS is defined in Equation (15).

V1,BS = z2
1,BS

/2 (15)

Then, the first order derivative of V1,BS can be expressed as Equation (16).

.
V1,BS = z1,BS

.
z1,BS = z1,BS(

.
yBS −

.
yd,BS) (16)

Consequently, the virtual control volume a1,BS is introduced to make
.

V1,BS ≤ 0.

a1,BS = −λ1,BSz1,BS +
.
yd,BS (17)

where λ1,BS ≥ 0 is the constant.
After that, the error variable is defined.

z2,BS =
.
yBS − a1,BS =

.
x1,BS − a1,BS = x2,BS − a1,BS (18)

Substituting Equations (17) and (18) into Equation (16), the value of
.

V1,BS.is expressed
as Equation (19).

.
V1,BS = z1,BS

.
z1,BS = z1,BS(z2,BS + a1,BS −

.
yd,BS) = z1,BSz2,BS − λ1,BSz2

1,BS
(19)
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Then, set the Lyapunov function V2,BS as Equation (20).

.
V2,BS =

.
V1,BS + z1,BSz2,BS = z1,BSz2,BS

−λ1,BSz2
1,BS

+ z2,BS[(uBS − cBSx2,BS − dBS)/m − .
a1,BS]

(20)

Thus, the first order derivative of V2,BS can be calculated as Equation (21).

.
V2,BS = z1,BSz2,BS − λ1,BSz2

1,BS
+ z2,BS[(uBS − cBSx2,BS − dBS)/m − .

a1,BS]

= −(λ1,BSz2
1,BS

+ λ2,BSz2
2,BS

)
(21)

Finally, the backstepping control law uBS is determined using Equation (22).

uBS = mBS(
.
a1,BS − λ2,BSz2,BS − z1,BS) + cBSx2,BS + dBS (22)

By combining the backstepping controller with the rudder control, the improved
backstepping controller for the course-keeping of the ship [9] is shown in Equation (23),

H(r) = (α + β)r
b = K/T
δEB = 1/b[−bH(r) + KC sin(ωe(t))]

(23)

where α, β, K, and T are the ship’s maneuvering indexes, which can be determined in
Ref [51]. KC and ω are the variable parameters of the controller. δEB is the target rudder
angle calculated by the improved backstepping controller.

The backstepping controller has the advantage of a shorter time required to approach
the target course, but its course-keeping stability is relatively poor [25]. Meanwhile, it is
less accurate under harsh environmental disturbances affected by the dependence of r.

2.2.3. Design of the P-PB Controller

The improved PID and backstepping controller are combined to establish the P-PB
controller. The main control law of the P-PB controller is designed using Equation (24),

δPPB = KwδEP + (1 − Kw)δEB (24)

where δPPB is the target rudder angle calculated by the proposed P-PB controller. Kw is the
control factor, with a value between 0 and 1.

By changing the value of Kw, the weights of the improved PID and backstepping
controllers can be adjusted adaptively. Therefore, the P-PB controller combines the features
of both controllers to achieve better control efficiency in various scenarios.

2.3. Parameter Optimization of the Ship Course-Keeping Controller

PSO was presented by Kennedy and R. Eberhart in 1994 and it is adopted as an effective
approach to solving dynamic and multi-objective optimizing problems [52]. Therefore,
PSO is adopted to optimize parameters in the proposed P-PB controller. The flowchart for
optimizing the parameters of the proposed P-PB course-keeping controller is shown in
Figure 4.

The values of KP, Ti, Td, KC, ω, and Kw are defined as the key parameters to be
optimized. To generate the particle swarm for each parameter, the population size of PSO
is set as N, the learning factors are set as c1 and c2. The inertia weight value is set as w, and
the maximum iteration number is set as T.

After initializing the population, the initial position (value) of each parameter
xPSO = [KP, Ti, Td, KC, ω, Kw] and velocity vPSO of the particle group is generated, which
makes up the initial particle.
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Subsequently, the fitness function is defined to calculate the fitness value of each
particle using Equation (25):

J = 1/∑step
s=1 (ψm − ψ) (25)

where J is the fitness value, and step is the time duration of the optimization.
By using the MMG model to predict the ship’s motion state, the value of J is deter-

mined when adopting the current parameters.
Subsequently, more particles are generated and compared to find the maximum fitness

value. The position and velocity of each particle which contains different values of the
key parameters are updated as Equation (26). Then, the fitness value of each particle is
compared with the historical optimal fitness value. Then, the global optimal position g and
global optimal fitness value gbest are obtained:{

vk+1
i = wvk

i + r1c1(g − xk
i ) + r2c2(gbest − xk

i )

xk+1
i = xk

i + vk+1
i

(26)

where r1, r2 is a random value between 0 and 1, and i is the current particle number.
Finally, the value of each parameter can be continuously optimized until it meets the

termination condition, and the value of key parameters with the max fitness value can
be achieved.

3. Application of the P-PB Ship Course-Keeping Controller
3.1. Simulation Preliminaries

A ship named KVLCC2 is selected as the case ship to verify the effectiveness of the
P-PB controller. The main parameters of KVLCC2 are shown in Table 1, other parameters
are shown in Ref [53].

After establishing the nonlinear ship model of KVLCC2 in Section 2.1, the simulation
results of the turning test, with an initial ship speed of 15.5 kn/h, rudder angle of ±35◦,
and initial course of 0◦, are compared with the results of Yasukawa and Yoshimura [53]. A
comparison of ship’s trajectory is shown in Figure 5.
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Table 1. Parameters of KVLCC2.

Parameter Value Unit

Length 320 m
Breadth 58 m

Draft 20.8 m
Displacement 312,622 m3

Open water speed 15.5 kn/h
Initial course 0 deg

Max steering speed of rudder 2.34 deg/s
Max rudder angle 35 deg
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The accuracy of the ship’s turning test can be verified using the formula below [54]:

CM =
min(SD, RD)

max(SD, RD)
100% (27)

where SD is the simulation result, RD is the experimental result, and CM is the consistency
evaluation indicator.

Finally, a comparison of the ship’s turning test is shown in Table 2. The consistency
between simulation results in this study and Yasukawa [53] is 97.52%. The simulation
results are in line with the valid experimental results.
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Table 2. Comparison of simulation results.

Turning Test Ad/L(δ = 35◦) Td/L(δ = 35◦) Ad/L(δ = −35◦) Td/L(δ = −35◦)

Yasukawa & Yoshimura
(2015) [53] 3.67 3.71 3.56 3.59

Simulation 3.64 3.90 3.49 3.49
CM 99.18% 95.13% 98.03% 97.72%
CM 97.52%

Ad and Td are the advance and tactical diameter of the turning test, respectively.
To verify the efficiency of the P-PB controller under various environmental distur-

bances, simulation scenarios were established, as described in Table 3.

Table 3. Simulation scenarios for the course-keeping test.

Simulation
Scenario

Wind Speed
(m/s)

Wind Direction
(◦)

Target Course (◦)
0–900 s 900–1800 s 1800–2700 s 2700–3600 s

No wind 0 / 30 10 −5 20
Low speed wind 10 30 30 10 −5 20
High speed wind 20 30 30 10 −5 20

Then, to balance the efficiency and accuracy of PSO when optimizing the P-PB con-
troller, the main parameters of PSO were set, as described in Table 4.

Table 4. Main parameters of PSO.

Parameter Value

N 20
T 40
c1 2
c2 2
w 0.5

The change curve of the fitness value for iterations under each stage is shown in
Figure 6. The fitness value increased with each iteration and eventually stabilized in each
stage, which ensured the effectiveness and completeness of the optimization.
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3.2. Comparison and Analysis of Simulation Results

The P-PB controller was valid when compared to the improved PID controllers pro-
posed by Diabac and He [22,23] and the controller based on backstepping control proposed
by Zhang [9]. The change in ship’s course under these three models and the proposed P-PB
controller is compared in various scenarios, as shown in Figure 7.
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As seen in Figure 7, all the controllers kept the ship on course under various envi-
ronmental disturbances. When comparing the four controllers, it is obvious that the P-PB
controller and the controller proposed by Dlabac [22] and Zhang [24] responded more
quickly and tracked the target course satisfactorily in the initial stage when the target
course was changing.

However, the overshoot of the backstepping controller proposed by Zhang [24] in-
creased rapidly as the environmental disturbances became harsher. This is because the
yawing speed of the ship is considered one of the inputs of the improved backstepping
controller proposed by Zhang [24]. When an environmental disturbance is lower, consider-
ation of the ship’s yawing speed is an effective way to improve the stability and accuracy
of the course-keeping controller. Conversely, when an environmental disturbance is larger,
external factors significantly interfere with the ship’s yawing speed, which causes the ship’s
course-keeping error to increase rapidly.

The proposed P-PB controller also considers the ship’s yawing speed to achieve
efficient course-keeping control when environmental disturbances are lower. Furthermore,
when environmental disturbances gradually increase, an overshoot of ship course-keeping
is avoided by adjusting the value of Kw using PSO. Therefore, a smaller course-keeping
error can be obtained under various scenarios.

The accumulated course-keeping error is compared in Figure 8.
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The mean course-keeping error, which is calculated by dividing the accumulated
course-keeping error by time, is shown in Figure 9. It illustrates the mean course-keeping
error for each controller as a percentage of the accumulated mean course-keeping error for
the four controllers, and each circle represents one percent. For example, when under a high-
speed wind scenario, the accumulated mean course-keeping error of the four controllers is
8.77◦, and the mean course-keeping error of the P-PB controller is 1.67◦, which accounts for
19.04% of the mean course-keeping error and therefore occupies 19 circles.
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The smaller the number of circles corresponding to the controllers, the smaller the
average error of the controllers compared to the other controllers, and therefore the more
efficient the controller is.

As indicated by Figures 7–9, it is clear that the P-PB controller and the controller
proposed by Dlabac [22] achieved course-keeping with the lowest and second-lowest
accumulated course-keeping error, respectively, throughout the simulation tests under
the three scenarios. Meanwhile, compared to the controller proposed by Dlabac [22], the
P-PB controller had a larger advantage in terms of accumulated course-keeping error when
environmental disturbances were lower.

The accumulated course-keeping error of the controller proposed by Zhang [24]
performed better under lower environmental disturbances. However, its accumulated
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course-keeping error increased significantly under extreme environmental disturbances.
The improved PID controller proposed by He performed stably in various scenarios, but
was slightly slower to reach the target course.

The course-keeping error when the ship’s course is stabilized is shown in Figure 10.
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When there was no environmental disturbance, the stabilized course-keeping error
of all four controllers was extremely small. Among them, the controller proposed by
Dlabac [22] and the P-PB controller had the lowest stabilized course-keeping error. How-
ever, with the gradual increase in environmental disturbances, the course-keeping error
of Zhang’s [24] proposed controller increased rapidly, and the errors of the P-PB and
Dlabac’s [22] proposed controllers also increased. He’s proposed controller maintained a
lower error than the other controllers under environmental disturbances.

The average rudder angle in the various scenarios is shown in Figure 11. The average
rudder angles of all ship course-keeping controllers increased when the wind disturbance
became harsher.
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When comparing the four controllers, the controllers proposed by Zhang [24] and
He [23] achieved course-keeping with a smaller rudder angle under all scenarios. Con-
versely, the P-PB controller and the controller proposed by Dlabac [22] had a larger
average rudder angle and therefore required relatively more energy for control. Fur-
thermore, when comparing the above-two controllers with lower course-keeping errors,
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the P-PB controller had a relatively small average rudder angle, especially under lower
environmental disturbances.

Finally, the mean course-keeping error for the four controllers is shown in Table 5.
Compared to other controllers, the P-PB controller improved course-keeping error by 4.19%
on average.

Table 5. Course-keeping controller performance.

Course-Keeping Controller Mean Course-Keeping Error (◦)
No Wind Low Speed Wind High Speed Wind

Dlabac et al. [22] 1.76 1.75 1.73
He et al. [23] 2.20 2.18 2.12

Zhang et al. [24] 1.88 1.88 3.23
P-PB 1.67 1.67 1.68

Improvement 5.11% 4.57% 2.89%
Average improvement 4.19%

When environmental disturbances increased, the reduction in the ship course-keeping
error of some controllers was due the fact that the disturbance matched the direction of the
ship’s course, and therefore the ship achieved the target course in a shorter period of time.

To provide a comprehensive analysis of the control effectiveness of the P-PB controller,
time-response specifications have been compared. Among them, rise time is the time
required to adjust the ship’s course to 90% of the target course, which represents the
rapidity of the controller’s response. Overshoot characterizes the maximum deviation of
the controller, and the smaller its value the better the stability of the controller. Settling
time refers to the time it takes to maintain a course-keeping error within 2% and is a key
factor of control stability. The mean value of each specification in the various scenarios is
shown in Table 6.

Table 6. Comparison of time response specifications.

Course-Keeping Controller Time-Response Specification
Rise Time (s) Settling Time (s) Overshoot (%)

Dlabac et al. [22] 134.83 209.92 0.01
He et al. [23] 191.17 312.17 0.01

Zhang et al. [24] 186.67 195.77 5.35
P-PB 117.42 158.17 0.16

Improvement 12.91% 19.21% −2.99%
Average improvement 9.71%

As seen in Table 6, the proposed P-PB controller saw a 9.71% improvement on average
in terms of time-response specification. Analyzing the time-response specification, the
proposed controller has a faster response speed and better control stability compared to the
other controllers, providing further confirmation of the controller’s effectiveness. However,
some overshoot remains. This is attributed to the fact that the PSO-optimized controller
retains a partial dependence on r to reduce the course-keeping error.

In summary, the P-PB controller proposed in this paper can realize a stabilized course-
keeping of ships with lower error and better time-response performance, providing a new
approach for the automatic control of ships.

4. Conclusions

This study proposes a PSO-based predictive PID-backstepping controller for the
course-keeping of ships, taking target course, current course, yawing speed, and predictive
motion parameters into consideration. The proposed controller is designed based on the
predictive PID controller and backstepping controller. The parameters in the proposed
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controller are optimized via PSO. Finally, the proposed controller’s efficacy was demon-
strated by comparing it with other ship controllers in various scenarios. Comparison results
illustrate that the proposed controller can achieve the target course more quickly and more
precisely under various environmental disturbances, which provides a new approach for
the course-keeping of ships. However, the proposed method has a larger average rudder
angle, which may lead to higher energy consumption. In future research, improvements
can be made to improve energy consumption in ship course-keeping.

Although the research in this study revealed some important findings, there are still
some limitations that need to be further researched in the future. Firstly, the hydrodynamic
coefficients in this paper were mainly calculated using empirical formulas, which could be
further optimized to improve the accuracy of the ship motion model. Second, the current
study does not consider the effect of obstacles on course-keeping during navigation.
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