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Abstract: Various machine learning techniques and algorithms have been used to address, and are
still being used to tackle, several real-world issues. One technique that has been extensively employed
to address a variety of issues is the usage of neural networks. Neural networks can be used to classify
data and to calculate regression coefficients. Backpropagation is the cornerstone of neural network
training. The process of iteration involves changing the weight of a neural network in response to the
rate of error observed in the preceding epoch. The error rates can be reduced and the applicability of
the model increased, both of which will increase the model’s dependability. Artificial neural networks
are commonly trained using the backpropagation approach, also known as backward propagation of
mistakes. This technique aids in figuring out a loss function’s gradient for every network weight.
The backpropagation method divides the dataset into training and testing sets. The neural network
is assisted in performing exploration and exploitation using a variety of techniques. Among them
are algorithms with biological inspiration. By using a different approach, bio-inspired computing
can be distinguished from other traditional algorithms. Simple rules and individual life forms or
swarms of individuals that adhere to those rules make up the ideology of bio-inspired computing.
These living things, also referred to as agents, develop over time and advance with fundamental
imperatives. This approach can be categorized as bottom-up or decentralized. In this paper, a neural
network is created using weights and biases determined using the swarm’s individual particles. To
compare a few parameters between the particle swarm optimization and backpropagation in neural
networks, the Pima Indian diabetes dataset is employed.

Keywords: neural networks; weights; biases; particle swarm optimization; bio-inspired algorithms

1. Introduction

Every connected input and output unit in a neural network (NN) has a weight set by
the computer programs that use it. A neural network is made up of many of these connected
input and output units. The starting values are chosen at random. The weights and biases
used to connect the nodes in each individual layer of the neural network are trained using
a training set, which represents a sizeable portion of the original dataset. The two error
functions that are primarily utilized for backpropagation are error of mean squared in
short MSE and the error of root mean squared in short RMSE. The neural network modifies
the weights and biases by utilizing backpropagation. However, employing the neural
network with backpropagation does have a few drawbacks. In order to generate the best
discriminant for classification or the best function for regression-value prediction, it takes
a lot of computational cost and data to tweak the weights and biases. Second, the model
is capable of entering the local minima without being able to exit it. Another commonly
observed issue is the number of epochs required for network training. For training, which
frequently takes a long period of time, more data are needed.
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There must be a categorization of each data point into one of the “N” classes in
classification tasks. Regression issues, on the other hand, have the goal of producing a
certain output value for a given input. The NN generates a discriminant function that
separates the classes in order to achieve this. For instance, a network with a single linear
output can resolve a two-class problem by learning a discriminant function that is larger
than zero for class A and smaller than zero for class B.

The ability of a swarm to forage for food is its most noticeable feature. In computer
terminology, this conduct is referred to as exploration and exploitation. The utilization of
this behavior allows machine learning algorithms to break out of the local minima and
reduce their search time by making use of particle communication. One such popular
algorithm based on particle behavior is the particle swarm optimization (PSO) algorithm. It
can be utilized for neural network optimization and calculation of the ideal weight and bias
distribution. The backpropagation algorithm used with neural networks has a propensity
to enter local minima, which lowers the algorithm’s overall performance. The integration
of PSO and NN aims to highlight the differences in NN performance between networks
built using backpropagation and training data and those built using the PSO method.

Perceptrons, Feed Forward NN, Long and Short Term Memory, Multilayer Percep-
trons, Convolutional NN, Radial Basis Functional NN, Recurrent Neural Nets, and the
Feed-Forward with backpropagation are a few examples of several types of NN. This
implementation takes advantage of the Feed Forward NN.

2. Materials

When creating an NN for a problem or application, picking the right NN architecture
is typically a crucial step. Usually, a trial-and-error approach is used to do this, where
the network is trained and tested before the number of layers is selected based on past
performance. It is crucial to be aware that there are noises in the data, such as irrelevant
features, redundant features, and outliers, as the architecture of NN is based on the training
set. Because of this, it is crucial to pre-process the data before training the NN. One
pre-processing method used to address this issue is feature selection (FS) [1].

In FS, a subset of the features is chosen to be included in a model for classification.
The basic idea behind the attribute-selection process is that, since the dataset is composed
of numerous attributes that are unnecessary and can be trimmed, deleting them will not
cause the dataset to lose any information. This can improve the predictor’s performance
even more, enabling an accurate prediction. Redundancy is a difficult notion to understand
because an attribute can only be redundant if it also includes a redundant feature. The
crucial thing to remember is that feature selection always yields a smaller subset of features
than the original attributes in the set because it only returns the best subset of attributes
from a bigger attribute set. When working with datasets that have a large set of attributes
or variables, attribute selection is very crucial. It has the benefit of making the predictor
more accurate, quicker, and less expensive [2]. The filter model and the wrapper model
are two models that can be used to classify FS techniques. Filtering models, which include
statistical techniques like discriminant analysis (DA), principal-component analysis (PCA)
that makes use of eigen values and eigen vectors for attribute reduction, factor analysis
(FA), and independent component analysis (ICA), are mostly indirect measurements of
performance that are guided by distance. Although this approach is quick, the subset of
functions it produces might not be the best. After computing the classification accuracy
using the classification algorithm, the wrapper model selects a subset of features using
various selection techniques and assesses the outcomes [3].

Each PSO particle is responsible for selecting a subset of attributes and then figuring
out the optimal neural network design based on those features. The PSO algorithms are
able to carry out FS. With the PSO algorithm’s exploration and exploitation methods, all
PSO particles cooperate to find the optimal feature and neural network design. This has
the optimal number of layers and neurons in each layer. PSO can overcome the limitation
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of being restricted to local minima by utilizing particle mutations depending on mutation
probability. A feature is represented as a feature vector using the input [1].

The NN architecture can also be optimized using the PSO algorithm. In a multi-modal
landscape, the standard PSO algorithm struggles to converge to a local optimal result.
To solve this problem, a dynamic multi-layer PSO (DMLPSO) can be utilized. Important
information dynamically interacts with many swarms, increasing population variety and
improving performance. Particle swarm optimization provides numerous benefits over
other evolutionary computation techniques, including simplicity, quick convergence, and
resilience. The PSO also excels at solving problems involving global optimization. Through
cross-layer cooperation, multi-layer PSO may thoroughly explore multi-modal areas by
introducing multi-layer search algorithms to add more search layers. PSO uses second-
order dynamic equations, a type of discrete system, to update the position of the particles.
Two techniques that can be utilized for the DMLPSO are multi-layer searching and dynamic
reorganizing. The search solution space for each particle is determined by a number of
factors, such as the best location for the particle itself, the best location for its lower sub-
swarms, and the best location for its upper sub-swarms. For DMLPSO, the authors have
used its parameters with the following values: number of layers = 4, number of initial
particles = 64, SPD = (1, 4, 4, 4), Velocitymax = 3, Velocitymin = −3 [4].

The PSO algorithm is a Bionic Algorithm because it is intelligent. It is a full-featured
random search method with few parameters. The backpropagation (BP) network can
fix some flaws and become more adaptable by optimizing its weight values and thresh-
olds in conjunction with a BP neural network. The authors of this paper [5] suggest an
immunization algorithm that, through iterations, inoculates the undesirable particles in
the population while extracting the vaccine from the population’s best particles. A ran-
dom suspension method is used to suspend the currently optimal individual particles in
a particle swarm in order to prevent premature PSO. Immunological memory refers to
the immune system’s ability to retain memory cells that produce antibodies in response
to foreign antigens. When the same antigen invades again, associated memory cells are
activated and produce a large number of antibodies. When properties like variety and
immunological memory are incorporated into this PSO method, the algorithm improves its
ability to conduct global searches rather than settling for local solutions. It is more likely
that lower antibody concentrations will be chosen. However, the selection probability
decreases with increasing antibody concentration. The authors use the following initial
values for the BP-NN, (net training parameter goal = 0.0001), the count of nodes in the
hidden layer nodes is five, and the learning rate net training parameter lr = 0.1. In the PSO
part, vmax = 1.2, vmin = 0.4, c1 = c2 = 2.05, population size pop_size = 40, evolution times
max gen = 100 [3].

A thorough examination of the classification algorithm using NN is provided in the
paper [6]. The study’s goal was to provide a novel hybrid neural classification method
for enhancing classic NN’s efficacy and accuracy. According to the authors’ research, the
suggested algorithm outperforms the neural network algorithms of Adam, Random Forest,
Gradient Boosting Machine, Lasso, Ridge, Linear, and Quadratic discriminant analysis, as
well as logistic regression and Lasso regression in terms of accuracy and stability, but it also
takes longer to process.

The convergence rate of the BP-NN is a little slow, yet it can capture the solution with
local minima. Under these conditions, PSO with NN can be used to train a feed-forward
neural network. The Nash–Sutcliffe and correlation coefficients can be used to evaluate a
model’s performance. The network may sometimes become stuck when there is another
set of neuronal weights in the weight space whose expense function is significantly lesser
than the local minimum. While modelling an NN, there are many more elements that must
be taken into account, some of which are as follows:
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1. Count of input nodes;
2. Count of hidden nodes;
3. Count of output nodes;
4. Learning rate;
5. Count rate;
6. Bias matrix;
7. Minimum error (function used for error estimation);
8. Activation or transfer function.

All of these factors also have an effect on the convergence of BP-NN training. In
comparison to GA, the authors found the PSO approach to be simple with less iteration
and fewer variables for control [7–9].

The diabetic retinopathy dataset is used by the authors of [10]. They presumptuously
use 10-way cross-validation to partition the dataset into 10 equal sections. Each component
will be used as test and training data. Each feature or characteristic is then chosen using the
PSO approach after division. Following the selection of the ideal characteristics or traits,
neural network techniques are utilized to classify the training data. On the other hand, test
data with chosen characteristics are verified based on training data, and a neural network
is the technique employed in this validation. The final phase is the presentation of the
data-classification findings after the training and test data have been validated using the
neural network.

Deciding on the ideal count of the hidden neurons in each intermediate layer and the
connection weight in a neural network at the same time is considered a challenging task.
This is due to the fact that modifying the hidden neurons drastically changes the topography
of the network, making training more challenging and necessitating unique considerations.
The authors of [11] propose a PSO with Levy flight-based multiverse optimization (MVO).
PSO is a brand-new, quick algorithm that improves the harmony between development
and exploration by preventing early convergence. Because of its quick convergence and
simplicity of use, it is among the most important meta-heuristic algorithms.

The authors of the work [12] suggest an upgraded PSO that greatly outperforms (in
terms of the global search) the original PSO algorithm and also the solution fine tuning. This
improved PSO makes use of parameter automation techniques, velocity resets, crossings,
and mutations. Improvements like parameters that rely on varying time and perturbations
at random like velocity resetting have been proposed to help overcome these limitations
of the traditional PSO. Additionally, mutation and crossover are used to create diversity.
Before using a BPN to solve a problem, the authors of [13] present a technique that states that
the BPN’s parameter settings, such as the number of hidden layers, rate of learning, impulse
term, number neurons in the hidden layer, and cycles of learning, must be established. To
prevent building sub-optimal network models, which can drastically increase computing
cost and decrease results, the parameterization of the network architecture should be
carefully considered. The authors claim that by choosing or de-noising pertinent features,
the Rate Classifier’s classification accuracy can be increased. The authors use the following
parameters with the respective values: c1 = 0.8, c2 = 1.5, w = 0.9, and populationsize = 10 [9].

3. Methodology

The error functions serve as the foundation for the NN’s BP. In accordance with the
results of the error functions, the weights and biases are modified. The mean squared error
(MSE) for problems requiring real valued results (Regression) and the cross entropy for
problems requiring classes (Target or labels) are the two most widely utilized error functions.
The error function in this instance is the cross entropy [11]. Given two input–output pairs,
the mean square error function is as follows: U = (

→
u1,
→
v1), (

→
u2,
→
v2).
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U is the position vector indicated in two dimensions and an ANN with some parame-
ters represented as θ that produces output in the form gθ(

→
u ); gθ(u) for input

→
u u; the error

function E(U, θ) is

E(U, θ) =
(v1 − gθ(u1))

2

2
+

(v2 − fθ(u2))
2

2
(1)

One algorithm that is bio-inspired and can be used to find the best arrangement within
the arrangement space is PSO. It differs from previous optimization computations in that it
needs an objective function and is not dependent on the objective function’s slope or other
differential shape. Moreover, there are remarkably few hyper-parameters in it [14].

The optimal application of PSO is to determine the maximum or minimum of a
multidimensional vector space-defined function gθ(u). If gθ(u) is a function that takes a
vector parameter, like the coordinates (u, v) in a two-dimensional plane, and returns a real
result that can take on almost any value in search space; for instance, g(u) can calculate
the altitude for any point on the plane—then PSO can be used. The parameter u that the
PSO algorithm determines yields the minimal g(u) that will be returned. The direction of
travel is always towards the search of the worldwide optimal. Every particle dynamically
modifies its travelling velocity based on its prior flying experiences as well as those of its
group members [15,16]. First, each particle attempts to monitor its own best result, which
it refers to as its personal best or pbest.

Second, the best over the entire search space or gbest is the most promising value for
any particle. Based on its position vector, the velocity vector of the particle at Tcurrent,
the magnitude of the distance between position vector pcurrent and pbest, and, lastly, the
magnitude of the distance between its position pcurrent and gbest, each particle adjusts its
position [17].

The formula that updates the velocity of the particles is

Vi
t+1= W.Vi

t+c1U1
t(Pb1

t )− Pi
t+c2U2

t(gb
t −Pi

t) (2)

where the particle or agent’s velocity is denoted with Vi, the population of agents is denoted
with A, the inertia weight is denoted with W, the cognitive constant is denoted with c1, c2
the particle or agent’s position is denoted with Xi, the personal best is denoted with Pb,
and the global best is denoted with gb.

The movement of the particles is updated using the following formula:

Pi
t+1 = Pi

t + vi
t+1 (3)

The count of neurons in the input layer, the count in the output layer, the count in
the hidden layer, and the count of hidden layers determine the architecture of the neural
network. Values are first randomly inserted into the weight and bias vectors. Each particle
in the PSO is assigned a neuron in the NN [17,18]. The particles will then move around
randomly within their own neighborhoods until they reach a better position where the
sum of the squares of errors between the model predictions and actual data values are
minimized. This continues until the stopping criteria, or the number of iterations in this
case, is completed. At the end, an optimal weight and bias matrix is obtained. Figure 1
shows the flow of the training using PSO with NN and the pseudo code is mentioned in
Algorithm 1.

The models’ performance is measured using a few different performance scores. The
number of times a model properly classifies a positive sample as positive is known as the
true positive combination. The combination of false negative indicates the number of times
a model misclassifies a positive sample as negative.
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Figure 1. Flow chart of the training phase of the algorithm.

The term false positive refers to the number of times a model classifies a negative
sample as positive in error. The number of times a model properly classifies a negative
sample as negative is known as true negative.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F_score =
2 . Precision . Recall
Precision + Recall

(6)

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

The visualization of the point at which the model becomes confused when distinguish-
ing between two classes is aided by the Confusion Matrix Table 1. A 2 × 2 matrix with the
actual truth labels represented in the row and the predicted labels in the column provides a
clear understanding of it.
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Algorithm 1. Calculating weight and bias matrix using PSO.

c1←0.5
c2←0.3
w←0.9
nparticles←150
iterations←1000
weights←random vector
bias←random vector
while N < iterations

popCount←0
while popCount < nparticles
res←forwardPropagation()
popCount←popCount + 1
end while
error←errorEstimate(nparticles, res)
nparticles←adjustParticlePosition(nparticles, error)
N←N + 1

end while
weights←nparticles
bias←nparticles

Table 1. Confusion matrix.

Positive Negative

Positive True positive (TP) False negative (FN)
Negative False positive (FP) True negative (TN)

4. Results and Discussion

The dataset used for the study is a benchmark dataset called Pima Indians Diabetes
Dataset. The datasets contains various medical-related predictors or variables that are
independent and one class or variable that is dependent. The target is labeled as “Outcome”.
The independent variables include the following: “number of pregnancies”, “glucose”,
“blood pressure”, “skin thickness”, “insulin level”, “BMI”, “DiabetesPedigreeFunction”,
and “Age”. The correlation coefficient is between−1 and 1, where 1 denotes a very positive
correlation and -1 a significantly negative correlation. Both of these extremes indicate that
the features are redundant. For instance, in this case, the feature “pregnancies” and “age”
are positively correlated with the score of 0.54. However, if the FS pre-processing step is
applied, depending on the threshold (usually kept greater than 0.8) either of the features
can be removed. This dataset has been taken from the UCI Machine Learning repository
and contains 9 features and 768 instances [19].

The neural network is trained by making use of the BP algorithm and the particle
swarm optimization algorithm. Various scoring methods are used for comparing the
performance of the two algorithms.

Tables 2 and 3 show various scores of the NN with BP and with the particle swarm
optimization algorithm over 1000 and 1500 epochs, respectively.

Table 2. Accuracy of NN with PSO over multiple iterations.

Initial Population Iteration Accuracy

100 5000 65%
150 1000 80%
200 1000 75%
150 2000 80%
150 500 75%
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Table 3. Accuracy of NN with BP over multiple iterations.

Iteration Accuracy

500 64.99%
1000 65%
1500 75%
3000 69.99%
5000 65%

5. Conclusions

The PSO algorithm uses exploration along with exploitation making it capable of
coming out of the local minima. This helps in solving problem of the NN not being able to
explore the search space when stuck in local minima. The BP is not effective in distributing
optimal weights and biases between the nodes as compared to the PSO algorithm. The PSO
algorithm has performed better than the NN with backpropagation in terms of accuracy
when using it to calculate the weight and bias matrix for the NN architecture. The quality
of the performance of PSO is much better than NN with BP, since the precision of PSO
with NN is better. The PSO algorithm requires only 1000 iterations with 150 as the initial
population to give an accuracy of 80%, whereas NN with BP requires 1500 iterations to give
the best result, which is 75%. This indicated that the NN with PSO shows fast convergence.
As part of future scope, the NEAT algorithm with PSO can be used as a hybrid algorithm
to create a topology for the NN along with the calculation of optimal weights and biases
for the NN. This can help in improving the performance of the NN.
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