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Abstract 
Seasonal forecasting of the Indian summer monsoon by dynamically down-
scaling the CFSv2 output using a high resolution WRF model over the hind-
cast period of 1982-2008 has been performed in this study. The April start 
ensemble mean of the CFSv2 has been used to provide the initial and lateral 
boundary conditions for driving the WRF. The WRF model is integrated 
from 1st May through 1st October for each monsoon season. The analysis 
suggests that the WRF exhibits potential skill in improving the rainfall skill as 
well as the seasonal pattern and minimizes the meteorological errors as com-
pared to the parent CFSv2 model. The rainfall pattern is simulated quite clos-
er to the observation (IMD) in the WRF model over CFSv2 especially over the 
significant rainfall regions of India such as the Western Ghats and the central 
India. Probability distributions of the rainfall show that the rainfall is im-
proved with the WRF. However, the WRF simulates copious amounts of 
rainfall over the eastern coast of India. Surface and upper air meteorological 
parameters show that the WRF model improves the simulation of the lower 
level and upper-level winds, MSLP, CAPE and PBL height. The specific hu-
midity profiles show substantial improvement along the vertical column of 
the atmosphere which can be directly related to the net precipitable water. 
The CFSv2 underestimates the specific humidity along the vertical which is 
corrected by the WRF model. Over the Bay of Bengal, the WRF model over-
estimates the CAPE and specific humidity which may be attributed to the co-
pious amount of rainfall along the eastern coast of India. Residual heating 
profiles also show that the WRF improves the thermodynamics of the at-
mosphere over 700 hPa and 400 hPa levels which helps in improving the 
rainfall simulation. Improvement in the land surface fluxes is also witnessed 
in the WRF model. 
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1. Introduction 

The Indian summer monsoon covering four months of a year from June to Sep-
tember influences about 1/7th of the entire world’s population as well the econ-
omy associated with the Indian sub-continent. The significance of the monsoon 
and its prospects for early prediction have been addressed in numerous studies 
over the past few decades. About 80% of the annual rainfall is received during 
these months for which agricultural activities as well as water bodies manage-
ment are largely dependent on it [1] [2]. About 8% of India’s net GDP and 49% 
of direct/indirect employment is associated with agriculture [3]. The early pre-
diction of the nature of a particular monsoon season is of great demand because 
of the large-scale dependencies of the sectors such as hydro-power, mining, irri-
gation, water body management, etc. on the net rainfall received during the 
monsoon season. Numerous studies have been carried out in the field of hy-
drology where the impact of rainfall at short term and seasonal scales has indi-
cated that the rainfall has a significant control on the river networks [4] [5]. 
Climate change possesses a potential threat to river hydrology and the hydrolog-
ical cycle in urban areas especially. Studies by Yuan et al. [6] over Mekong River 
basin have pointed out that the location of the planned dams can alter hydrolog-
ical cycle and in the current scenario of climate change may hamper environ-
mental integrity of the region.  

Operational forecasting of the monsoons is largely carried out by general cir-
culation models (GCMs) and to some extent by statistical/regression models 
[7]-[11]. Modern techniques have also developed a hybrid dynamical-statistical 
modeling framework for minimizing the errors from a dynamical model. The 
forecasting skill with the contemporary methods of forecasting have gained tre-
mendous improvement by still have certain lacunae and fail to produce a skillful 
forecast of the most vital parameter, i.e. rainfall. GCMs have the hindrances in 
the form of coarse resolution, improper representation of the land surface, 
computational constraints, representation of the sub-grid scale processes, etc. 
[12] [13] [14] [15]. Further, systematic biases possessed by a GCM due to the in-
ternal dynamics of the model have been a source of constant errors and removal 
of the systematic biases along with improvement in the internal dynamics has 
been a broad area of research in the present time [16]. Studies to test the skill of 
the GCMs in simulating the seasonal rainfall at a lead time of 2 - 3 months have 
inferred that the models have poor temporal correlation skill with the observa-
tions [17] [18] [19]. There have been particular case studies depicting the fail-
ure of dynamical models in forecasting the summer monsoon and most of the 

https://doi.org/10.4236/ojmsi.2024.121001


M. R. Mohanty, U. C. Mohanty 
 

 

DOI: 10.4236/ojmsi.2024.121001 3 Open Journal of Modelling and Simulation 
 

studies attributed to the chaotic representation of the atmosphere. The non- 
linearity in representing the atmosphere needs to be addressed in the dynamical 
models to quantify the proper behavior of the global atmospheric conditions 
[20] [21] [22] [23]. There have been inputs from scientists across the globe to 
use empirical models for removing the errors in a dynamical model and generate 
skillful forecast even at local scales using a hybrid dynamical-statistical frame-
work.  

The potential predictability of the monsoons is limited and lower than rest of 
the globe as the summer monsoon is influenced by a lot of global scale pro- 
cesses such as the ENSO, IOD, EQUINOO, etc. [24]. The rainfall during an ac-
tive El-Nino period can cause changes to the mean seasonal rainfall and hence 
can alter the river hydrology thereby creating severe aricultural droughts [5]. 
The monsoon rainfall is largely influenced by the above-mentioned large-scale 
processes on a lagged time frame [25] [26] [27]. The complexities associated 
with the summer monsoon rainfall are mainly because of the mesoscale convec-
tive activities, land surface heterogeneities, interannual variability, etc. Recent 
studies have claimed that the monsoon rainfall variability has increased over the 
past few decades [28] [29]. There have been changes in ISM mean circulation, 
increased heavy rainfall events during the monsoon over the past few years [30] 
[31] [32]. Due to these complexities, the dynamical models struggle to simulate 
the rainfall variability during the monsoon seasons. Thus, despite considerable 
progress in predicting dynamical features of ISM variability, models still fail to 
simulate the mean and interannual variability of monsoon rainfall [33]. There 
have been attempts to improve the skill by using ensemble prediction approach, 
boot-strapping methods and statistical methods [34] [35]. Despite these efforts, 
the multi-model ensemble prediction skill is sometimes better and sometimes 
not noticeably better than the individual forecasts [36].  

An alternative approach to improve the predictive skill can be achieved in the 
form of downscaling of the GCM forecasts using an RCM. RCMs have the ad-
vantage of finer grid spacing thereby having better representation of the terrain, 
improved representation of the sub-grid scale processes which may help in mi-
nimize the errors and improve the seasonal forecasts can be by the process of 
downscaling the GCMs using an RCM. Besides, RCMs have their own physical 
parametrization of the sub-grid scale processes which can be customized for a 
particular region of forecast interest. Thus, systematic biases in GCMs arising 
due to topography, model physics, can be addressed and reduced by the process 
of dynamical downscaling. The method of dynamically downscaling the GCM 
output using a RCM has been widely investigated by researchers for the purpose 
of improving the skill of seasonal prediction of the Indian summer monsoon 
which can be dated back to late 1990s. RCMs and mesoscale models have been 
used in numerous past studies and some of the models captured to simulate the 
mean circulation whereas other failed to even represent the mean rainfall pattern 
[37]-[49]. For Indian summer monsoon, the RegCM and WRF models have 
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been primarily and widely used over other RCMs [50] [51] [52] [53]. The 
RegCM is a climate model whereas the WRF is a mesoscale model but both the 
models have shown to possess good skill while simulating the summer monsoon. 
With the RCMs, the avenue for improving the GCM forecasts have opened up a 
chance for more skillful and target-oriented forecast [54] [55]. However not all 
RCMs do not have potential skill to simulate the complex climatic features [56]. 
Some researchers also propose that the forecasts can be improved by statistical 
downscaling as well. 

RCMs have their own limitations in the form of physical process parametriza-
tion, choice and position of boundary conditions, domain size and grid spacing 
selection to name a few [57] [58]. Combination of suitable parametrization 
schemes, frequent update of the boundary conditions, positioning of the RCM 
boundary with minimum input errors from the GCM, time period of simulation 
has to be taken cate of while using a RCM to get the maximum utility of a RCM. 
Continuous re-initialization of a RCM at specific time and lateral boundary has 
been used for several downscaling experiments to reduce the errors in a RCM. 
Maurya et al., [47] made a point that the grid spacing can be made finer but up 
to a certain extent beyond which the skill deteriorates further. Mohanty & Mo-
hanty [51] compared the skill of two RCMs, RegCM4 and WRF4 in simulating 
the Indian summer monsoon using CFSv2 initial conditions and found that both 
the RCMs improved the rainfall pattern and intensities over the parent GCM. 
Both the models possessed patches of dry and wet bias. Similarly, the surface and 
upper air parameters were improved while using the RCMs. Overall, they con-
cluded that the WRF presented better skill in simulating the rainfall as well as 
significant meteorological parameters for normal as well as extreme monsoon 
seasons.  

This study is aimed at downscaling high resolution CFSv2 (~38 km) output 
using WRF4 model. A brief description of the data used, and the methodology 
followed is explained in Section 2. The results and discussions are presented in 
Section 3 whereas the conclusion is presented in Section 4. 

2. Data and Methodology 

For downscaling the CFSv2 output, the WRF version 4 is used as the RCM. WRF 
is one of the widely used mesoscale models serving both research and operational 
forecasting purposes [59]. The model configuration and the parameterization 
schemes used in the downscaling experiments have been shown briefly in Table 1.  

The CFSv2 output at T382 spectral resolution (~38 km) from the 9-month 
runs are used as the initial and lateral boundary conditions for the WRF model. 
The CFSv2 ensembles from the month of April initialized at 5th, 10th, 15th, 20th 
and 25th of April at 00UTC are averaged out to provide the 6-hourly Initial and 
Boundary Conditions (ICBC). The WRF model is initialized from 1st of May 
through 1st of October, and the model analysis are done for the Indian summer 
monsoon (JJAS) months. The month of May is considered as the spin up time  
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Table 1. WRF4 configuration used in the present study. 

Model domain 5˚S - 40˚N; 55˚E - 110˚E 

Initial Condition (CFSv2) 
Ensemble mean of 5th, 10th, 15th, 20th, 26th  
April 00UTC 

Simulation period 1st May to 1st October (Each Year) 

No. of vertical levels 35 σ levels 

Horizontal Resolution 15 km 

Central longitude and latitude 79˚E and 21˚N 

Dynamical core Hydrostatic (ARW) 

Map-projection Rotated Mercator 

Cumulus convection scheme Kain-Fritsch (new Eta) scheme 

Radiation Scheme RRTM 

Boundary layer scheme YSU scheme 

Microphysics scheme WRF Single-Moment (WSM) 5-class 

Land Surface Physics Noah land surface model 

 
for the model and is truncated from the analysis. For the analysis, the rainfall is 
first verified based on the eyeball method followed by some significant statistical 
verification scores. The rainfall simulated is verified with the IMD gridded daily 
rainfall data set at 0.250 × 0.250 [60] whereas the upper air parameters are veri-
fied with the ERA5 data sets at 0.250 × 0.250 spatial resolutions [61]. The model is 
simulated for 27 consecutive monsoon seasons over the period of 1982-2008, of 
which 17 are normal, 5 are excess and 5 are deficit monsoon seasons. Along with 
the monsoon climatology, the model is evaluated for the composites of excess, 
normal and deficit monsoon seasons. The horizontal resolution of the WRF is 
confined at 15 km. 

Mean Percentage Error (MPE): 
The formula for computing the MPE is  

1

100MPE
n

t

O F
n O=

−
= ∑  

where O = Observed rainfall. 
F = Forecasted ranfall. 
n = number of years. 
The MPE is thus based on the actual forecast errors rather than absolute fore-

cast errors.  
Phase Synchronizing Events (PSE): 
The number of simulated rainfall events lying on the same side of the rainfall 

anomaly to that of the observed anomaly is said to be in the same phase to that 
of the observed. The total number of years in the CFSv2 and WRF that possess 
the same sign to that of the IMD rainfall anomaly are calculated and expressed 
in percentage. 
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3. Results and Discussions 

The verification of the WRF in downscaling the CFSv2 output has been carried 
out in the following sections. The verification is divided into two sections where 
the 1st section is aimed at verifying the rainfall comprehensively and the 2nd sec-
tion looks into the skill of the models in simulating the monsoon climatic fea-
tures and the possible reasons for the discrepancies in rainfall simulation.  

3.1. Rainfall 

The rainfall from the CFSv2 reforecasts along with the downscaled rainfall from 
WRF simulations are compared on the climatological scale of 27 years and with 
the composite excess, normal and deficit years. Figure 1 represents the rainfall 
climatology along with the composites as observed and as simulated by the 
CFSv2 and WRF. The rainfall as observed over the 27 years shows that the rain-
fall is quite heterogeneous over India ranging from 100 - 2500 mm during the  
 

 
Figure 1. Mean seasonal (JJAS) rainfall (in mm) averaged (a) over the hindcast period of 1982-2008 and that of the composite (b) 
normal (c) excess and (d) deficit monsoon seasons as observed in IMD. Panels (e)-(h) and (i)-(l) are same as (a)-(d) but as simu-
lated by CFSv2 and WRF respectively. 
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JJAS months. Maximum rainfall regions can be witnessed over the Western 
Ghats, northeastern India followed by central India and the Gangetic plains. 
During the monsoon seasons, the rainfall is very scanty over the northwestern 
India as well as the south peninsular India. The analysis of composite monsoon 
seasons shows that the rainfall is quite discrepant between the excess, normal 
and deficit seasons. During the excess monsoon seasons, the rainfall is mostly 
excess over the central India region which is also analogous in the deficit mon-
soon seasons where there is very less rainfall over the states of Odisha, Jhark-
hand, Madhya Pradesh, Bihar. The rainfall variability between the seasons can be 
clearly identified from the composite years and this supports the fact that small 
variability in rainfall can create havocs in the rain-fed agricultural regions of In-
dia. The rainfall during the deficit seasons lies between the range 600 - 1400 mm 
as compared to 800 - 2000 mm in the excess monsoon season. On comparing the 
observed rainfall with the model simulated rainfall, the CFSv2 simulates very less 
amount of rainfall over the core monsoon region. The rainfall in CFSv2 is unde-
restimated in the Western Ghats as well as over the central India region. Anoth-
er peculiar feature of the rainfall simulated by the CFSv2 is that the rainfall over 
northwestern India is very less and is not all well simulated. The dry bias in this 
region is too high. Over the central India region, the rainfall simulated by CFSv2 
shows patches of dry and wet regions which may be arising due to the represen-
tation of terrain in the model. The excess monsoon seasons are not quite well 
captured by the CFSv2. However, during the deficit monsoon season, the model 
has a closer rainfall pattern to that of the observed data set. On the other hand, 
downscaling the CFSv2 using WRF has better performance in terms of repro-
ducing the rainfall pattern during the monsoon seasons. Maximum rainfall 
patches over the Western Ghats, central India and northeast India are repro-
duced by the WRF model. Over maximum regions of India, the WRF model has 
closer pattern to that of the IMD rainfall dataset. Over the northeastern India, 
the WRF simulates lesser rainfall than the CFSv2 as well as IMD. CFSv2 has bet-
ter predictability of rainfall over the hilly regions of northeast which is missed 
with the WRF model. Along with that, the net simulated monsoon rainfall for 
the composites of excess, normal and deficit seasons have closer relationship 
with the observed data set. During the excess monsoon season, the rainfall is 
higher than the normal and deficit monsoon seasons. However, the rainfall over 
the Western Ghats is overestimated in the WRF model. It may be arising because 
of the orography of this region. Fine representation of the Western Ghats may be 
leading to orographic lifting of air parcel thereby influencing the static stability 
of the parcel and ultimately leading to excessive rainfall. The rainfall ranges be-
tween 800 - 1800 mm/400 - 1000 mm/600 - 1600 mm in the central India region 
with IMD/CFSv2/WRF respectively. Over the Western Ghats, the rainfall is 1200 
- 3000 mm/1000 - 1600 mm/1400 - 3500 mm with the IMD/CFSv2/WRF models 
respectively. 

The mean rainfall bias between the CFSv2/WRF and IMD for all the years of 
study along with the composite monsoon seasons is shown in Figure 2. The  
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Figure 2. Mean rainfall bias (in mm/day) averaged (a) over the hindcast period of 1982-2008 and that of the composite (b) normal 
(c) excess and (d) deficit monsoon seasons as observed in IMD. Panels (e)-(h) and (i)-(l) are same as (a)-(d) but as simulated by 
CFSv2 and WRF respectively. 
 

CFSv2 possess a dry bias over most of India whereas the WRF has a dry bias over 
the Gangetic plains for the excess monsoon season. Most of the regions are asso-
ciated with wet bias with the WRF model. Over the Western Ghats, the wet bias 
is quite higher with the WRF model. The bias is around 2 - 10 mm/day over the 
Western Ghats. On a climatological scale, the WRF has better performance 
compared to the CFSv2 where the biases are reduced significantly with the 
downscaling experiments. During the excess monsoon season, the WRF possess 
dry bias over the Gangetic plains by 2 - 5 mm/day. This may be arising due to 
the excessive rainfall over eastern India such as Odisha and Andhra Pradesh 
where there is excessive rainfall, meaning most of the moisture transported from 
the ocean surface is recycled over these regions rather than getting advected to-
wards the central India. The biases in CFSv2 are quite similar which signifies 
that the CFSv2 possess certain systematic biases and tends to simulate the model 
climatology rather than capturing the seasonality of the monsoon.  

Figure 3 shows the monthly rainfall climatology of the four months involved 
with the summer monsoon as observed in the IMD and as simulated by CFSv2 
and WRF. The rainfall received over India is maximum for the month of August 
followed by July, September and June. A model can be considered to be skillful if 
the rainfall is simulated well in each of the monsoon months. Similar pattern of  
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Figure 3. Monthly rainfall (in mm) climatology of the months June, July, August and September over the period of study as ob-
served in IMD and as simulated by CFSv2 and WRF respectively. 
 

rainfall is observed with the CFSv2 as well as WRF. The WRF model tends to 
overestimate the rainfall over small regions of the east coast of India as well as 
the Western Ghats during the months June and September. The monthly rainfall 
is overestimated by 200 - 400 mm with the WRF model over some regions of the 
eastern coast of India. In the CFSv2 model, the rainfall is overestimated over the 
northeast India during the month of June. The rainfall over the Western Ghats is 
highly overestimated in all the months with the WRF model where the model 
simulates the rainfall above 800 mm during all the months of the monsoon sea-
son. Figure 4 shows the probability density functions of the daily rainfall clima-
tology of the IMD, CFSv2 and WRF simulated rainfall averaged over all the grid 
points combined and the right panel shows the Taylor’s diagram showing the 
correlation coefficients, standard deviation, RMSE and the relative bias in the 
CFSv2 and WRF model simulated rainfall with respect to the IMD data set. The 
normal distribution curves are fitted based on the Gaussian fits for the rainfall  
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Figure 4. Probability density functions of the daily rainfall climatology of IMD, CFSv2 and WRF (Left panel). The rainfall is fitted 
to normal distribution to generate the Gaussian curves. Taylor diagram showing the correlation coefficients, standard deviation, 
RMSE and relative bias of the seasonal rainfall climatology with the CFSv2 and WRF simulated rainfall with respect to IMD (Right 
panel). 
 

over all the grid points over India. The normal distribution of rainfall in the 
IMD dataset shows that the rainfall is distributed over a long range of 2.5 - 10 
mm/day during the monsoon season. The distribution of rainfall is quite hete-
rogeneous due to the inhomogeneity of the spatial rainfall distribution and the 
intra seasonal variability of the monsoon rainfall. The CFSv2 simulated rainfall 
has a very short range of distribution as compared to the IMD rainfall. The rain-
fall with CFSv2 is distributed within the range of 3 - 8 mm/day with maximum 
concentration at 6 mm/day levels. The model tends to simulate the climatologi-
cal rainfall which can be inferred from Figure 1 and Figure 3. The WRF rainfall 
is quite similarly distributed to the IMD rainfall having the range of distribution 
spread over 3 - 10.5 mm/day. Maximum probability of rainfall is observed at 6.5 
mm/day in the IMD data set which is 6 mm/day in the CFSv2 and 7 mm/day in 
the WRF model.  

The Taylor diagram represents the rainfall statistics computed for the seasonal 
rainfall over the entire period of study with respect to the IMD rainfall. The pat-
tern correlation coefficients, error statistics are computed for the mean seasonal 
rainfall over the 28 years of study. The skill of the WRF model in simulating the 
seasonal rainfall improves significantly as compared to the parent GCM, CFSv2. 
The temporal correlation coefficient is improved from 0.21 with CFSv2 to 0.38 
with the WRF model. The RMSE is reduced from 1.2 with the CFSv2 to 0.81 
with the WRF model. The relative bias is more than −10% in the CFSv2 model 
whereas the relative bias is within 5% - 10% in the WRF model. The WRF model 
thus helps in improving the forecasts from CFSv2 which can be inferred from 
the skill scores. The dynamic downscaling process can help in improving the 
rainfall forecasts skill. Table 2 shows the correlation coefficients, mean seasonal 
rainfall, MPE and PSE for the WRF and CFSv2 simulated rainfall over India and  
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Table 2. Climatological mean (mm), correlation coefficients (CCs), mean percentage er-
ror (MPE), phase coherency (PSE) and standardized anomaly index error (SAIE) between 
IMD rainfall, CFS and WRF simulated rainfall over all India (AI) and its homogeneous 
region during JJAS 1982-2008. 

  HRI NWI CNEI NEI WCI PI AI 

Mean 
(mm) 

IMD 708 520 933 1422 956 723 875 

CFS 688 398 1071 1601 823 607 701 

WRF 899 439 820 1324 997 1072 928 

CCs 
CFS 0.43 0.11 0.17 0.19 0.21 0.19 0.21 

WRF 0.53 0.31 0.44 0.31 0.48 0.21 0.38 

MPE 
(%) 

CFS −2.73 −10.50 14.09 12.59 27.04 66.93 17.13 

WRF −4.49 −15.56 −11.36 14.16 20.28 48.25 12.78 

PSE 
(%) 

CFS 48 52 70 56 52 37 48 

WRF 70 70 78 63 56 44 78 

 
the rainfall homogenous regions of India. From the mean rainfall it can be in-
ferred that the CFSv2 underestimates the rainfall whereas the WRF overesti-
mates it. Over the homogenous regions of India, the CFSv2 possesses large dry 
bias over the northwestern India, hilly regions of India and the peninsular India. 
The WRF corrects the deficient rainfall over northwestern, central northeast In-
dia. But the WRF simulates excessive rainfall over the hilly regions the peninsu-
lar India. The climatological all India rainfall as observed at 875 mm which is 
underestimated at 701 mm with CFSv2 and overestimated with the WRF at 928 
mm. The correlation coefficients are improved significantly with WRF over In-
dia, central India, northwestern and hilly regions of India. The mean percentage 
error in the climatological rainfall is reduced with the WRF model as well. The 
all-India rainfall errors are reduced from 17% to 12% by the method of down-
scaling. Similarly, the phase synchronizing events are more simulated in the 
WRF as compared to the CFSv2 rainfall. This means that the WRF model helps 
in capturing the rainfall anomalies for a particular season. The PSE for all India 
rainfall is improved from 48% with CFSv2 to 78% with WRF. This signifies that 
a greater number of seasons indicates the extremity of a particular season with 
the dynamically downscaled rainfall. Table 3 shows the correlation coefficients 
and the mean rainfall bias over the homogenous rainfall regions but separately 
for the excess, normal and deficit years. Most of the regions show improvement 
in reducing the bias with the WRF model for the composite years. The correla-
tion coefficients are improved from the CFSv2 and are significantly improved in 
the extreme years.  

Figure 5 shows the time series of the mean seasonal rainfall and the standar-
dized anomaly index of the rainfall observed in the IMD dataset and as simu-
lated by CFSv2 as well as WRF models over the hindcast period of 1982-2008. 
From the time series, the intra-annual variability can be clearly identified in the  
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Figure 5. Time series of the mean seasonal rainfall (in mm), averaged all over India as observed in IMD, and as simulated by 
CFSv2 and WRF over the entire period of study (Top panel). The bottom panel is the same as the top panel but for Standardized 
rainfall anomaly index. 

 
IMD data set where the rainfall ranges between 700 - 1000 mm. Some particular 
seasons have excess rainfall whereas some of the seasons produce scanty rainfall. 
Anomalous rainfall can be witnessed in some extreme years such as 1982, 1987, 
1988, 1994, 2002, etc. The CFSv2 underestimates the rainfall for most of the sea-
sons whereas the WRF model produces the rainfall closer to the observations for 
more years as compared to CFSv2. The standardized anomaly index of seasonal 
rainfall shows that the rainfall anomaly is in agreement with most of the years 
over CFSv2. The CFSv2 rainfall anomaly is in the same phase to that of IMD 
anomaly index for 13 years out 27 whereas the WRF is in the same phase for 19 
out of the 27 years used in this study. This is also supported by the PSE skill 
score for the rainfall homogenous regions as well as all India rainfall (Table 2). 

3.2. Upper Air Parameters 

The rainfall, although being the most important meteorological parameter of 
highest societal interest, is quite a complex process and is highly influenced by 
the large scale as well as the small-scale parameters. In order to understand the 
impact of some of the significant physical parameters influencing the rainfall, 
some of the upper air and surface parameters have been analyzed in this section. 

The mean seasonal winds at 850 hPa as observed from the ERA5 and as simu-
lated by CFSv2 and WRF averaged over all the years used in this study and over 
the composites of excess, normal and deficit monsoon seasons are shown in 
Figure 6. The low-level jet stream over the Arabian sea is one of the most im-
portant features of the summer monsoon that influences the onset, intensity and  

https://doi.org/10.4236/ojmsi.2024.121001


M. R. Mohanty, U. C. Mohanty 
 

 

DOI: 10.4236/ojmsi.2024.121001 13 Open Journal of Modelling and Simulation 
 

Table 3. Correlation coefficients and the mean seasonal rainfall bias (mm/season) for the 
JJAS precipitation between the observed IMD rainfall data set and CFS as well as WRF 
simulated rainfall over India and six homogeneous regions for the composite deficit, 
excess and normal summer monsoon seasons between the years 1982-2008. 

 

Composite deficit India summer monsoon season 

CCs Rainfall Bias (mm/JJAS) 

CFS WRF CFS WRF 

AI 0.37 0.42 −163 62 

HRI 0.32 0.51 −212 125 

NWI 0.02 0.36 −196 76 

CNEI 0.28 0.53 −96 189 

NEI 0.41 0.59 174 −296 

WCI 0.17 0.21 −121 −108 

PI 0.39 0.21 −187 266 

 

Excess 

CCs Rainfall Bias (mm/JJAS) 

CFS WRF CFS WRF 

AI 0.13 0.48 −344 122 

HRI 0.36 0.53 −232 224 

NWI 0.12 0.28 −321 102 

CNEI 0.21 0.39 −210 −78 

NEI 0.07 0.11 −407 −129 

WCI 0.18 0.29 −215 −56 

PI 0.20 0.34 −112 245 

 

Normal 

CCs Rainfall Bias (mm/JJAS) 

CFS WRF CFS WRF 

AI 0.16 0.46 −173 43 

HRI 0.55 0.55 −97 107 

NWI 0.19 0.37 −203 15 

CNEI 0.09 0.37 −178 125 

NEI 0.05 0.15 124 −76 

WCI 0.27 0.68 −285 164 

PI 0.13 0.60 −325 104 

 
advancement of the monsoon into the Indian main land region. In the ERA5 
reanalysis data set, it can be seen that the intensity of the low-level jet stream 
reaches about 20 - 25 m/s which varies by 2 - 5 m/s in the excess and deficit 
monsoon seasons. Much variability is not observed in the contrasting monsoon 
seasons. Thel ow-level jet brings moisture laden winds from the ocean surface  

https://doi.org/10.4236/ojmsi.2024.121001


M. R. Mohanty, U. C. Mohanty 
 

 

DOI: 10.4236/ojmsi.2024.121001 14 Open Journal of Modelling and Simulation 
 

 
Figure 6. Mean seasonal (JJAS) wind (in m/s) and wind direction at 850 hpa averaged (a) over the hindcast period of 1982-2008 
and that of the composite (b) normal (c) excess and (d) deficit monsoon seasons as observed in ERA dataset. Panels (e)-(h) and 
(i)-(l) are same as (a)-(d) but as simulated by CFSv2 and WRF respectively. 

 
into the land region which is one of the primary contributors to the monsoon 
rainfall. Accurate simulation of the 850 hPa winds over the Indian monsoon 
domain is essential for a dynamical model to capture the rainfall pattern and in-
tensity over the land region. The CFSv2 fails to simulate the pattern and intensi-
ty of the low-level jet streams. The regions maximum wind is observed over the 
Arabian sea but the intensity ranges between 10 - 20 m/s as compared to 20 - 25 
m/s in the observed data set. This may a reason for the inadequacy of the CFSv2 
in simulating the rainfall over India, particularly over the Western Ghats. The 
winds over some regions of the Bay of Bengal are overestimated in the CFSv2 
model. The WRF model captures the 850 hPa winds better than the CFSv2. 
Though the regions with maximum winds are shifted eastwards, the intensity is 
quite closer to the ERA5 data set. This peculiar property of eastwards shifting of 
the high winds region might be arising due to the positioning of the lateral 
boundaries in the WRF model. The WRF model is initialized with the CFSv2 
output and the weaker winds in the CFSv2 might be hampering the simulation 
of winds in the WRF model. Over the peninsular India, the WRF model overes-
timates the winds which may be a reason for the enhanced precipitation over 
this particular region. The biases over the Bay of Bengal in the CFSv2 is reduced 
in the WRF model which reproduces quite closer pattern of winds to that of the 
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ERA5 dataset. However, there is an anomalous cyclonic circulation over the 
north Arabian Sea in the WRF model. This anomalous circulation if found for 
all the composite years and may be arising due the systematic bias in the WRF 
model.  

The tropical easterly jet stream at 200 hPa levels is also another typical feature 
of the Indian summer monsoon which drives the large scale circulation and is an 
important component of the monsoon Hadley cell. Figure 7 shows the winds at 
200 hPa in a similar fashion to that of the 850 hPa winds. The tropical easterly 
jet streams are quite well captured by both the CFSv2 and WRF models. The an-
ti-cyclonic circulation over the Tibetan plateau drives the overturning to the 
mid-latitude circulation which further transforms into the Hadley cell. This par-
ticular overturning of the winds at 200 hPa is quite well simulated in both the 
models. The WRF model reproduces the wind pattern closer to the ERA5 as 
compared to the CFSv2. The wind intensities are quite similar in all the compo-
site years as well as the climatological value. Maximum winds are observed over 
the Tibetan plateau which reduces gradually southwards and increases over the  

 

 
Figure 7. Mean seasonal (JJAS) wind (in m/s) and wind direction at 200 hpa averaged (a) over the hindcast period of 1982-2008 
and that of the composite (b) normal (c) excess and (d) deficit monsoon seasons as observed in ERA dataset. Panels (e)-(h) and 
(i)-(l) are same as (a)-(d) but as simulated by CFSv2 and WRF respectively. 
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Indian ocean region. Over the Indian ocean, the winds range between 12 - 25 
m/s in the ERA5 dataset which is at 10 - 18 m/s and 12 - 30 m/s in the CFSv2 
and WRF model respectively. Minimum wind regions lie between the Himalayas 
and the Gangetic plains. The regions of minimum winds are observed over the 
ERA5 as well as all the model simulations.  

Figure 8 shows the mean 2-meter temperature and the mean sea level isobars 
averaged over the entire period of 27 years during the monsoon season. The 
surface temperature is an important parameter that influences the simulation of 
moisture and thermodynamics of the model and ultimately rainfall. From the 
spatial pattern of temperature, it can be seen that the temperatures are maxi-
mum over the northwestern India and are lesser over the Western Ghats and 
adjoining areas. The CFSv2 model has a significant warm bias over the northern 
India and especially over the Gangetic plains. The warm bias is reduced in the 
WRF model, and the temperature pattern is closer to the ERA5 with the WRF 
model as compared to the CFSv2 model. However, the warmer temperatures 
over the eastern coast of the southern peninsula region (coastal regions of 
southern Andhra Pradesh and Tamilnadu) are not simulated by the WRF model. 
This may be arising because of the wet bias over these regions in the WRF mod-
el. Wet bias over these regions may be leading to the cooling of the surface tem-
peratures and lesser precipitation recycling ratio. The mean sea level isobars in 
the ERA5 show that the high-pressure regions are over the Tibetan plateau and 
over the equatorial region. The isobars closely follow the temperature contours 
which suggests that the temperatures play an important role in the simulation of 
the mean sea level pressures. Higher pressures of 1010 - 1020 hPa are seen over 
the Tibetan plateau. The isobars are similarly simulated with the CFSv2 as well 
as the WRF model. But the high pressure over the Tibetan plateau is underesti-
mated with the CFSv2 model which is corrected by downscaling with the WRF 
model. Over the Tibetan plateau, the pressure simulated by CFSv2 is 1010 - 1015 
hPa and is 1010 - 1020 hPa with the WRF model. Over the equatorial Indian  
 

 
Figure 8. Mean seasonal (JJAS) 2-meter temperature (shaded contours) and mean sea level pressure isobars (contour lines) aver-
aged over the hindcast period of 1982-2008 as (a) observed and as simulated by (b) CFSv2 and (c) WRF. 
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ocean, the CFSv2 simulates the mean sea level pressure closer to the ERA5 data 
set as compared to the WRF model. Analogous to the anomalous lower-level 
cyclonic circulation in the WRF model, the sea level pressure is lower than nor-
mal in the northern Arabian Sea. The lower MSLP might be creating anomalous 
cyclonic circulation over these regions. This may be a persistent systematic bias 
in the WRF model while using the CFSv2 data as ICBC.  

Relative humidity along the vertical column of the atmosphere controls the 
cloud parameters and the conversion of water vapor to rainfall in the atmos-
phere. Figure 9 shows the climatological seasonal relative humidity averaged  
 

 
Figure 9. Vertical profile of the relative humidity (solid lines) and temperature bias 
(dashed lines) over the entire column of the atmosphere, averaged over the hindcast pe-
riod of 1982-2008 as (a) observed and as simulated by (b) CFSv2 and (c) WRF. The areas 
over which the profiles are computed are (a) central India (90N - 240N, 720E - 840E), (b) 
Arabian sea (130N - 180N, 640E - 690E) and (c) Bay of Bengal (110N - 160N, 850E - 
900E). The bottom panels are computed for the same areas of (a), (b) and (c) but for spe-
cific humidity along the entire column of the atmosphere. 
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over the vertical column of the atmosphere from the surface to 100 hPa pressure 
level. The relative humidity is maximum over the Bay of Bengal as compared to 
the Arabian sea (Figure 9(d)) in the observed ERA5 dataset. Over the oceans, 
the moisture availability is maximum as compared to that over the land surface 
but the differences in the spatial pattern over the oceans can be attributed to the 
eastward advection of the moisture due to the low-level jet stream over the Ara-
bian sea. Maximum relative humidity can be observed over the Western Ghats 
where the mountainous regions act as a barrier to moisture and wind. Over the 
Indian main land region, the relative humidity is minimum over the arid regions 
of Thar desert and northern Himalayas. The relative humidity is not well cap-
tured by the CFSv2 model over the land as well as the oceans. The biases are 
much over the land region and especially over the wet land of the eastern India 
which is home to many river systems and ample amount of moisture is trans-
ported into the land surface from the Bay of Bengal. The WRF model overesti-
mates the relative humidity over the Arabian sea as well as over Bay of Bengal. 
Over the land, it follows a closer pattern to that of observation.  

The vertical profiles of the relative humidity and the temperature biases over 
central India, Arabian sea and Bay of Bengal are shown in Figures 9(a)-(f). The 
vertical profile is computed over these three distinct regions as they have some 
peculiar characteristics, and the relative humidity pattern is different over these 
three regions. The regions of computation are central India (9˚N - 24˚N, 72˚E - 
84˚E), Arabian sea (13˚N - 18˚N, 64˚E - 69˚E) and Bay of Bengal (11˚N - 16˚N, 
85˚E - 90˚E). The relative humidity from the ERA5 reanalysis data shows that 
the relative humidity increases up to a few kilometers above the surface after 
which it decreases till 500 hPa levels after which the relative humidity starts in-
creasing again till the top of the atmosphere (Figure 9 solid black lines). Over 
the central India region, the relative humidity profile of the CFSv2 and WRF are 
quite closer to ERA5. But over the oceanic regions, the relative humidity profile 
varies quite largely. The CFSv2 has weaker relative humidity representation at 
700 - 200 hPa levels which is corrected with the WRF model. Over the Bay of 
Bengal, the simulation of relative humidity is weaker than the Arabian sea. The 
WRF performs better in representing the relative humidity profile than the 
CFSv2. The relative humidity comes to a minimum value at 500 hPa over the 
land as well as ocean regions. At 500 hPa, the relative humidity is 40%/35%/60% 
with the ERA/CFSv2/WRF over the central India region. The same is 
65%/40%/45% and 70%/45%/75% over Arabian sea and Bay of Bengal respec-
tively. The temperature biases of the CFSv2 and WRF with respect to ERA5 
along the vertical column of the atmosphere is shown in Figures 9(a)-(c) with 
dashed lines. The CFSv2 shows a cold bias over most of the vertical pressure le-
vels (1000 - 200 hPa) whereas the WRF shows cold bias from the surface to 500 
hPa levels after which the WRF shows a warm bias up to the top of the atmos-
phere. However, the cold biases are reduced with the WRF as compared to 
CFSv2. The CFS shows a cold bias of −2.5/−3/−3˚C over central India/Arabian 
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sea/Bay of Bengal (Figure 9 dashed green lines) as compared to −1.5/0.5/0.5˚C 
over central India/Arabian sea/Bay of Bengal with the WRF (Figure 9 dashed 
red lines) respectively.  

The specific humidity profiles over the same regions as that of relative humid-
ity are shown in Figures 9(a)-(c). The specific humidity along the vertical quan-
tifies the net precipitable water and hence can give an idea about the rainfall over 
a particular region. The specific humidity is not quite well simulated in the 
CFSv2 model which underestimates the specific humidity over the monsoon 
core zone as well as the oceans. The WRF has similar pattern and intensities to 
that of the ERA5 specific humidity over the land region and Arabian Sea. Over 
the central India region and Bay of Bengal, the WRF overestimates the specific 
humidity between 800 - 400 hPa which may be the reason for excessive rainfall 
over the eastern coast and peninsular India.  

3.3. Diabatic Heating 

The vertical residual heating distribution drives the monsoon circulation (Wa-
liser 2006) and different modes of variability are also largely modulated by the 
vertical heating distribution (Goswami et al. 2013). The large-scale vertical heat-
ing source (Q1) over the central India (9˚N - 24˚N, 72˚E - 84˚E), Arabian sea 
(13˚N - 18˚N, 64˚E - 69˚E) and Bay of Bengal (11˚N - 16˚N, 85˚E - 90˚E) is 
shown in Figure 10. The vertical heat source and moisture sink are computed 
following Yanai et al. [62] and also as used by various other studies [63]. The 
ERA heating profile (Q1) shows (Figure 10, nold line) a lower-level maximum 
around 750 - 700 hPa and a middle level maximum at around 400 hPa, suggesting  
 

 
Figure 10. Diabatic heating (Q1) profile (time and domain averaged) from 900 hpa to 
200 hpa pressure levels, averaged over the hindcast period of 1982-2008 as (a) observed 
and as simulated by (b) CFSv2 and (c) WRF. The areas over which the profiles are com-
puted are same as that of Figure 9. 
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a dominant heat source due to condensation (lower level) and other microphys-
ical transition in the middle troposphere. Similar pattern is observed over the 
land as well as the ocean regions. The vertical structure of the diabatic heating 
shows that the thermodynamics pertinent to both convective and stratiform 
convection processes greatly influence the Indian monsoon rainfall. In the 
CFSv2 model, the heating profile is underestimated. The lower-level heating 
over the land region is comparatively shallow in the CFSv2 model. However, in 
the WRF model, the heating profiles are comparatively better and closer to the 
observations.  

The discrepant residual heating of the CFSv2 and WRF may affect the mois-
ture sink and the heat sources in the atmosphere. This factor may affect the di-
vergence of wind in the upper atmosphere and convergence in the lower level. 
An unrealistic local Hadley cell may arise due to this in the model which may 
subsequently affect the vertical transport of moisture and ultimately affect rain-
fall. The negative heating biases in the vertical might be a reason for dry bias and 
lesser rainfall in the models over the selected regions. The microphysical transi-
tions control the heating profiles which in turn are dependent on the hydro-
meteor mixing ratios prescribed in the various microphysics schemes [64] [65]. 
The impacts of different convective closures on systematic biases of Indian 
monsoon precipitation climatology have been analyzed by looking at the heating 
profiles and residual heating in the atmosphere influence the simulation of con-
vective as well as non-convective rainfall in a dynamical model (Mukhopadhyay 
et al. 2010). In another modelling study, Benedict et al. (2013) concluded that 
simulation of the spatial structures of moistening and diabatic heating can help 
in simulating the convective disturbances in a GCM. Ling et al. (2013), stated 
that the convection over tropics is quite sensitive to the latent heating profiles. 
Consistent with the above studies, it seems that the unrealistic heat source pro-
files simulated by the dynamical models may be possibly due to the uncertainties 
associated with the microphysical, convective, and/or boundary-layer paramete-
rizations. The impacts of different convective closures on systematic biases of 
Indian monsoon precipitation climatology have been analyzed by looking at the 
heating profiles and residual heating in the atmosphere influence the simulation 
of convective as well as non-convective rainfall in a dynamical model [66]. In 
another modelling study, Benedict et al. [67] concluded that simulation of the 
spatial structures of moistening and diabatic heating can help in simulating the 
convective disturbances in a GCM. Ling et al. [68], stated that the convection 
over tropics are quite sensitive to the latent heating profiles. Consistent with the 
above studies, it seems that the unrealistic heat source profiles simulated by the 
dynamical models may be possibly due to the uncertainties associated with the 
microphysical, convective, and/or boundary-layer parameterizations. 

3.4. Surface Heat Fluxes 

Figure 11 shows the time averaged mean upward sensitive heat flux, latent heat  

https://doi.org/10.4236/ojmsi.2024.121001


M. R. Mohanty, U. C. Mohanty 
 

 

DOI: 10.4236/ojmsi.2024.121001 21 Open Journal of Modelling and Simulation 
 

 
Figure 11. Upward Sensible heat flux (W/m2), Latent heat flux (W/m2) and Bowen’s ratio over the Indian main land region as 
observed in ERA data set and as simulated by CFSv2 and WRF respectively. The fluxes are averaged over the entire hindcast pe-
riod of 1982-2008. 
 

flux and the Bowen’s ratio during the JJAS period over the years 1982-2008. The 
surface heat fluxes are an important parameter that helps regulating the evapo-
ration from soil as well as control the precipitation recycling ratio. The Bowen’s 
ratio gives a rough idea of the dominant heat flux over a particular region and 
indirectly signifies the amount of rainfall with respect to the radiation received 
over a particular region. Previous studies have shown that the sensible heat flux 
reduces with the onset of the monsoon whereas the latent heat flux increases as 
the monsoon advances. This phenomenon can be attributed to the fact that as 
the rainfall increases along the season, the land surface cools as compared to the 
highly heated land surface during the pre-monsoon season. Increased rainfall 
also results in enhanced moisture availability and hence enhanced evaporation. 
This leads to the increase in latent heat flux during the monsoon season [69] 
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[70]. A Bowen ratio is the ratio of sensible to latent heat flux and influences the 
boundary layer dynamics affects surface buoyancy flux that drives affects surface 
buoyancy flux that drives (Stevens, 2007) and affects the rate at which convective 
boundary layer deepens. The humidity in the boundary layer is set by the Bowen 
ratio [71] and impacts the efficiency of moist convection heat cycle (the ratio 
between mechanical work and energy input at the surface; [72]) and the distri-
bution of shallow convection cloud base mass flux [73]. Boundary layer charac-
teristics can be influenced by Bowen ratio as the surface forced atmospheric 
conditions can have two distinctive environments during the monsoon and 
pre-monsoon season. 

The sensible and latent heat fluxes are quite opposite in nature during the 
monsoon season which can be clearly identified in Figure 11(a) & Figure 11(d). 
The sensible heat flux is very low over the entire India land region sparing the 
rainfall scanty regions such as the northwestern India and southern tip of India 
along the Tamilnadu coast. Similarly, the latent heat flux is higher over most of 
the regions of India except the regions with high sensible heat flux. The CFSv2 
fails to capture the sensible heat fluxes as well as the latent heat fluxes over most 
of the regions of India. High latent heat flux and low sensible heat flux are ob-
served over the northwestern India which is quite contradictory to the ERA5. 
Inability of the model to simulate the heat fluxes closer to the observation closely 
linked to the failure of the CFSv2 in reproducing the rainfall pattern as well as 
the intensities during the monsoon season. The sensible heat fluxes over the 
monsoon core region range between 10 - 30 W/m2 in the ERA5 as compared to 
50 - 80 W/m2 and 30 - 60 W/m2 in the CFSv2 and WRF respectively. The latent 
heat fluxes over the monsoon core region range between 70 - 120 W/m2 in the 
ERA5 as compared to 70 - 140 W/m2 and 40 - 90 W/m2 in the CFSv2 and WRF 
respectively. Upward heat fluxes from the surface are an important parameter 
that drives the boundary layer dynamics and convection over the grid point as-
sociated. The WRF model performs better than the CFSv2 in representing the 
heat fluxes and has closer representation of the sensible heat flux. Though the 
WRF model simulates weaker sensible and latent heat fluxes, it performs better 
than the parent CFSv2 model. The inability of the model in simulating the heat 
fluxes can be supported from the spatial pattern of Bowen’s ratio (Figures 
12(g)-(i)). The Bowen’s ratio is higher over the northwestern and southern tip 
of India owing to the higher sensible heat fluxes whereas is lower over the rain-
fall regions such as central and northeastern India owing to the higher rainfall 
regions leading to higher latent heat flux. The CFSv2 model fails to capture the 
Bowen’s ratio with respect to the ERA5 and has values ranging between 0.7 - 1 
over most of the regions of India. The Bowen’s ratio ranges between 0.15 - 0.7 in 
the ERA5 whereas it ranges between 0.3 - 0.6 in the WRF model.  

The planetary boundary layer (PBL) height and the convective available po-
tential energy (CAPE) averaged over the entire period of 27 years for the JJAS 
months is shown in Figure 12. The PBL height is the layer where there is maxi-
mum instability leading to active convection during the monsoon season. The  
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Figure 12. Mean boundary layer height as observed in (a) ERA and as simulated in (b) 
CFS and (c) WRF (Left column). The right column is same as left one (d), (e), (f) but for 
convective available potential energy integrated from the level of free convection to the 
equilibrium level. 
 
PBL height in a dynamical model states the regions of maximum instability 
leading to active convection. The PBL height is also dependent on the upwards 
moisture convergence, surface temperature and other parameters. In the ERA5 
dataset, the PBL height is maximum over the Arabian sea where there is maxi-
mum convergence of moisture and high transport of moisture by the low-level 
jet stream. The PBL height can vary in large numbers from a few tens of meters 
to a few kilometers. Though the PBL height is largely influenced by the diurnal 
cycle by the incoming solar radiation [74] [75] the variation on seasonal scale 
during the monsoon season can drive the changes in mean seasonal rainfall. Be-
sides this, the growth and characteristics of PBL over land depends on multiple 
forcing mechanisms related to cloudiness, soil moisture, surface temperature, 
mesoscale convergence, low-level cold-air advection, and synoptic-scale subsi-
dence [76] [77] [78].  

The PBL is typically shallower over the oceans as compared over the land. But 
on a seasonal scale, the PBL is deeper over the oceans (Figure 13(a)). Deeper  
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Figure 13. Vertical velocities averaged over the longitude (top panel) and latitude (bottom panel) over the entire period of simula-
tion. The first column shows the ERA reanalysis vertical velocities whereas the second and third columns show the vertical veloci-
ties as simulated by the CFSv2 and WRF respectively. 

 
PBL height is observed over the Arabian sea and rainfall scanty regions of India 
which ranges between 800 - 1000 m. The boundary layer is underestimated by 
the CFSv2 as well as WRF model. The WRF model has better representation of 
the PBL over the oceans as well as some parts of southern India. The rainfall 
pattern in the WRF is quite closer to the rainfall pattern simulated by the WRF 
model. The average PBL height is about 100 - 400 m in the CFSv2 as compared 
to 200 - 800 m in the WRF over the Indian main land region.  

The CAPE is also an extremely important factor that contributes to the con-
vective rainfall in a dynamical model. The CAPE is calculated as per the mathe-
matical equation described in Section 2. The CAPE is higher over the Bay of 
Bengal as compared to the Arabian sea as well as the Indian main land region. 
Lesser CAPE over Arabian sea is quite similar to the pattern observed with the 
relative humidity which may be arising due to the advection of moisture due to 
the low-level jet stream. The CAPE over the Indian main land region ranges be-
tween 200 - 800 J/kg in the ERA5 data set as compared to 100 - 400 J/kg in the 
CFSv2 and 100 - 600 J/kg in the WRF model respectively. The CAPE is highly 
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underestimated with the CFSv2 as well as WRF model over the Gangetic plains 
and central India region which might be the reason for lesser rainfall over these 
regions.  

The vertical velocities averaged over the longitude and latitude over the entire 
domain are shown in Figure 13. The vertical velocities determine the intensity 
of convection as well as orographic lifting which have a direct impact on the 
mesoscale convective activities. The errors in rainfall simulation arising in the 
dynamical models can be inferred from the pattern of vertical velocity in the 
models. Maximum updrafts are observed in the lower troposphere whereas the 
downdrafts are observed at upper troposphere at 200 - 400 hPa. Also, maximum 
upward and downwards motion of wind can be seen at the 10N - 20N and 85E - 
95E. this may be arising due to the strong orographic lifting near the Western 
Ghats region and over the hilly regions of the northeast India. Though the ver-
tical wind quantities are extremely small (0.01 - 0.02 m/s) as compared to the 
meridional or zonal wind, they do have an impact on the updrafts and down-
drafts in the clouds which are responsible for strong convection.  

The CFSv2 shows very low vertical velocities over central India region whe-
reas the WRF shows high vertical velocities over the southern peninsula region. 
This can be attributed to the scanty rainfall over central India in CFSv2 model 
and heavy rainfall patches over Western Ghats in the WRF model. Similar ob-
servations can be found over the eastern part of the domain where the CFSv2 
model shows excess downdrafts over the eastern part of the domain, over the 
hilly regions of northeast India and Myanmar. In the WRF model, biased down-
drafts are observed in the western part of the domain at upper part of the at-
mosphere. Both the models show large biases in the rainfall sensitive regions of 
the domain which may be adding to the rainfall errors in the dynamical models. 

4. Summary and Conclusions 

This study is aimed at using the method of dynamical downscaling for the pur-
pose of improving the skill of Indian summer monsoon rainfall forecast. The 
hindcast output from CFSv2 has been used to downscale using a high resolution 
WRF modeling system. The model has been simulated for a long period of 27 
consecutive monsoon seasons to assess the skill of the model. The downscaled 
hindcast is compared with the observations as well as the parent GCM to assess 
the skill of the model in minimizing the errors and reproducing the meteorolog-
ical parameters. A brief summary of the findings from this chapter can be dis-
cussed as: 

The method of dynamically downscaling the CFSv2 hindcast using WRF per-
forms quite well in improving the rainfall pattern as well as the intensities over 
the parent CFSv2. The seasonality of the monsoon along with the heavy rainfall 
patches over the Indian main land region is represented quite well with the WRF 
model. Significant areas of heavy rainfall patches such as the central India and 
Western Ghats are captured with the WRF which is completely missed in the 
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CFSv2 model. Composite analysis of the categorical monsoon seasons shows 
that the WRF outperforms the CFSv2 and produces the rainfall quite closer to 
the observations. Dry bias over most of India in CFSv2 is reduced with the WRF 
model especially for the composite deficit and normal monsoon seasons. The 
skill of the model is fairly improved from 0.21 to 0.38 with the CFSv2 and WRF 
respectively. Along with the skill, the rainfall distribution as well as mean sea-
sonal rainfall errors are reduced with the WRF model. 

The improvement in the rainfall can be attributed to the improvement in the 
representation of upper air and surface meteorological parameters. With the 
finer representation of the land surface at higher resolution, the surface fluxes 
and the moisture feedback between the land and atmosphere is improved in the 
WRF model. The parameters that have a direct impact on the rainfall are well 
simulated in the WRF model as compared to the CFSv2. Vertical structure of the 
relative humidity and heating profiles over rainfall significant regions over India 
show that the WRF model does a fairly good job compared to the CFSv2 in 
representing the vertical atmosphere. The surface heat fluxes are an important 
part of a dynamical model as they control the precipitation recycling ratio. The 
sensible and latent heat fluxes are represented quite closer to the observations in 
the WRF model which may be a reason for the better representation of the tem-
perature and moisture gradients along the vertical column of the atmosphere in 
the WRF model. The semi-permanent features of the summer monsoon such as 
the low-level jet, tropical easterly jet, Tibetan high, etc., are represented better in 
the WRF model as compared to the CFSv2 model. The winds at 850 hPa are 
represented much better in the WRF model than the CFSv2 model and the wind 
structure for the extreme monsoon seasons varies significantly. The low-level jet 
streams are an important component of the monsoon Hadley cell which may be 
helping the WRF model in simulating the rainfall closer to the observational da-
ta sets of IMD. The precipitation pattern in the WRF model closely follows the 
PBL height and CAPE pattern. The cumulus convention in the WRF model is a 
function of the relative humidity which closely follows the lower-level turbu-
lence and static stability. Since these parameters are fairly closer to the reanalysis 
data in the WRF model, they help in simulating the rainfall closer to the obser-
vations. Overall, the WRF fairly does a good job in simulating the Indian sum-
mer monsoon and rigorous methods such as ensemble downscaling methods, 
statistical methods for bias correction can be implemented to improve the skill 
of the WRF model further. 
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