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Abstract 

 
Aims: The aim of this study is to investigate the impact of thresholds on the detection of outliers by 

comparing the performance of two estimators, namely the minimum covariance determinant (MCD) and 

minimum regularized covariance determinant (MRCD), at different sample sizes. The study uses simulated 

data generated from the standard normal distribution to assess how varying thresholds affect the ability of 

these estimators to detect outliers. 

Study Design: This study employs a quantitative research design. It involves the generation of simulated 

data, the application of the MCD and MRCD estimators for outlier detection, and the systematic 

manipulation of thresholds and sample size as independent variables. 

Place and Duration: The study is conducted using computational tools and did not require a physical 

location. 
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Methodology: Simulated data is generated from the standard normal distribution to create a controlled 

environment for outlier detection experiments. The MCD and MRCD estimators are applied to the simulated 

data to detect outliers. These estimators are sensitive to deviations from the norm in the data. Different 

thresholds are systematically applied to the data, and the performance of the estimators is assessed at each 

threshold level. Thresholds may vary in their extremeness. The study investigates the impact of different 

sample sizes on outlier detection. This involves using datasets with varying numbers of observations. The r 

programming language and associated packages are used as the statistical tool for data generation, analysis, 

and visualization. 

Results: The study's findings indicate that the choice of thresholds in data analysis significantly affects the 

performance of the MCD and MRCD estimators in outlier detection. If the thresholds used for both 

estimators are the same, their performance is similar. However, differences emerge when thresholds differ 

from each other. Higher thresholds are shown to identify less extreme outliers, while lower thresholds are 

effective at identifying more extreme outliers. These results provide insights into the behavior of these 

estimators in outlier detection scenarios, shedding light on their sensitivity to threshold choices and sample 

size. 

Conclusion: Our study has shed light on the critical interdependencies among threshold choices, sample 

sizes, and the performance of the minimum covariance determinant (MCD) and minimum regularized 

covariance determinant (MRCD) estimators in the context of outlier detection. By conducting a systematic 

exploration in a controlled environment with simulated data, we have gleaned valuable insights that can 

inform both researchers and practitioners in the field of organizational science research. 

 

 
Keywords:  Outliers; thresholds; organizational science; MCD (Minimum Covariance Determinant); MRCD 

(Minimum Regularized Covariance Determinant); Gaussian distribution. 

 

1 Introduction 
 

The detection of outliers in the analysis of data sets dates back to the 18th century. Bernoulli [1] pointed out the 

practice of deleting the outliers about 200 years ago. Deleting outliers was not a proper solution to handle the 

outliers but this remained a common practice in the past. To address the problem of outliers in the data, the first 

statistical technique was developed in 1850 by Beckman and Cook [2]. Some of the researchers argued that 

extreme observations should be kept as a part of the data as these observations provide very useful information 

about the data. For example, Bessel and Baeuer [3] claimed that one should not delete extreme observations due 

to their gap from the remaining data (cited in Barnett and Lewis [4]). The recommendation of Legendre [5] is 

not to rub out the extreme observations “adjusted too large to be admissible”. Some of the researchers favored 

cleaning the data from extreme values as they distorted the estimates. An astronomer of the 19th 

century, Boscovitch, put aside the recommendations of the Lengendre and led them to delete (ad hoc 

adjustment) perhaps favoring the Pierce [6], Chauvent [7], or Wright [8]. Cousineau and Chartier [9] said that 

outliers were always the result of some spurious activity and should be deleted. Deleting or keeping the outliers 

in the data is as hotly discussed issue today as it was 200 years ago. Bendre and Kale [10], Davies and Gather 

[11], Iglewicz and Hoaglin [12], and Barnett and Lewis [4] conducted several studies to handle issues of 

outliers. Defining outliers by their distance to neighboring examples was a popular approach to finding unusual 

examples in a dataset known to be a distance-based outlier detection technique. Saad and Hewahi [13] 

introduced the Class Outlier Distance Bases (CODB) outliers detection procedure and proved that it was better 

than the distance-based outlier detection method. Vermal [14] emphasized for detection of outliers in univariate 

data instead of accommodating the outliers because it provided a better estimate of mean and other statistical 

parameters in an international geochemical reference material (RM).Xiaodan Xu, et al [15] also enunciated the 

methods of outliers detection in high dimensional data K Ro, et al. [16] proposed another method for outlier 

detection procedure with high-breakdown minimum diagonal product estimator. The Mahalanobis distance is 

popularly known to detect outliers in multivariate Statistics. It measures the distance of a set of data points to a 

center by taking into account the dispersion of the data around the center (Violeta Roizman et al. [17]). The 

squared Mahalanobis distance is defined in Equation (1) [17]: 

 

MDi
2(µ, θ) = (Xi - µ)Tθ-1(Xi - µ)                    (1) 

  

Where μ is the sample mean and θ is the sample covariance matrix. However, it is generally known that 

the Mahalanobis distance is easily influenced by outliers in data, due to the classical mean vector and covariance 
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matrix in Equation (1). Also, when the Mahalanobis distance is used to detect outliers, it is known to be affected 

by masking. The appropriate method to use in the detection of outliers is the robust version of 

the Mahalanobis distance. Generally, the Minimum Covariance Determinant (MCD) estimators are used for this 

aim [18]. The MCD estimator proposed by Hubert et al. [19], works by first finding the subset of observations 

that minimizes the determinant of the sample covariance matrix. The MCD estimator is robust because it is not 

sensitive to the values of the outliers in the subset. Hubert et al. [19], reviewed the MCD method with its 

properties. However, the MCD estimator can be overly influenced by outliers in high-dimensional data. The 

MRCD estimator proposed by Boudt et al. [20] can be used to address the MCD problem. The MRCD adds a 

regularization term to the MCD estimator. This regularization term helps to prevent the MRCD from being 

overly influenced by outliers in high-dimensional data. 

 

In this study, the MCD (Minimum Covariance Determinant) and MRCD (Minimum Regularized Covariance 

Determinant) are compared to see the impact of thresholds in the detection of outliers at different sample sizes 

using simulated data generated from the Standard normal distribution. The rest of the paper is organized as 

follows. In Section 2, the MCD and MRCD estimators are introduced. In Section 3, we introduced the method 

of data simulation. In Section 4, we lay out the result of the analysis. In Section 5, we provide study conclusions. 

 

2 Materials and Methods 
 

2.1 Minimum covariance determinant (MCD) estimator 
 

The MCD estimator aimed to provide a robust method to estimate the center and scatter of multivariate data. 

The MCD's primary draw was its resilience to outliers, making it a valuable tool in contexts where data 

contamination was a concern. The MCD algorithm selects the subset that has a minimum determinant of its 

covariance matrix among all subsets with size h (n/2 < h < n) [17]. By centering on this subset, the MCD 

computes the mean vector and covariance matrix. The MCD goal is to reduce the influence of potential outliers 

and provide more reliable estimates. 

 

2.2 Minimum regularized covariance determinant (MRCD) estimator 
 

The MRCD is a modification of the MCD estimator that is designed to be more robust to outliers in high-

dimensional data. MRCD estimators have good breakdown point properties of MCD estimators and they can be 

used for the calculation of Mahalanobis distances [18]. More detailed information about the MRCD estimator is 

available in Boudt et al. [20], and Hasan Bulut [18]. In this paper, the R package is used for the calculations 

regarding the MCD and MRCD estimators. 

 

2.3 Simulation for standard normal distribution 
 

A set of replication of data sets are generated from the multiple linear regression models with two independent 

variables stated as follows: 

 

yi = β0 + β1X1 + β2X2 + ei, i = 1,2,…,n                           (2) 

 

Where all regression coefficients βi were fixed to be βi = 1, i = 0, 1, 2 and the errors are assumed to be 

independent. The independent variables were independently simulated from Standard normal distribution (0, 1), 

outliers were injected into the samples from Gaussian distribution (6, 1), and thresholds of 0.75, 0.90, 0.95, and 

0.99 were set for detection of outliers in the data set. The data set is generated under two regressors (p = 2) and 

the sample sizes considered are 50, 150, 300, 600, 800, and 1000 respectively. 

 

3 Results and Discussion 
 

The performance of the MCD and MRCD estimators was observed to see how well both estimators detect 

outliers as the thresholds change using the R package as a statistical tool. It was noted that, at 0.75 thresholds, 

the MCD and MRCD detect an equal number of outliers using the simulated data generated from the distribution 

and sample sizes mentioned in 3.0. At the 0.90 threshold, the MCD and MRCD detect an equal number of 

outliers but fewer than when the thresholds were set to 0.75, using the simulated data generated from the 
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distribution and sample sizes mentioned in 3.0. At 0.95 thresholds, the MCD and MRCD detect an equal number 

of outliers but fewer than when the threshold was at 0.75 and 0.90 respectively using the simulated data 

generated from the distribution and sample sizes mentioned in 3.0. Finally, at 0.99 thresholds, the MCD and 

MRCD detect an equal number of outliers but in modicum than when the threshold was at 0.75, 0.90, and 0.95 

respectively using the simulated data generated from the distribution and sample sizes mentioned in 3.0. 

 

3.1 Result tables 
 

  
Fig. 1. The plot of MCD at n=50, threshold=0.75. Fig. 2. The plot of MCD at n=150, threshold=0.75. 

  
Fig. 3. The plot of MCD at n=300, threshold=0.75. Fig. 4. The plot of MCD at n=600, threshold=0.75. 

  

Fig. 5. The plot of MCD at n=800, threshold=0.75. Fig. 6. The plot of MCD at n=1000, 

threshold=0.75. 

 
 

Fig. 7. The plot of MCD at n=50, threshold=0.90. Fig. 8. The plot of MCD at n=150, threshold=0.90. 

 
 

Fig. 9. The plot of MCD at n=300, threshold=0.90. Fig. 10. The plot of MCD at n=600, 

threshold=0.90. 
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Fig. 11. The plot of MCD at n=800, 

threshold=0.90. 

Fig. 12. The plot of MCD at n=1000, 

threshold=0.90. 

 

  
Fig. 13. The plot of MCD at n=50, threshold=0.95. Fig. 14. The plot of MCD at n=150, 

threshold=0.95. 

 
 

Fig. 15. The plot of MCD at n=300, 

threshold=0.95. 

Fig. 16. The plot of MCD at n=600, 

threshold=0.95. 

  
Fig. 17. The plot of MCD at n=800, 

threshold=0.95. 

Fig. 18. The plot of MCD at n=1000, 

threshold=0.95. 

  

Fig. 19. The plot of MCD at n=50, threshold=0.99 Fig. 20. The plot of MCD at n=150, 

threshold=0.99. 
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Fig. 21. The plot of MCD at n=300, 

threshold=0.99. 

Fig. 22. The plot of MCD at n=600, 

threshold=0.99. 

  

Fig. 23. The plot of MCD at n=800, 

threshold=0.99. 

Fig. 24. The plot of MCD at n=1000, 

threshold=0.99. 

 

3.2 MRCD Result Table for 3.1 at 0.75 threshold 
 

 
 

Fig. 25. The plot of MRCD at n=50, 

threshold=0.75 

Fig. 26. The plot of MRCD at n=150, 

threshold=0.75. 

  
Fig. 27. The plot of MRCD at n=300, 

threshold=0.75. 

Fig. 28. The plot of MRCD at n=600, 

threshold=0.75. 

  
Fig. 29. The plot of MRCD at n=800, 

threshold=0.75. 

Fig. 30. The plot of MRCD at n=1000, 

threshold=0.75. 
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3.3 MRCD result Table for 3.1 at 0.90 threshold 
 

  
Fig. 31. The plot of MRCD at n=50, 

threshold=0.90. 

Fig. 32. The plot of MRCD at n=150, 

threshold=0.90. 

  
Fig. 33. The plot of MRCD at n=300, 

threshold=0.90. 

Fig. 34. The plot of MRCD at n=600, 

threshold=0.90. 

  
Fig. 35. The plot of MRCD at n=800, 

threshold=0.90. 

Fig. 36. The plot of MRCD at n=1000, 

threshold=0.90. 

 

3.4 MRCD Result Table for 3.1 at 0.95 threshold  
 

  
Fig. 37. The plot of MRCD at n=50, 

threshold=0.95. 

Fig. 38. The plot of MRCD at n=150, 

threshold=0.95. 

  
Fig. 39. The plot of MRCD at n=300, 

threshold=0.95. 

Fig. 40. The plot of MRCD at n=600, 

threshold=0.95. 
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Fig. 41. The plot of MRCD at n=800, 

threshold=0.95. 

Fig. 42. The plot of MRCD at n=1000, 

threshold=0.95. 

 

3.5 MRCD Result Table for 3.1 at 0.99 threshold  

 

  
Fig. 43. The plot of MRCD at n=50, 

threshold=0.99. 
Fig. 44. The plot of MRCD at n=150, 

threshold=0.99. 

  
Fig. 45. The plot of MRCD at n=300, 

threshold=0.99. 
Fig. 46. The plot of MRCD at n=600, 

threshold=0.99. 

  
Fig. 47. The plot of MRCD at n=800, 

threshold=0.99. 
Fig. 48. The plot of MRCD at n=1000, 

threshold=0.99. 

 

4 Conclusion 
 

In this paper, the performance of the MCD and MRCD estimators are investigated at different thresholds using 

simulated data generated from Standard normal distribution at different sample sizes. It was noted that the MCD 

and MRCD estimators perform the same way if, the threshold used for the MCD estimator in the detection of 

outliers is the same as the threshold used for the MRCD for outlier detection. Otherwise, the estimators perform 

incongruously if, the thresholds used are different from each other, in this case, the estimator with the higher 

threshold is more robust than the estimator with the lower threshold. Therefore, the choice of threshold in data 

analysis has a significant impact on the performance of the MCD and MRCD estimators in outlier detection, the 

higher thresholds can be used to identify outliers that are less extreme while the lower thresholds can be used to 



 
 

 

 
Yusuf and Zachary; Asian J. Prob. Stat., vol. 25, no. 2, pp. 117-126, 2023; Article no.AJPAS.107312 

 

 

 
125 

 

identify outlier’s that are more extreme and the both estimators are also suitable for all the sample sizes under 

consideration in this paper. 
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