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ABSTRACT

In this note, we verify the existence of solutions to nonlocal initial value problems for Hilfer-type
fractional hybrid differential equations with impulsive condition. Then, we use prerequisites of Hilfer
fractional calculus and the standard fixed point theorem due to Dhage for deriving the existence
results in the weighted space of continuous functions. An example is presented to illustrate the
theory results.
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1 INTRODUCTION
Fractional differential equations (FDEs) have recently proved to be valuable tools in the modeling
of many phenomena. As a result of its wide applicability in biology, medicine and in more and more
fields, the theory of FDEs has recently been attracting increasing attention, see the monographs of
Hilfer [1], Kilbas [2] and Podlubny [3]. Applied problems require definitions of fractional derivatives
allowing the use of physically interpretable initial conditions and boundary conditions. One more
attractive class of problems involves fractional hybrid differential equations. For some work on
this topic, one can refer to [4, 5, 6, 7]. In [1], R. Hilfer studied applications of a generalized
fractional operator having the Riemann-Liouville and Caputo derivatives as specific cases (see
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also [8, 9]). In the recent years, some authors have considered Hilfer fractional derivative, see
[10, 11, 12, 13, 8, 14, 15, 16, 17] and references therein.

This note deals with the existence of solutions for the nonlocal initial value problems (IVPs), for
Hilfer-type fractional hybrid differential equations (FHDEs) with impulsive effects

Dα,β

0+

(
U(t)

F (t, U(t))

)
= G(t, U(t)), t ∈ J := [0, T ], (1.1)

U(t+k ) = U(t−k ) + Vk, k = 1, 2, ...,m, Vk ∈ R (1.2)
I1−γ

0+
U(0) + η(U) = U0, (1.3)

where Dα,β

0+
is the Hilfer fractional derivative, F ∈ C(J × R,R| {0}), G : C(J × R,R) and

η : C(C, J) × R, I1−γ

0+
is the left-sided mixed Riemann-Liouville integral of order 1 − γ and

U0 ∈ R. tk satisfies 0 = t0 < t1 < ... < tm < tm+1 = T , U(t+k ) = limϵ→0+ U(tk + ϵ) and
U(t−k ) = limϵ→0− U(tk + ϵ) represents the right and left limits of U(t) at t = tk.

Impulsive differential equations (IDEs) have become essential in recent years as mathematical
models of phenomena in both the physical and social sciences. There has a significant development in
impulsive theory especially in the area of IDEs with fixed moments; see for instance the monographs
by Bainov and Simeonov [18], Benchohra et al. [19] and Lakshmikantham et al. [20] and the
references therein. Particular attention has been given to differential equations at variable moments
of impulse; see for instance the papers by Bajo and Liz [21].

2 PREREQUISITES
Let C(J,R) denotes the Banach space of all continuous real-valued functions defined on J with the
norm

∥U∥ = sup {|U(t)| : t ∈ J} .
For t ∈ J , we define Ur(t) = trU(t), r ≥ 0. Let Cr(J,R) be the space of all continuous functions U
such that Ur ∈ C(J,R) which is indeed a Banach space endowed with the norm

∥U∥C = sup {tr |U(t)| : t ∈ J} .

Let 0 ≤ γ ≤ 1 and Cγ(J,R) denote the weighted space of continuous function defined by

C(J,R) =
{
G(t) : tγG(t) ∈ C(J,R), ∥V ∥Cγ

= ∥tγG(t)∥C
}
.

In the following we denote ∥V ∥Cγ
by ∥V ∥C .

Definition 2.1. The fractional integral operator of order α > 0 for a fractional function F cam be
defined as

IαF (t) =
1

Γ(α)

∫ t

0

F (s)

(t− s)α−1
ds, t > 0,

where Γ(·) is the Gamma function.

Definition 2.2. [1](Hilfer derivative). Let 0 < α < 1, 0 ≤ β ≤ 1, F ∈ L1(J), I(1−α)(1−β)

0+
∈

C1
γ [J,R]. The Hilfer fractional derivative of order α and type β of F is defined as

(Dα,β

0+
F )(t) =

(
I
β(1−α)

0+

d

dt
I
(1−α)(1−β)

0+
F

)
(t); for a.e. t ∈ J. (2.1)
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Lemma 2.1. [11] Let F : J × R → R be a function such that F (·, U(·)) ∈ Cγ(J,R) for any
U ∈ Cγ(J,R). A function U ∈ Cγ(J,R) is a solution of fractional initial value problem:{

Dα,β

0+
U(t) = F (t, U(t)), 0 < α < 1, 0 ≤ β ≤ 1,

I1−γ

0+
U(0) = U0, γ = α+ β − αβ,

if and only if U satisfies the following Volterra integral equation:

U(t) =
U0t

γ−1

Γ(γ)
+

1

Γ(α)

∫ t

0

(t− s)α−1F (s, U(s))ds.

Further details can be found in [22]. From Lemma 2.1 we have the following result.

Lemma 2.2. [23] Let γ = α + β − αβ where 0 < α < 1 and 0 ≤ β ≤ 1. Let F : J × R → R be a
function such that F ∈ Cγ(J,R) for any U ∈ Cγ(J,R). If G ∈ Cγ(J,R), then U satisfies

Dα,β

0+

(
U(t)

F (t, U(t))

)
= G(t, U(t)), t ∈ J := [0, T ], (2.2)

I1−γ

0+
U(0) = ϕ, (2.3)

if and only if U satisfies the integral equation

U(t) = F (t, U(t))

(
ϕ

Γ(γ)
tγ−1 +

1

Γ(α)

∫ t

0

(t− s)α−1G(s, U(s))ds

)
, t > 0. (2.4)

We adopt some ideas from [24].

Lemma 2.3. Given V ∈ C(J,R), the integral solution of IVP

Dα,β

0+

(
U(t)

F (t, U(t))

)
= V (t), 0 < t < 1, (2.5)

U(t+k ) = U(t−k ) + Vk, k = 1, 2, ...m, Vk ∈ R, (2.6)
I1−γ

0+
U(0) + η(U) = U0, (2.7)

is given by

U(t) =



F (t, U(t))
(

U0−η(U)
Γ(γ)

tγ−1 + 1
Γ(α)

∫ t

0
(t− s)α−1V (s)ds

)
, for t ∈ (0, t1],

F (t, U(t))
(

U0−η(U)+V1
Γ(γ)

tγ−1 + 1
Γ(α)

∫ t

0
(t− s)α−1V (s)ds

)
, for t ∈ (t1, t2],

F (t, U(t))
(

U0−η(U)+V1+V2
Γ(γ)

tγ−1 + 1
Γ(α)

∫ t

0
(t− s)α−1V (s)ds

)
, for t ∈ (t2, t3],

· · ·
F (t, U(t))

(
U0−η(U)+

∑m
i=0 Vi

Γ(γ)
tγ−1 + 1

Γ(α)

∫ t

0
(t− s)α−1V (s)ds

)
, for t ∈ (tm, T ].

(2.8)

Proof. Assume that U satisfies equation (1.1)-(1.3). If t ∈ (0, t1], then Dα,β

0+

(
U(t)

F (t,U(t))

)
= V (t),

t ∈ (0, t1] with I1−γ

0+
U(0) + η(U) = U0. By virtue of Lemma 2.2, one can obtain

U(t) = F (t, U(t))

(
U0 − η(U)

Γ(γ)
tγ−1 ++

1

Γ(α)

∫ t

0

(t− s)α−1V (s)ds

)
, for t ∈ (0, t1].

If (t1, t2] then Dα,β

0+

(
U(t)

F (t,U(t))

)
= V (t), t ∈ (t1, t2] with U(t+1 ) = U(t−1 ) + V1. Then we have

U(t+1 ) = F (t, U(t))

(
U0 − η(U) +

∫ t1

0

V (s)ds+ V1

)
.
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By Lemma 2.2, we get

U(t) = F (t, U(t))

(
U(t+1 )− η(U)

Γ(γ)
tγ−1 +

tγ−1

Γ(γ)

∫ t1

0

V (s)ds+
1

Γ(α)

∫ t

0

(t− s)α−1V (s)ds

)
= F (t, U(t))

(
U0 − η(U)

Γ(γ)
tγ−1 +

V1

Γ(γ)
tγ−1 +

1

Γ(α)

∫ t

0

(t− s)α−1V (s)ds

)
= F (t, U(t))

(
U0 − η(U) + V1

Γ(γ)
tγ−1 +

1

Γ(α)

∫ t

0

(t− s)α−1V (s)ds

)
, t ∈ (t1, t2]

without loss of generality, for t ∈ (ti, ti+1], i = 1, 2, ...m, we get

U(t) = F (t, U(t))

(
U0 − η(U) +

∑m
i=1 Vi

Γ(γ)
tγ−1 +

1

Γ(α)

∫ t

0

(t− s)α−1V (s)ds

)
, t ∈ (ti, ti+1].

On the other hand, assume that U satisfies the integral equations (2.8). If t ∈ (0, t1], then
I1−γ

0+
U(0) + η(U) = U0, we get Dα,β

0+

(
U(t)

F (t,U(t))

)
= V (t). Similarly, if t ∈ (ti, ti+1], we obtain

Dα,β

0+

(
U(t)

F (t,U(t))

)
= V (t) and U(t+k ) = U(t−k ) + Vk, k = 1, 2, ...,m. This completes the proof.

Theorem 2.4. [25, 26] Let S be a non-empty, closed convex and bounded subset of the Banach
algebra R, let A : R → R and B : S → R be two operators such that:

(a) A is Lipschitzian with a Lipschitz constant k;
(b) B is completely continuous;
(c) U = AUBV =⇒ U ∈ S for all V ∈ S, and
(d) Mk < 1, where M = ∥B(S)∥ = sup {∥B(U)∥ : U ∈ S}.

Then the operator equation U = AUBU has a solution.

3 EXISTENCE RESULTS
We introduce the following hypotheses:
(H1) The function F : J ×R → R| {0} is bounded continuous and there exists a positive bounded

function ϕ with bound ∥ϕ∥ such that

|F (t, U(t))− F (t, V (t))| ≤ ϕ(t) |U(t)− V (t)| ,

for t ∈ J and for all U, V ∈ R.
(H2) There exists a function P ∈ C(J,R+) and a continuous nondecreasing function Ω : [0,∞) →

(0,∞) such that
|G(t, U(t))| ≤ P (t)Ω(|U |), (t, U) ∈ J ×R.

(H3) There exists a number r > 0 such that

r ≥ K

[
m∑
i=0

|Vi|+
|U0 +G|
Γ(γ)

+
T 1−γ+α

Γ(α+ 1)
∥P∥Ω(r)

]
, (3.1)

where |F (t, U)| ≤ K, ∀ (t, U) ∈ [0, T ]×R and

∥ϕ∥

[
m∑
i=0

|Vi|+
|U0|+G

Γ(γ)
+

T 1−γ+α

Γ(α+ 1)
∥P∥Ω(r)

]
< 1.
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Theorem 3.1. Assume that (H1)-(H3) are satisfied. Then the problem (1.1)-(1.3) has at least one
solution on J .

Proof. Set X = C(J,R) and define a subset S of X as

S =
{
U ∈ X : ∥U∥C ≤ r

}
,

where r satisfies inequality (3.1).
Clearly, S is closed, convex and bounded subset of the banach space X and G = supU×X |η(U)|.
By Lemma 2.3, the IVP (1.1)-(1.3) is equivalent to the integral equation

U(t) =



F (t, U(t))
(

U0−η(U)
Γ(γ)

tγ−1 + 1
Γ(α)

∫ t

0
(t− s)α−1G(s, U(s))ds

)
, for t ∈ (0, t1],

F (t, U(t))
(

U0−η(U)+V1
Γ(γ)

tγ−1 + 1
Γ(α)

∫ t

0
(t− s)α−1G(s, U(s))ds

)
, for t ∈ (t1, t2],

F (t, U(t))
(

U0−η(U)+V1+V2
Γ(γ)

tγ−1 + 1
Γ(α)

∫ t

0
(t− s)α−1G(s, U(s))ds

)
, for t ∈ (t2, t3],

· · ·
F (t, U(t))

(
U0−η(U)+

∑m
i=0 Vi

Γ(γ)
tγ−1 + 1

Γ(α)

∫ t

0
(t− s)α−1G(s, U(s))ds

)
, for t ∈ (tm, T ].

(3.2)

Define the operators A : X → X and B : S → X

AU(t) = F (t, U(t)), t ∈ (tm, T ], (3.3)

BU(t) =
U0 − η(U) +

∑m
i=0 Vi

Γ(γ)
tγ−1 +

1

Γ(α)

∫ t

0

(t− s)α−1G(s, U(s))ds. (3.4)

Then, U = AUBU . We shall show that the operators A and B satisfy all the hypotheses of Theorem
2.4. For the sake of clarity, we split the proof as follow:
Claim 1.

We first show that A is a Lipschitz on X, (i.e.) (a) of Theorem 2.4 holds.
Let U, V ∈ X. Then by (H1), we have∣∣t1−γ (AU(t)−AV (t))

∣∣ = t1−γ |F (t, U(t)− F (t, V (t))|

≤ ϕ(t)t1−γ |U(t)− V (t)|
≤ ∥ϕ(t)∥ ∥U − V ∥C , ∀ (tm, T ].

Taking the supremum over the interval (tm, T ], we get

∥AU −AV ∥C ≤ ∥ϕ∥ ∥U − V ∥C , ∀ U, V ∈ R.

So A is a Lipschitz on X with Lipschitz constant ∥ϕ∥.
Claim 2.

The operator B is completely continuous on S, i.e. (b) of Theorem 2.4 holds.
First we show that B is continuous on S.
Let {Un} be a sequence of S converging to a point U ∈ S. Then by Lebesgue dominated

convergence theorem,

lim
n→∞

t1−γBUn(t) = lim
n→∞

(
U0 − η(U) +

∑∞
i=0 Vi

Γ(γ)
+
t1−γ

Γ(γ)

∫ t

0

(t− s)α−1G(s, Un(s))ds

)
=

(
U0 − η(U) +

∑∞
i=0 Vi

Γ(γ)
+
t1−γ

Γ(γ)

∫ t

0

(t− s)α−1 lim
n→∞

G(s, Un(s))ds

)
=

(
U0 − η(U) +

∑∞
i=0 Vi

Γ(γ)
+
t1−γ

Γ(γ)

∫ t

0

(t− s)α−1G(s, U(s))ds

)
= t1−γBU(t), ∀ t ∈ (tm, T ].
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This shows that B is continuous on S. It is sufficient to show that B(s) is a uniformly bounded
and equicontinuous set in X.

t1−γ |BU(t)| =
∣∣∣∣U0 − η(U) +

∑∞
i=0 Vi

Γ(γ)
+
t1−γ

Γ(α)

∫ t

0

(t− s)α−1G(s, U(s))ds

∣∣∣∣
=

[
|U0| −G+

∑∞
i=0 |Vi|

Γ(γ)
+ ∥P∥Ω(r)T

1−γ

Γ(α)

∫ t

0

(t− s)α−1ds

]
=

|U0| −G+
∑∞

i=0 |Vi|
Γ(γ)

+ ∥P∥Ω(r) T
1−γ+α

Γ(α+ 1)
, ∀ t ∈ (tm, T ].

Taking supremum over the interval (tm, T ], then we have

∥B(U)∥C ≤
|U0| −G+

∑∞
i=0 |Vi|

Γ(γ)
+ ∥P∥Ω(r) T

1−γ+α

Γ(α+ 1)
, ∀ U ∈ S.

This shows that B is unifromly bounded on S.

Next we show that B is an equicontinuous set in X. Let t1, t2 ∈ (tm, T ] with t1 < t2 and U ∈ S.
Then we have∣∣t1−γ

2 (BU)(t2)− t1−γ
1 (BU)(t1)

∣∣
≤

∥P∥Ω(r) +
∑m

i=0 Vi

Γ(α)

∣∣∣∣∫ t2

0

t1−γ
2 (t2 − s)α−1ds−

∫ t1

0

t1−γ
1 (t1 − s)α−1ds

∣∣∣∣
≤

∥P∥Ω(r) +
∑m

i=0 Vi

Γ(α)

∣∣∣∣∫ t1

0

[
t1−γ
2 (t2 − s)α − t1(t1 − s)α−1] ds∣∣∣∣

+
∥P∥Ω(r)
Γ(α)

∣∣∣∣∫ t2

t1

t1−γ
2 (t2 − s)α−1ds

∣∣∣∣ .
Obviously, the right-side of the above inequality tends to zero independently of U ∈ S as t2−t1 → 0.
Therefore, it follows from the Arzela-Ascoli theorem that B is a completely continuos operator on
S.
Claim 3.

Next, we show that hypothesis (c) of Theorem 2.4 is satisfied.
Let U ∈ X and V ∈ S be arbitrary elements such that U = AUBV . Then we have

t1−γ |U(t)| = t1−γ |AU(t)| |BV (t)|

= |F (t, U(t))|
(∣∣∣∣U0 − η(U) +

∑m
i=1 Vi

Γ(γ)
+
t1−γ

Γ(α)

∫ t

0

(t− s)α−1V (s)ds

∣∣∣∣)
≤ K

∣∣∣∣U0 − η(U) +
∑m

i=1 Vi

Γ(γ)
+
t1−γ

Γ(α)

∫ t

0

(t− s)α−1V (s)ds

∣∣∣∣
≤ K

[
|U0|+G+

∑m
i=1 |Vi|

Γ(γ)
+ ∥P∥Ω(r)T

1−γ

Γ(α)

∫ t

0

(t− s)α−1V (s)ds

]
≤ K

[
|U0|+G+

∑m
i=1 |Vi|

Γ(γ)
+ ∥P∥Ω(r) T

1−γ+α

Γ(α+ 1)

]
.

Taking supremum for t ∈ (tm, T ], we obtain

∥U∥ ≤ K

[
|U0|+G+

∑m
i=1 |Vi|

Γ(γ)
+ ∥P∥Ω(r) T

1−γ+α

Γ(α+ 1)

]
≤ r,

that is U = S.
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Claim 4. Now we show that Mk < 1, that is, (d) of Theorem 2.4 holds. This is obtain by (H4),
since we have

M = ∥B(S)∥ = sup {∥BU∥ : U ∈ S}

≤
|U0|+G+

∑m
i=1 |Vi|

Γ(γ)
+ ∥P∥Ω(r) T

1−γ+α

Γ(α+ 1)

and k = ∥ϕ∥.

Thus all the condition of Theorem 2.4 are satisfied and hence operator equation U = AUBU has
a solution in S. In consequence, the problem (1.1)-(1.3) has a solution on (tm, T ]. This completes
the proof.

4 AN EXAMPLE
Consider the problem

D
1
2
, 1
2

(
U(t)

F (t, U(t))

)
= G(t, U(t)), t ∈ [0, 1], (4.1)

U(t+k ) = U(t−k ) +
1

4
, (4.2)

I1−γU(0) +

m∑
i=1

ciU(ti) = 1, (4.3)

where 0 < t1 < t2 < ... < tm < 1, ci = 1, ...,m are positive constants with
∑m

i=1 ci ≤
1
3
.

Here,

F (t, U) =
1

5

(
sin t tan−1 U +

π

2

)
,

G(t, U) =
1

10

(
1

6
|U |+ 1

8
cosU +

|U |
4(1 + |U |) +

1

16

)
.

Obviously, |F (t, U)| ≤
√
π
5

= K, ∥ϕ∥ =
√
π
5

and |G(t, U)| ≤ 1
10

(
1
6
|U |+ 7

16

)
. We choose ∥P∥ = 1

10
,

Ω(r) = 1
6
r+ 7

16
. Clearly, all the condition of Theorem 3.1 are satisfied. Hence by the conclusion of

Theorem 3.1, it follows that problem (4.1)-(4.3) has a solution.
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