
*Corresponding author: Email: dtakomolafe@yahoo.com;

Original Research Article

Asian Journal of Advances in Research

4(1): 968-976, 2021

DEPLOYMENT OF AN EFFICIENT ALGORITHM FOR

SEARCHING MOTOR VEHICLE DATABASE

DIPO THEOPHILUS AKOMOLAFE

1*
 AND NGOZI MAUREEN NWANZE

2

1
Department of Mathematical Science, Olusegun Agau University of Science and Technology, Okitipupa,

Nigeria.
2
Department of Computer Education, Federal College of Education (Technical), Asaba, Nigeria.

AUTHORS’ CONTRIBUTIONS

This work was carried out in collaboration between both authors. Both authors read and approved the final

manuscript.

Received: 03 July 2021

Accepted: 07 September 2021

Published: 09 September 2021

ABSTRACT

Transportation is a requirement for every nation regardless of its level of development. Moving goods and

people from one place to another is crucial to maintaining strong economic and political ties between the various

components of any given nation and among nations. How that movement takes place can be determined by

several variables but the most reliable and widely embraced means of transportation is road. Road transportation

is the most widely used means of transportation due to its cheapness and capability to penetrate remotest parts of

any town and village. Therefore, various measures and devices had been and are being developed to enhance its

continuity, sustainability and safety. Most of these measures rely on database. Database is a structured set of

data held in a computer, especially one that is accessible in various ways. In order to enhance a smooth running

of database developed for the purpose of road transportation generally and searching of vehicles in particular,

there is the need to deploy an efficient searching algorithm.

In this research, a database developed for vehicles was used as a focus point. Different search algorithms were

deployed to test the database, their complexities were derived and it was discovered that these were not fast

enough, effective and efficient when implemented on road transport database. Consequently, the need to

develop the most efficient algorithm that could guarantee fast and quick response to queries and present results

with minimum delay was necessitated.

Keywords: Transportation; database; algorithm; search; complexity of algorithm; linear search; binary search.

1. INTRODUCTION

Transportation can be briefly defined as the

movement of people and or goods from one place to

another through a means. The means may be by

walking on land, vehicle on road, train on the rail and

plane in the air or ship on the sea. The concern of this

research is the movement of vehicles on roads in

general which will be henceforth referred to as road

transportation [1]. Road transportation therefore is the

conveyance of people and or goods on road from one

place to another by a particular mode. Road

transportation is characterized by its multimodal

system, which may be by walking, cycling and

driving. There are many benefits associated with the

multimodal characteristics of road transportation and

these benefits contributed to its popularity. Also, this

multimodal feature and benefits of road transportation

created diverse challenges that make it difficult to

Ahomolafe and Nwanze; AJOAIR, 4(1): 968-976, 2021

969

present information associated with vehicles promptly

and timely.

One of the requirements for effective management of

road transport management is the development of

road transportation database [2]. This can be seen in

[3] where a relational distributed database of road

safety was developed and implemented in an

environment characterized by RAPPORT database.

Also, [4] affirmed the necessity of database system in

transportation system with emphasis on road

transportation. Miller et al. [5] and [6] showed the

relevance of database system to road transportation. In

the design and development of road transportation

database, some terms must be clearly understood and

adopted and one of such terms is the study of the

database models. A database model is a type of data

model that determines the logical structure of a

database. It fundamentally determines in which

manner data can be stored, organized and

manipulated. The most popular example of a database

model is the relational model, which uses a table-

based format. The main reason for identifying

appropriate database model is to identify what to

model, how to model and to present a scheme of what

is modelled so that the characteristics of the resulting

database could be identified. Database model is

concerned with the appropriate way to arrange the

data so that the component data can be efficiently

transacted upon [7,8].

In the course of implementation of the database

developed for road transport especially for searching

of vehicles, it was discovered that precious time is

either being wasted or lost in the course of searching

because it usually takes a very long time before a

particular vehicle could be searched and found [9]. It

was consequently discovered that the type of

searching algorithm deployed in the database

determines how fast and efficient the database can

respond to queries.

Therefore, it is important to evolve a searching

algorithm that can quickly, effectively and efficiently

search through the database and present the desired

result with minimum delay. This research is being

carried out to propose appropriate algorithm for

searching of vehicles in a road transportation

database.

1.1 Objectives

The primary objective of this research is to develop an

efficient algorithm for road transportation database.

Other objectives are to:

a. Reduce cost of transactions on road

transportation database

b. Ensure prompt retrieval of information from

the database

c. Reduce access time to information

2. SEARCHING ALGORITHMS

A searching algorithm [10-12] is that type of

algorithm that allows the efficient retrieval of a

particular item from a set of many items. Searching is

the algorithm process of finding a specific item in a

collection of item. A search typically answers the user

whether the item being searched for is present or not.

Computer systems are often used to store large

amounts of data from which individual records can be

retrieved according to some search criterion so, it is

required to search and fetch the data in that manner so

that it will take lesser time and will be efficient [11].

For this purpose some approaches are needed that not

only saves time but also fetches the required data

efficiently. One of the major characteristics of road

transportation database is the volume and uniqueness

of its data. Resultantly, there is the need to develop a

very fast, reliable and cost effective algorithm that

will meet the unique characteristics of the database. A

lot of studies had been carried out in the field of

algorithm and searching and these had led to specific

search algorithms developed for various data

structures.

Ahmad Shoaib Zia [13] presents the review of certain

important and well discussed traditional as well as

proposed search algorithms with respect to their time

complexity, space Complexity , merits and demerits

with the help of their realize applications. Ahmad

Shoaib Zia [13] also highlights their working

principles. As it is well known that every sorted or

unsorted list of elements requires searching technique

so many search algorithms have been invented.

Among traditional search algorithms, a comparison

table has been made in order to check and establish

their benefits and drawbacks. Among some of the

well known proposed search algorithms like fast

string searching algorithm, multiple solution vector

approach and bi linear search etc, a comparison has

also been made. Ritu et al. [14] proposed algorithm

for path-compressed trie for keyword searching in a

database through a search engine. Faster searching

optimizes the search engine and speeds up the

complete process of creating final results. Thus,

greater SEO (search engine optimization), faster will

be Page Rank Algorithm.

The most popular of the search algorithms are the

linear, binary and tree searches.

Linear search is the simplest of the algorithms. This

search simply starts by searching from the first of the

Ahomolafe and Nwanze; AJOAIR, 4(1): 968-976, 2021

970

list or array of keys and compare each successive item

against the key until it is able to find a match for the

searched item or reach the end. In linear search, each

item in the list is looked upon in turn, quitting once an

item that matches the search term is found or once the

end of the list is reached. The “return value” is the

index at which the search term was found, or some

indicator that the search term was not found in the list.

3.1.1 Algorithm for linear search

for (each item in list) {

compare search term to current item

if match,

save index of matching item

break

}

return index of matching item, or -1 if item not found

The advantages of this algorithm lie in its ease to

program and its ability to search unsorted lists.

Therefore, it is highly useful when searching small

sized arrays or records. However, [15] pointed out

that the algorithm is found to be very inefficient when

used on a large data set. Therefore, it may not be

appropriate for use in road transportation database.

2.1 Binary Search

Another search algorithm is binary search. Wu et al.

[16] proposed binary search algorithm to meet the

needs of quick shopping in supermarkets, to prevent

from goods anti-collision, which makes it faster to

scan and identify the goods. On this basis, the goods

which have not been checked out will be scanned

again to obtain security. Besides, it plays an important

role in the supermarket shopping system to achieve

the functions of self-purchase and membership

scheme. For the RFID supermarket shopping system,

the test of the checkout efficiency, product

recognition rate, and security were done. The result

showed that the binary search algorithm had good

accuracy in the RFID supermarket shopping system.

The result also proved the rationality of the RFID

supermarket shopping system, which can meet the

daily needs of supermarkets. The method was

applying the emerging technology into the traditional

supermarket shopping system, which improved the

profitability and management level of supermarkets.

 In binary search, the search begins with a sorted array

of n keys. To search for key r, r is compared to the

middle key thereby reducing the number of possible

location of r in the arrays until it is found. During

each stage of the search, the search for r which is an

ITEM is reduced to a segment of elements of DATA:

DATA[START + 1],

DATA[START+2].......

.DATA[END].

It should be noted that variables START and END

denote, respectively, the beginning and end locations

of the segment under consideration. The algorithm

compares r with the middle element DATA MID] of

the segment where MID is obtained by: MID = INT

((START +END)/2).

The algorithm for binary search is formally stated

thus:

BINARY (DATA, LB, UB, ITEM, LOC)

Where:

DATA is a sorted array with lower bound LB and

upper bound UB,

ITEM is a given item of information.

The variables START, END and MID denote

respectively the beginning, end and middle locations

of a segment of elements of DATA.

This algorithm finds the location LOC of ITEM in DATA or sets LOC = NULL.

[Initialize segment variables.]

Set START:=LB, END :=UB and MID = INT((START+END)/2).

Repeat Steps 3 and 4 while START ≤ END and DATA [MID] ≠ ITEM

if ITEM <DATA[MID], then:

Set END : = MID – 1

 Else:

 Set START : = MID + 1.

[End of if structure.]

 Set MID : = INT ((START + END)/2)

 [End of Step 2 loop.]

If DATA[MID] = ITEM, then:

 Set LOC:= MID.

 Else:

 Set LOC: = NULL

[End of if structure.]

Exit.

Ahomolafe and Nwanze; AJOAIR, 4(1): 968-976, 2021

971

In this algorithm, whenever ITEM does not appear in

DATA, the algorithm eventually arrives at the stage

that START = END = MID. Then the next step yields

END<START and control transfers to Step 5 of the

algorithm.

3. COMPLEXITY OF THE BINARY

SEARCH ALGORITHM

The complexity of this algorithm is measured by the

number f(n) of comparisons to locate ITEM in DATA

where DATA contains n elements. It should be noted

that each comparisons reduces the sample size by half

therefore, we require at most f(n) comparisons to

locate ITEM

Where

2
f(n)

>n or f(n) = [log2n]+1

This means that the running time for the worst case is

approximately equal to log2n.

The limitation of this algorithm is that it spends a very

long time before it concludes its search. Associated

with this delay is cost and time. In other words, it is

having a complexity (this is measured by the number

f(n) of comparisons to locate ITEM in DATA

Where

DATA contains n elements) of f(n) = [Log2n] + 1.

Hui Yonghui [17] gave a greater importance to the

search algorithm because they have assumed that the

data will be complete and focused on Two search

algorithms to learn the structure of a Bayesian

network. The heuristic search algorithm is simple and

explores a limited number of network structures. On

the other hand, the exhaustive search algorithm is

complex and explores many possible network

structures. Searching is a process that cannot be

issued for a transaction and communication process,

many search algorithms that can be used to facilitate

the search, linear, binary, and interpolation algorithms

are some searching algorithms that can be utilized, the

comparison of the three algorithms is performed by

testing to search data with different length with

pseudo process approach, and the result achieved that

the interpolation algorithm is slightly faster than the

other two algorithms.

Various attempts had been made to improve on this

complexity and the most recent one is [12] which was

an improvement on [18]. This study proposed double

character search before dissolving to binary search.

The algorithm proposed to reduce the search list in

two stages by a comparison of characters. In the first

stage, the list would be reduced based on comparison

of the first character of the search key with the first

character of the strings in the search list. This will

divide the list into three parts; strings starting with

character less or greater than or equal to the starting

character of the search key. At this stage, strings with

first character less or greater than the starting

character of the search key will be eliminated. In the

second stage, only strings with first character equal to

the first character of the search key shall be

considered. The search list would be reduced further

by repeating the above comparison, on the second

characters of the strings in the search list with the

second character of the search key. All these would

result in a ‘virtual’ sub array defined by new ‘low’

and ‘high’ index bounds without removing elements

from the original array. The final results of these two

stages are passed to binary search to search for the

actual element. The algorithm of the Double

Elimination Binary Search (DEBS) can be defined

thus:

1 public static string doublecharEliminate(strind search array[], string searchkey)

2. IntaLenght = searchArray.lenght – 1 //alenght = length of array

3. charfirstchar = searchkey.charAt(0) //firstchar = 1
st
 char of element

4 intfirstindex = 0 //firstindex = any counter

5. while (firstchar = ! searchArray[firstindex].charAt(0)&&firstindex<= a length)

6. firstindex ++;

7. if (first index == aLenght)

8. return -1

9. intfirstLow = firstindex

10 intfirstcharcount = firstLow

11. while (firstchar = = searchArray[firstcharcount].charAt(0) &&firstcharcount<= aLenght

12. firstcharcount ++;

13 intfirstHigh = firstcharcount

14 //repeat procedure for second character

15. charsecondchar = searchkey.charAt(1)

16. intsecindex = firstlow

Ahomolafe and Nwanze; AJOAIR, 4(1): 968-976, 2021

972

17. while (secondchar =! searchArray[secindex].charAt(1) &&secindex<= firstHigh)

18. secIndex ++;

19 if (secindex = =firstHigh)

20 return -1

21 intsecondLow = secindex

22. secondcharcount = secondLow

23 while (secondChar = = serachArray[secondCharCount].charAt(1) &&secondCharCount<=

firstHigh)

24 secondCharCount ++;

25 intsecondHigh = secondCharCount

26 return secondlow, secondHigh.

4. AVERAGE CASE ANALYSIS

In this work, the average case complexity of

traditional binary search was used to find the

complexity of the algorithm. In the algorithm, 19

basic operations are executed in order to obtain the

sub array and by considering the 19 basic operations,

and the searchable elements ‘s’:

S = m/676 (1.1)

And the complexity of binary search which had been

found approximately to be :

T = 9log2n-9 (1.2)

By considering the 19 basic operations, we can

rewrite equation (2) as

T = 9log2n-9+19

or T = 9log2n + 10 (1.3)

Finally, (1) was substituted for the number of

elements “n” in array (3) to obtain:

T = 9log2(m/676) + 10 (1.4);

 which results

T = 9log2n-75 which is the complexity of double

elimination binary search.

However, this algorithm is very efficient in array

search but may not be too good in road transportation

database search because of the peculiarity of vehicle

numbers. It is in view of this that a new algorithm is

being proposed.

4.1 First and Last Character Sieve Binary

Search Algorithm

The major features of this algorithm are:

1 It attempts to reduce the list of records by

sieving out members that have first character

and last character different from those of the

keys

2 Reduce the database records by comparing the

primary key with the first character and last

character of the search key

3 The reduced list is now passed to a binary

search to locate the record.

4.2 Algorithm

Public Static String First Last Sieve (string search key)

Int. rec.lenght = recount-1

Char firstchar = searchkey.char At (0)

Char last Char =search key.char At (search key length – 1)

Int first index = 0

While (first char! = first char (primary key)

αα first index <= reclenght

first index ++

return -1

Int first flow = first index

Int first char count = first flow

While (firstchar = = firstchar (primary key) &&

Firstcharcount<= reclenght

If lastchar = lastchar (primary key)

Set filter to firstchar = firstchar (primary key)

&&lastchar = lastchar (primary key)

Ahomolafe and Nwanze; AJOAIR, 4(1): 968-976, 2021

973

CODIFICATION USING JAVA

//package komojava;

/* This algorithm searches a database of Nigeria Vehicle plate

 Numbers by reducing the search list to elements that have first

and the last element of the search key.

 Author: Akomolafe, D.T.

as research work on development of algorithm for tracking and searching vehicle

system

*/

importjavax.swing.*;

importjava.awt.*;

importjava.awt.event.*;

import java.io.*;

public class sievegui extends JFrame

{ privateJTextFieldarrayField,keyField, inputField, outputField;

privateJLabelarrayLabel,keyLabel, inputLabel, outputLabel;

privateJButtonsrchButton, extButton, rsetButton ;

privateJPaneltopPanel, midPanel,butPanel;

public static JTextAreaaTextArea;

publicsievegui() throws IOException

 { super("Sieve Algorithm");

 Container c=getContentPane();

c.setLayout(new FlowLayout());

topPanel = new JPanel();

topPanel.setLayout(new GridLayout(3,2));

aTextArea=new JTextArea(10,10);

arrayLabel=new JLabel("Enter Array Length");

arrayField=new JTextField(10);

keyLabel=new JLabel("Enter Search key");

keyField=new JTextField(10);

topPanel.add(arrayLabel);

topPanel.add(arrayField);

topPanel.add(keyLabel);

topPanel.add(keyField);

c.add(topPanel,BorderLayout.NORTH);

midPanel = new JPanel();

midPanel.setLayout(new GridLayout(5,1));

inputLabel=new JLabel("Enter input file path");

inputField=new JTextField(20);

outputLabel=new JLabel("Enter output file path");

outputField=new JTextField(20);

midPanel.add(inputLabel);

midPanel.add(inputField);

midPanel.add(outputLabel);

midPanel.add(outputField);

c.add(midPanel,BorderLayout.CENTER);

butPanel = new JPanel();

butPanel.setLayout(new GridLayout(1,3));

srchButton =new JButton("Search");

extButton =new JButton("Quit");

rsetButton =new JButton("Reset");

butPanel.add(srchButton);

butPanel.add(extButton);

butPanel.add(rsetButton);

c.add(butPanel,BorderLayout.SOUTH);

c.add(new JScrollPane(aTextArea),BorderLayout.EAST);

setSize(400,350);

Ahomolafe and Nwanze; AJOAIR, 4(1): 968-976, 2021

974

setVisible(true);

srchButton.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent event)

{ try{ String arrayFieldContent=arrayField.getText();

 String keyFieldContent=keyField.getText();

 String inPathContent=inputField.getText();

 String outPathContent=outputField.getText();

if(arrayFieldContent.equals("")||keyFieldContent.equals("")

 || inPathContent.equals("") ||outPathContent.equals(""))

 { JOptionPane.showMessageDialog(null,"Please make entry in all

fields","SIEVE",JOptionPane.INFORMATION_MESSAGE);

return;

 }

keyFieldContent=keyFieldContent.toString().toLowerCase();

int length=Integer.parseInt(arrayFieldContent);

aTextArea.append(String.valueOf(length));

JOptionPane.showMessageDialog(null,"lengthis"+length);

sieveBS.fls(length,keyFieldContent,inPathContent,outPathContent);

 }

catch (Exception e)

{ System.err.println("Caught IOException:"+e.getMessage());

 }

 }

 });

rsetButton.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent event)

{ arrayField.setText("");

keyField.setText("");

inputField.setText("");

outputField.setText("");

 }

 });

extButton.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent event)

{ System.exit(0);

 }

 });

 }

public static void main(String[] args) throws IOException

 { sieveguiappl = new sievegui();

appl.addWindowListener(

newWindowAdapter(){

public void windowClosing(WindowEvent e)

 { System.exit(0);

 }

 }

);

 }

}

5. AVERAGE CASE ANALYSIS

The average case complexity of this algorithm tries to

improve on the complexity of DEBS that had been

already discussed, therefore it uses the complexity of

DEBS; T = 9 log2n-75 to find the complexity of the

algorithm. In the algorithm, eleven (11) basic

operations are to be executed in order to obtain the

sub record and by considering the 11 basic operations

that must be performed before the final result are

turned to binary search.

The searchable elements s = m/26 (2.1)

Ahomolafe and Nwanze; AJOAIR, 4(1): 968-976, 2021

975

T = 9 log2n-75 (2.2)

By considering the 11 basic operations, we can

rewrite equation (2.2) as

T = 9 log2n-75 + 11 (2.3)

T = 9 log2n- 64

Substituting (2.1) into 2.3, we have

T = 9 log2(m/26)-64 (2.4)

= 9[log2
m
 –log2

26
] = 64

= 9 log2
m

 - 9* 4.5 -64

= 9 log2
m
 – 40.5 – 64

= 9 log2
m
 – 104.5

= 9 log2
n
 - 104.5 (2.5)

Equation (2.5) is the complexity of the algorithm

which when compared to the complexity of DEBS in

equation (2.2) shows substantial reduction in the

number of comparisons required to find a key.

Therefore, First and Last Character Sieve binary

search algorithm is more efficient than the previous

ones and most suitable to reduce time and cost of

searching in road transportation database.

This shows that irrespective of the volume of the

database, this algorithm will work faster and turn in

result more than any other algorithms

6. CONCLUSION

As earlier noted, the future of road transportation will

definitely be driven by technology because its

operation and activities cannot be excluded from the

wind of information technology blowing across all

fields and activities. As road transportation system is

being accorded its rightful position in patronage, there

is the need for proper control and coordinated means

by which law enforcement agents can apprehend road

traffic offenders, have current statistics of vehicles

plying the roads and the passengers therein. It is

against these backdrops coupled with the increasing

number of accidents on the highways that it is being

recommended that the time spent searching for

vehicle or driver details should be considerably

reduced. It is therefore compelling to deploy a fast

and efficient search algorithm hence the adoption and

deployment of the developed algorithm.

In this research, an algorithm called first and last

character sieve was proposed and developed. The

algorithm used JAVA programming language for its

codification as presented for the purpose of searching

vehicle plate number database. The double character

search was initially carried out before dissolving to

binary search. The algorithm proposed to reduce the

search list in two stages by a comparison of

characters.

COMPETING INTERESTS

Authors have declared that no competing interests

exist.

REFERENCES

1. Akomolafe DT, et al. Enhancing road

monitoring and safety through the use of

geospatial technology” International Journal of

Physical Sciences. 2009;4(5):343-348.

2. Adigun MO. The specification for a national

police command and control system. COAN

Conference Series. 1994;5:16-25.

3. Akinyokun OC. A methodology for the

automatic design of database systems. Ph.D.

Thesis, University of East Anglia, Norwich,

England; 1984.

4. Akinyokun OC. The design and

implementation of road safety relational

database. International Journal of Information

Technology for Development Published by the

Oxford University Press, United Kingdom.

1987;2(2):147-156.

5. Miller MJ, Vucetic B, Barry L. Satellite

communications mobile and fixed services.

Norwell, M A Kluiver Academic Publishers;

1993.

6. Heath S. Effective PC networking: An imprint

of butter worth. Heinemann Limited; 1993.

7. James Armold. Surface transportation and

global positioning system improvement (1992):

L5 and DGPS; 1992. webmaster@aero,org

8. Krammer G. An outline of an automatic road

transportation system with radar guidance and

precision navigation; 2001. m.dg.k@t-

online.de

9. Janerdan JR, Li Q. GPCA: An efficient

dimension reduction scheme for image

comprehension and retrieval. In Prroc. 10
th

ACM SIGKDD Int. Conf. Knowledge

Discovery Data Mining. 2004;354-363.

10. Tahira Mahboob, Fatima Akhtar, Moquaddus

Asif, Nitasha Siddique, Bushra Sikandar,

Survey and Analysis of Searching Algorithms,

International Journal of Computer Science

Issues (IJCSI); 2015.

11. Subbarayudu B, Lalitha Gayatri L, Sai Nidhi P.

Ramesh R. Gangadhar Reddy, Kishor Kumar

Reddy C. Comparative analysis on sorting and

searching algorithms. International Journal of

mailto:m.dg.k@t-online.de
mailto:m.dg.k@t-online.de

Ahomolafe and Nwanze; AJOAIR, 4(1): 968-976, 2021

976

Civil Engineering and Technology (IJCIET);

2017.

12. Robbi Rahim et al. J. Phys.: Conf.

Ser. 2017;930 012007.

13. Ahmad Shoaib Zia. A Survey on Different

Searching Algorithms International Research

Journal of Engineering and Technology

(IRJET) e-ISSN: 2395-0056. 2020;07(01)Jan

2020

14. Ritu Sachdeva (Sharma), Sachin Gupta A

Novel Algorithm for Enhancing Search Engine

Optimization International Journal of

Engineering and Advanced Technology

(IJEAT) ISSN: 2249-8958. April 2019;8(4C).

15. Najma Sultana, Chandra, Sourabh, Paira,

Smita, Alam, Sk. A brief study and analysis of

different searching algorithms; 2017.

16. Wu L, Liu S, Zhao B, et al. The research of

the application of the binary search algorithm

of RFID system in the supermarket shopping

information identification. J Wireless Com

Network. 2019;27.

DOI:https://doi.org/10.1186/s13638-019-1343-

2

17. Hui Liu, Yonghui Cao. The research on search

algorithms in the machine learning IJCSI

International Journal of Computer Science.

2013;10(1):No 1, January 2013 ISSN (Print):

1694-0784 | ISSN (Online): 1694-0814

Available:www.IJCSI.org

18. Roopa K, Reshma J. A comparative study of

sorting and searching algorithms. International

Research Journal of Engineering and

Technology (IRJET); 2018.

__
© Copyright MB International Media and Publishing House. All rights reserved.

http://www.ijcsi.org/

