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In this study, we investigate the relativistic Klein-Gordon equation analytically for the Deng-Fan potential and Hulthen plus Eckart
potential under the equal vector and scalar potential conditions. Accordingly, we obtain the energy eigenvalues of the molecular
systems in different states as well as the normalized wave function in terms of the generalized Laguerre polynomials function
through the NU method, which is an effective method for the exact solution of second-order linear differential equations.

1. Introduction

The exact solution is of paramount importance in quantum
mechanics as it carries essential information on the quantum
systems under investigation. It is possible only for quantum
systems such as H, and harmonic oscillator. As for the
majority of quantum systems, the approximation method
needs to be used. In most quantum systems, for the analytical
solution, methods such as the Nikiforov-Uvarov method [1],
quantization rules [2], ansatz method [3], supersymmetry
(SUSY) method [4], and series expansion [5] have been used
for any arbitrary [ state.

Recently, the bound state of the Schrédinger equation has
been solved by the Deng-Fan potential [6], modified Morse
potential [7], and Eckart potential [8] by approximation to
the centrifugal term, and the wave function and energy level
for bound states in any arbitrary [ state have been identified.
The bound state solutions of the Klein-Gordon equation with
the Deng-Fan molecular potential are solved by Dong [9].
Wei et al. investigated the relativistic scattering states of the
Hulthen potential by taking the same approximation [10].
Wei and Dong examined the approximate solution of the
bound state of the Dirac equation with the second Pdschl-

Teller potential under spin symmetry conditions and with
scalar and vector modified potentials under pseudospin sym-
metry conditions [11, 12]. They also solved the Dirac equa-
tion with the scalar and vector Manning-Rosen potentials
under pseudospin symmetry conditions by using the func-
tion analysis method and algebraic formalism [13].

In our previous works, we solved the Schrédinger equa-
tion for different potentials for few-quark systems [14-17].
However, in the present work, we make use of the NU
method to solve the Klein-Gordon equation for a diatomic
molecule analytically. The NU method has recently been
exploited in a variety of physical fields, including the Schré-
dinger equation with a spherically harmonic oscillatory
ring-shaped potential [18] or the second Pdschl-Teller-like
potential by the Nikiforov-Uvarov method [19].

In this paper, first we describe the Nikiforov-Uvarov
method. In Review of Nikiforov-Uvarov (NU) Method, we
consider the Deng-Fan potential and calculate the energy
eigenvalue for different diatomic molecules. Next, we solve
the Klein-Gordon equation analytically for the Eckart plus
Hulthen potential through the NU method and obtain the
energy eigenvalue. And finally, we present the results, discus-
sion, and conclusion.
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2. Review of Nikiforov-Uvarov (NU) Method

The Schrédinger equation can be converted into a second-
order differential equation as follows:

where o(s) and o(s) denote polynomials at most of the
second degree and 7(s) is a first-degree polynomial. We use
the following form to find the solution:

F(s) =y (s)p(s)- (2)

By introducing Equation (3) into Equation (2), we arrive at

o(s) d;‘f) +7(s) d‘ji(;) + A9(s)0, (3)

where ¢(s) in terms of the Rodriguez formula appears as

0,(5)= it 0" (Pl (4)

=1(s). (5)
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m(s)= 5 [a’ (s) - ‘?(s)} + { [a’ (s) - %(s)} *5(s)+ ka(s)}
(6)

In this method, the polynomial 7z(s) and parameter k are
defined as

k=A-7'(s), (7)
where y(s) is defined as

L dy(s) _ n(s)
w(s) ds  y(s) ©

By substituting k into Equation (7):
7(s) =7(s) + 271(s), 9)
and A is defined as:

[n(n— 1)0”}

A=A, =-nt' -
2

., n=0,1,2,---. (10)

The general form of the Schrédinger equation including
any potential is
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d’y(s) o —ays \ dy(s) A+ Bs—C )
R (S(l —0£3S)> ds ( 2(1-ays) )‘/’(S) =0.

(11)

Comparing Equation (12) with Equation (2), we get the
parameters

N

() =0y —ay,
(s) =s(1 - azs), (12)
o(s)= —~As* + Bs—C.

Q

Based on the equations, the constant parameters are
defined as

Oy = %(1 —0y),

1
O = E ((Xz - 2053);
o = (xé +A,

o, =2a,05 — B,

ag=o; +C, (13)
g = 30, + 050t + O,

Xy = oy + 200 + 2./,

o) = ay — 205 + 2(\/ag + a3 /0g),

oy, =0y + /0,
03 = a5 — (/g + 03/0tg).

The energy equation is obtained from

oan— (2n+ as + (2n+ 1) (\/ag + az\/ag) + n(n—1)as
+ o, + 20508 + 2 /g0 = 0.

(14)

Now we consider the eigenfunctions of the problem with
any potential. We obtain the second part of the solution from
Equation (4).

¢,(s) = pglamfl’(“n/as)*%ofl)(1 - 2a55). (15)

From the explicit form of the weight function obtained
from Equation (5), we arrive at

P(S) = 50‘10*1 (1 — 0(35(0(“/0‘3)7“1071) . (16)

piP )(1 — 2a,s) is the Jacobi polynomial. From Equation
(6), we arrive at

V/(S) — 5“12(1 — a3$)’“12’(“13/"‘3)' (17)



Advances in High Energy Physics

Then the general solution ¥ (s)y/(s)$(s) becomes

V/(S) — 50‘12(1 _ (X3S)_a12_(a13/a3) x Pi“lo*l’(“n/“s)’“lo’l)(1 _ 20635).

(18)

3. Solving the Klein-Gordon Equation for the
Ground State

The potential that is selected for molecular spectroscopy and
molecular dynamics is of paramount importance. The Deng-
Fan oscillator potential [20] is a simple potential model for
diatomic molecules. It has the correct physical boundary
conditions at r =0 and co. It is defined by

b

2

where D stands for the dissociation energy, , for the equilib-
rium bond length, and « for the potential range. The shifted
Deng-Fan potential is of the following form (Figure 1)

2 ) 2
V(r)=D(1- b -D=D b, b S
e —1 e =1 (e 1)

(20)

The radial part of the Klein-Gordon equation for a parti-
cle with a mass m and potential V (r) is

d*¢(r)
dr?

+ {(% [(Ez - mz) -2(E+ m)V(r)] - M}(p(r) =0.

hc)
(21)

Because of the term 1/r? in Equation (21), it cannot be
analytically solved except for [=0. Therefore, a suitable
approximation to the centrifugal term is required, as used
in [9, 21, 22]:

1, 1 1
3 =« <d0+ I + - 1)2>, (22)

in which ar « 1 and d;, = 1/12. As illustrated in Figure 2, this
approximation is very close to the term 1/7%. By introducing
the potential and the approximation 1/r* and hc =1, Equa-
tion (21) becomes

do(r) {Ez o, AD(E+m) 2b'D(E+m)

exr — 1 (egﬂ_l)Z

dr?
(23)

s D, - 0 Da? U1+ 1)e? }q)(r) o

e — 1 (e“r—l)z

By using the variable change s = e*" which maps the half-
line (0, c0) into the interval (0, 1), Equation (23) becomes

d*o(s) . (1-5) do . E? —m? . 4bD(E + m)
ds? s(1-s)ds a?s? aZs(1-s)
_ 2b°D(E+m)

L+ 1)d,  (I+1) 1(1+1)} G0

ocz(l—s)2 §? s(1-5s) (1—5)2

(24)

By comparing Equations (11) and (24), the following
coefficients are obtained:

EZ_mZ
2 _
()
A=y + B +vi+1(1+1)d,,
g WD(E+m

o?
B=2y*+ >+ (2d, - D)1 +1)

>

(25)

e 26°D(E + m)
o2
C=y*+1(I+1)d,

>

By combining Equations (23) and (11), the following
quantities are obtained:

a=a=a=1,

a, =0,
1
0652—5,
1+A
Kg = — >
674
o, =-B,
ag =C,
1 2
ag=A-B+C+ -, (26)
4
a,=1+2VC,
1
a11:2+2<\/A—B+C+ Z+\/6>,
“12:\/6’

1 1
ay==3 - (UA—B+C+ Z+\/6>.
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F1GURE 1: The Deng-Fan potential (eV) in terms of r(A°) for H, diatomic molecule.
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F1GURE 2: Comparision between 1/r* of the Deng-Fan potential and the approximation scheme as function of r for H, diatomic molecule.

Finally, we find the energy eigenvalue as

2
-2+ B -1(1+1) - (2n+1)8’

2(n+0") (27)
+1(1+ 1)dyo?,

E*—m?=-«

in which

6’:%(1+\/m>. (28)

In Table 1, we present potential parameters adopted from
[23-25]. Furthermore, by the following data, we obtain the

energy eigenvalue for diatomic molecules mentioned in
Table 1.

TaBLe 1: The potential model parameters for some diatomic
molecules [18-20].

Molecule w(amu) a (A071> r.(A%) D(cm™)
H, 0.50391 1.9426 0.7416 38,266
LiH 0.8801221 1.1280 1.5956 20,287
Cco 6.8606719 2.2994 1.1283 90,540
HCl 0.9801045 1.8677 1.2746 37,255
hc=1973.27evA°,  lamu = 931.494028 Mev/C?
1 V(r)
dy=—, V(r)= ,
D) (== (29)
2
E-m=E,; E+m=2t.
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In Table 2, we calculate energy levels for different n and [
states and compare them with other findings in [23, 24, 26,
27]. The radial wave function is of the following form:

o~
Rou(r) = Nyye Y0 (1 - ¢on)pipV ) (1 gpery
(2\/E+1)
n —vCar —ar\0, 30
=N,,IT¢3‘/E (1-e )IZFI(—n,n (30)

+2\/6+281;1+2\/6;e“”),

where

1-x
»Fy —n,n+v+[4+l;v+1;—2

ol (31)
= —_PM(x)(v+1), =

I'(n+v+1)
(v+1), " ’

I'(v+1)

N,; is the normalization constant. P denotes the
Jacobi polynomial and ,F, stands for the hypergeometric
function. The N,; constant is defined as

00 1 dS
|| RatrPar= [ (RS =1,

0
1 ) 2
‘N"Z‘ZJ S = )2 [ZFI (—n, n+2vC+28,;2V/C+1 ;s)] ds
0

n!r<2\/6+ 1)
F(Z\/E+ n+ 1)

=«

(32)

By using the following formula [28, 29]:

1
J 21—V F (—non+ 2(a+ b+ 1)52a + 155))ds
0
(n+b+1)n'I'(n+2b+1)I'(2a)I'(2a + 1)
(n+a+b+1)I'(n+2a+1H)I'(n+2(a+b+1))
a>-1/2, b>-3/2,
(33)

the normalization constant is obtained as

2\/Ean!(n+ \/E+81)F<n+2(\/6+81>)
nl = » (34)

N
(n +81)F(n +2V/C+ 1>F(n +28))

and for the ground state n =0

zx<\/6 + 8,)
8B <2\/6, 25,) ’

TaBLE 2: The energy levels for a few diatomic molecules obtained
from the sDF and Morse oscillator potentials.

n | -E,(eV)NU -E,(eV)AP21,22 -E,(eV)19,20
HZ
0 0 439444 439444 447601
417644 418054 425880
10 362165 3.63782 3.72194
5 0 175835 175835 2.22052
161731 162548 2.04355
10 126034 129257 1.60391
70 10775 107756 153744
0.96174 0.97232 137565
10 0.66976 0.71172 0.97581
LiH
0 0 24119 241195 2.42886
2.38348 2.38458 2.40133
10 230815 2.31229 2.32884
5 0 151628 151628 1.64771
1.49278 149429 1.62377
10 143062 143627 1.56074
70 122340 122340 137756
120173 120344 135505
10 1.14444 115083 129580
co
0 0 1108068 11.08068 11.0915
11.07247 11.07354 11.0844
10 11.05057 11.05449 11.0653
5 0 9.68809 9.68809 9.79518
9.68017 9.68130 9.78833
10 9.65905 9.66321 9.77009
7 0 915911 9.15911 9.29918
5 915131 9.15247 9.29246
10 9.13050 9.13476 9.27455
HCl
0 0 441705 4041705 443556
5 437403 437843 439682
10 425973 427591 429408
5 0 266574 2.66574 2.80506
5 262859 2.63411 2.77209
10 252989 2.55027 2.68471
7 0 209652 2.09652 2.25701
5 206161 2.06768 222634
10 196888 199127 2.14511
B<2\/6, 28,) _faver)ien (Zﬁ . 1> e
2VCr (2\/6 + 28,)
(35)

We plot wavefunction of the Deng-Fan potential (eV) as
a function of r(A°) for the H, diatomic molecule in n=1=0
in Figure 3.
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FIGURE 3: Wave function (eV) in terms of r(A°) of Deng-Fan potential for H, diatomic molecule (# == 0) in atomic units y =y = 1.

4. Eckart plus Hulthen Potential

The Eckart plus Hulthen potential has been used for the
analytical solution of the Schrédinger equation. This poten-
tial as a diatomic molecular potential model has been uti-
lized in applied physics and chemical physics. The NU
method has been exploited to solve the Schrodinger equa-
tion for the Eckart plus Hulthen potential [30]. However,
in the present work, we make use of the NU method to solve
the Klein-Gordon equation for the Eckart plus Hulthen
potential. The Eckart plus Hulthen potential runs as shown
in Figure 4:

V \%
V(r) = cosec h?(ar) + coth (ar) + 0 - ! ,
( ) ( ) ( ) (1 _ e—2(xr) (1 _ e—Zar)z

(36)

where V,, and V, stand for the depths of potential well and
o for the inverse of the potential range. The hyperbolic func-
tions are defined as

Qr —Qr

e —e
inh _e e
sinh (ar) 3
ar + — X1
cosh (ar) = %, (37)
N — gmar
tanh (ar)= ——.
etxr + e—a‘r

In this way, the potential is obtained as

1+e2r V, v,

V(r) = + 1 — e20r * 1 — 207 - (1 _ e—Zar)Z ’
(38)

The radial Klein-Gordon equation by using the Eckart
plus Hulthen potential in /=0 is of the following form:

a4 4(E + m)e 2" 1+e27
(P(T) + EZ _ m2 _ ( m)e _ (E + m) e
drz (1 _ e_zmr)Z 1- e—21xr

(39)

With the variable change s=e™2*, Equation (40) is
transformed to

dzd(igs) . S((lliss))‘;‘f + 52(11_5)2 {E2 - rrj a(zl _&)
_ (E;m)s _ (E;Zm) (1+5)(1-5) - %:;o(l_s)

" % }<P(s> =0.
(40)

With a simple comparison, the following quantities are

obtained:
5 EZ _ m2
y == 4 2 >
o

A=y?+ B
2__(E+m)
= 4o
B:2y2—v2,
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FIGURE 4: The Eckart plus Hulthen potential (eV) in terms of r(A°) for V,,= V, =1 and & = 0.05,0.1.
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FIGURE 5: Wave function (eV) in terms of r(A°) of the Eckart plus Hulthen potential for n=1=0, « =0.05, and V,, = V, = 1 in atomic units

y=u=1

2 (E+m)(4-V,)
- 402 ’

C=y2_ﬁ2_£2)

{2 — (E+ m)(Vl B VO)
402

(41)

Accordingly, the «; parameters are obtained through
Equation (24). Moreover, by using Equation (14) and

5’:%(1+\/1+4v2—4£2>, (42)

the energy eigenvalue is identified as

B ag? —n? =2+ 2p% + 28— (2n+1)8’ Lpael
2<n+8’>

(43)

The radial wave function is of the following form:

Rnl(r) — ane—mer(l _ e—20cr)81P(211,26,—1) (1 _ 26—2017)

n
(27, + l)n e—Zr]ar

=N
n!

ul (1 —e‘z"”)é’zF1 (—n,n+2;7

+26;51 +211;e_2"‘r).

(44)



With the variable change # = v/C and the parameterrs of
Equation (42), we obtain

17:i\/—(E+m)(E—m+2(V1—Vo—l)). (45)

The normalization constant is obtained as

_ [2nanl(n+n+68,)I(n+2(n+9)))
No= \/ (n+6)I'(n+ 2117 +1)I'(n+ 2611) (46)

We plot wave function of the Eckart plus Hulthen poten-
tial (eV) as a function of r(A°) for the H, diatomic molecule
in n=1=0 in Figure 5.

5. Results and Discussion

In this study, we examined the solution of the Klein-Gordon
equation for two different potentials. Accordingly, we calcu-
lated the energy eigenvalues and normalized wave function
for the diatomic molecules for different n and [ states
through the NU method. In order to solve the Klein-
Gordon equation, we utilized the NU method, which can
also be used to identify the wave function and energy eigen-
value for any particular potential. However, with certain
potentials, the wave equation fails to furnish the boundary
conditions of the method.

The parameters related to the spectroscopic constants of
these molecules, taken from [19-21] appear in Table 1.
Table 2 shows the energy levels for diatomic molecules by
using the Morse oscillator potential and the shifted Deng-
Fan (sDF) potential. The findings comply well with refs.
[23, 24] and also with the energies calculated from AP
(amplitude phase) [26, 27].

Based on the results, as the quantum number 7 increases,
the energy value decreases. Furthermore, an increase in /
makes the particle less bound. It can further be inferred that
in higher dimensions, the energy value decreases. To show
the accuracy of our results, we have calculated the eigen-
values numerically for arbitrary n with /=0, ¢ =0.05, and
a=0.1. Tables 3 and 4 show the energy levels of the Eckart
plus Hulthen potential in atomic units A=y =1 with /=0,
a=0.05, and a=0.1, respectively. It is observed that as «
increases, the energy eigenvalue decreases.

6. Conclusion

Considering the importance of the molecular Deng-Fan
potential and the Eckart plus Hulthen potential in molecu-
lar physics, chemical physics, molecular spectroscopy, and
other related areas, we investigated the bound state solu-
tion of the relativistic wave equation. We provided exact
solutions of the Klein-Gordon equation for these potentials
by means of the Nikiforov-Uvarov (NU) method. We for-
mulated the eigenvalues equation and the corresponding
wave function in terms of hypergeometric functions via
the NU method within an approximation to the centrifugal
potential term.
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TaBLE 3: The energy levels of the Eckart plus Hulthen potential for
several states with /=0, « = 0.05, in atomic units A=y = 1.

Vo Vi
1 1

E,)(eV)NU
-1.10125
-1.14085
-1.18559
-1.23510
-1.23906
-1.34726

-1.00125
-1.01056
-1.02800
-1.05246
-1.08371
-1.12063

-1.20005
-1.12267
-1.06792
-1.03138
-1.00976
-1.00061

-1.78125
-1.84500
-1.91125
-1.98000
-2.05125
-2.12500

-2.14453
-2.18625
-2.23187
-2.28117
-2.23395
-2.39006

G B W N = Ol W NN = O |U b W N = Oflu = W N~ O |ul b W = Of3

As we know, there is no analytical solution for the radial
equation for [ # 0. Therefore, the Klein-Gordon equation is
transformed into a differential Schrodinger-like equation
through a suitable coordinate transformation. The obtained
energies are very close to the energies reported in other stud-
ies [19-22]. We preferred to calculate the energy eigenvalue
of H,, CO, LiH, and HCI as diatomic molecules. The main
advantage of these molecules is that their spectroscopic
values are already known [31]. This feature has made them
suitable candidates for working with in other studies, too,
e.g., [32]. They also serve different purposes in various
aspects of both physics and chemistry [22, 33, 34].

This method of approximation is simple and practical. It
can be applied to different quantum models to enhance the
accuracy of the energy eigenvalues for some potential models
of exponential-type, such as the hyperbolical potential and
the Manning-Rosen potential [35, 36]. Our findings in this
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TaBLE 4: The energy levels of the Eckart plus Hulthen potential for
several states with /=0, «=0.1, in atomic units A=y = 1.

VO Vl
1 1

E, (eV)NU
-1.12099
-1.21053
-1.31852
-1.44288
-1.58244
-1.73523

-1.00500
-1.03993
-1.10217
-1.18677
-1.29046
-1.41096

-1.15616
-1.04664
-1.00352
-1.00655
-1.04379
-1.10788

-1.81378
-1.94636
-2.08894
-2.24151
-2.40409
-2.57667

-2.16567
-2.25700
-2.36265
-2.48139
-2.61241
-2.75513

G B W N = O U W NN = O U b W = Oflu b W NN = O |ul b W= OfB

section are significant not only in theoretical and chemical
physics but also in experimental physics since we obtained
general results which are useful for studying nuclear charge
radius, spin, and nuclear scattering. In the future, we plan
to improve the approximation to solve the Bethe-Salpeter
equation with different potentials.
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