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In this paper, we develop a phenomenological model inspired by QCD that mimics the QCD theory. We use the gauge theory in
color dielectric medium (GðϕÞ) coupled with fermion fields to produce scalar and vector confinements in the chromoelectric flux
tube scenario. The Abelian theory will be used to approximate the non-Abelian QCD theory in a consistent manner. We will
calculate vector and scalar glueballs and compare the result to the existing simulation and experimental results and projections.
The QCD-like vacuum associated with the model will be calculated and its behavior studied relative to changing quark masses.
We will also comment on the relationship between tachyon condensation, dual Higgs mechanism, QCD monopole
condensation, and their association with confinement. The behavior of the QCD string tension obtained from the vector
potential of the model will be studied to establish vector dominance in confinement theories.

1. Introduction

Scalar and vector confinements [1] in 3 + 1 dimensional
world have been predicted by hadron spectroscopy [2], by
confinement in string picture, and by QCD lattice simula-
tion, but no success has been made in solving it analytically
from “first principle” of QCD. It has been shown in quarko-
nia phenomenology in 3 + 1 dimensional world that the best
fit for meson spectroscopy is found for a convenient mixture
of vector and scalar potentials. The combined vector and sca-
lar potentials have also been studied in many perspectives.
The Dirac equation [3, 4] and Schwinger model [5] are
among common examples employed to achieve both linear
and coulomb-like potentials [6–10]. The attempt to confirm
this result predicted by QCD lattice spectroscopy has led to
the use of the mass gap equation to generate mass as a depen-
dent parameter even in quark systems with no mass current
to create dynamic quarks [11]. Pure scalar and vector poten-
tials have been dealt with in Refs. [12–16] as a point in focus.

In this work, we use the Lagrangian density for confinement
of electric field in tachyon matter [17, 18] coupled with fermion
fields [18] to produce a Lagrangian density for fermionic

tachyons through transformations. In this approach, the dielec-
tric function coupled to the gauge field and the fermion mass
produce the needed strong interaction between (anti-)quark
pairs and the scalar field ϕ describes the dynamics of the
tachyons. We will use a dilaton in gauge theories [19, 20] to
determine the coupling constants of the colored particles by
transforming the exponential dilaton potential to conform with
our chosen tachyon potential considered in this work.

We show that both scalar and vector confinements coin-
cide with the tachyon condensation. This phenomenon is not
completely new because tachyon fields play a role similar to
Higgs fields where Higgs mechanism proceeds via tachyon
condensation [21, 22]. Again, both Higgs and tachyon fields
have some properties in common; they are both associated
with instability or fast decaying with negative mass squared.
The tachyons are expected to condense to a value of order
of the string scale. Tachyons with large string couplings are
considered charged; in that regard, their condensation leads
to dual Higgs mechanism. This naturally translates into
confinement in line with the QCD monopole condensation
scenario [23]. Moreover, we will compute both vector and
scalar glueball masses associated with the model. Glueballs
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are simply bound states of pure gluons, mixture of quark and
gluon (hybrid), and multiquark bound states. The glueball
spectrum has been a subject of interest for some decades
now, with the focus on unraveling its states in the context
of QCD theory [24].

The success of this type of confinement is based on
Nambu-Goto string or the chromoelectric flux tube picture.
The flux tube scenario is generally observed in a static quark
frame, such that there is no chromomagnetic field to induce
the spin-orbit interaction of the quarks. The only interaction
that is present, in this case, is the kinematics Thomas spin-
orbit interaction, which is a relativistic correction. This is true
for both vector and scalar confinement potentials, and it is
confirmed by lattice simulation results [25]. “Thomas preces-
sion” is considered scalar; hence, scalar potential is expected
but it does not guarantee its connection with the QCD the-
ory. They only relate at long-range spin-orbit interactions
of QCD; this is precisely the infrared (IR) regime of the the-
ory. The vector potential is achieved for short-range Thomas
spin-orbit interaction, and the scalar potential is consistent
with long-range Thomas spin-orbit interaction. Both models
do not depend on the quarks’ spin-orbit interactions in
agreement with the QCD theory [26, 27]. Though, scalar
potential models have been phenomenologically accepted
and used in many hadron models, it is still struggling to plant
its root firmly in fundamental QCD as highlighted in [28, 29].
Eventually, it was established that in a slowly moving quark
frame, QCD predicts both spin-dependent [30, 31] and
spin-independent [32] relativistic corrections. We will use
an Abelian QED throughout the computations, but the color
dielectric function GðrÞ modifies the gauge field and by
extension the QCD vacuum of the model [33–35]. We will
establish a relationship between the tachyon potential and
the color dielectric function in a suitable manner. It is known
that the Abelian part of the non-Abelian QCD string tension is
92%; this represents the linear part of the net potential. Thus,
we can make an approximation of the non-Abelian field using
an Abelian approach [36, 37]—for recent development on
this, see [38, 39]. Also, it is established that if Abelian projec-
tion is followed as suggested by ‘t Hooft, non-Abelian QCD
is reduced to an Abelian theory with charges and monopoles
occurring and when such monopoles condense, confinement
results. The idea of monopole condensation is a very useful
one. It has been numerically shown that monopole condensa-
tion actually occurs in the confinement phase of QCD [40].
Again, the color dielectric function coupled to the gauge field
FμνFμν contains only low momentum components. There-
fore, the use of Abelian approximation is justified in the phe-
nomenological QCD theory. In sum, these properties enable
us to apply the phenomenological field theory for QCD in this
investigation to establish confinement of quarks and gluons in
the infrared regime [7, 40–43].

The color dielectric function G is responsible for the long
distance dynamics that bring about confinement in the IR
regime of the model. It also facilitates the strong interactions
between quarks and gluons. The scalar field ϕðrÞ is responsi-
ble for the dynamics of the self-interacting gluon fields and
the color dielectric function. We will use a Lagrangian den-
sity that describes the dynamics of the gauge, the scalar field

associated with the tachyon, and gluon dynamics and fer-
mion fields coupled with mass at zero temperature [43].
The motivation for using this approach are firstly, we are able
to compute both the scalar and vector potentials by consider-
ing a heavy antiquark source surrounded by a relatively light
and slowly moving quarks. This enables us to compute the
effect of short-range spin-dependent “Thomas precession”
(vector potential) and the effect of long-range spin-
independent “Thomas precession” (scalar potential). Sec-
ondly, we are able to apply the phenomenological effective
field theory to identify the color dielectric function with the
tachyon potential in a simple form. Also, this approach
makes it easy to observe how the QCD vacuum is modified
by the dielectric function resulting in gluon condensation.
Finally, vector and scalar glueball masses are easily calculated
from the tachyon potential and the Lagrangian, respectively.

The paper is organized as follows. In Sec. 2, we review the
Maxwell’s Lagrangian with the source in color dielectric
medium. In Sec. 3, we introduce the Lagrangian density for
the model. In Sec. 3.1, we derive the QCD-like vacuum of
the model. In Sec. 3.2, we choose a suitable tachyon potential
for the study. In Sec. 3.3, we compute the scalar and vector
potentials for confinement and vector and scalar glueball
masses and explore the physics involved. In Sec. 3.4, we com-
pare our parameters with those from well-known phenome-
nological models. In Sec. 3.5, we discuss the dual Higgs
mechanism associated with the tachyon (and QCD magnetic
monopole) condensation and confinement. In Sec. 4, we
present the results and analysis. Our final comments are con-
tained in Sec. 5.

2. Maxwell’s Equations Modified by
Dielectric Function

In this section, we will review the electromagnetic theory in
color dielectric medium. Beginning with Maxwell’s Lagrang-
ian with source

L = −
1
4 FμνF

μν − jμAμ, ð1Þ

its equations of motion are

∂μF
μν = −jν: ð2Þ

The equations of motion of the electromagnetic field cre-
ate spherical symmetric solutions similar to the well-known
point charge scenario associated with Coulomb’s field [44].

Therefore, for electromagnetic field immersed in a dielec-
tric medium GðϕÞ, where ϕðrÞ is the scalar field representing
the dynamics of the medium, we can construct a Lagrangian
density

L = −
1
4G ϕð ÞFμνF

μν − jμAμ, ð3Þ

with its equations of motion given as

∂μ G ϕð ÞFμν½ � = −jν: ð4Þ
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We choose the indices to run as μ = 1, 2, 3 and ν = 0.
These choices are done carefully to obtain chromoelectric flux
confinement and to eliminate chromomagnetic fields in the
rest frame of the particles. As a result, the equation of motion
in Equation (4) can be reduced to

∇∙ G ϕð ÞE½ � = j0 = ρ: ð5Þ

By this equation, we have eliminated the effect of mag-
netic field contributions leaving only the electric field contri-
butions that will run through this paper. From Equation (5),
E is the electric field coupled to the dielectric function GðϕÞ.
Rewriting this equation in spherical coordinates, following
the assumption that EðrÞ and ϕðrÞ are only functions of r,
we get

∇∙ G ϕð ÞE½ � = 1
r2

∂
∂r

r2G ϕð ÞEr

� �
= ρ: ð6Þ

Integrating this differential equation yields

r2G ϕð ÞE� �
= ρ

ε0

ðR
0
r2dr, Er =

q
4πε0r2G ϕð Þ , ð7Þ

where q = ð4/3ÞπR3ρ and E = ∣E∣ = Er . We observe that the
dielectric function modifies the magnitude of the electric field
function.

3. Lagrangian Density of the Model

In this paper, we will focus on a model described by a
Lagrangian density given by

L = −
1
4G ϕð ÞFμνF

μν + 1
2 ∂μϕ∂

μϕ −V ϕð Þ
− �ψ iγμ∂μ + qγμAμ −mq�qG ϕð Þ� �

ψ,
ð8Þ

where mq�q is the “bare” quark mass or current quark mass
when the particles under consideration are light and some-
times referred to as the running quark mass if the particles
involved are heavy. It should be seen to be the same as the
mass term that appear in the QCD Lagrangian [45], while
MðϕÞ =mq�qGðϕÞ is the constituent quark mass function
which will later be identified with the scalar potential SðrÞ
in subsequent sections. The “bare” mass (mq�q) leads to
explicit chiral symmetry breaking while the MðrÞ permits
both explicit and dynamical chiral symmetry breaking similar
to renormalized mass in QCD Lagrangian [46–48]; we will
discuss it in details subsequently.

It should be noted that due to the mass term together
with gauge term, FμνF

μν, the Lagrangian is certain to pro-
duce both scalar and vector potential contributions to the fer-
mions. The equations of motion of this Lagrangian density
are

∂μ∂
μϕ + 1

4
∂G ϕð Þ
∂ϕ

FμνFμν +
∂V ϕð Þ
∂ϕ

− �ψmq�qψ
∂G ϕð Þ
∂ϕ

= 0,

ð9Þ

− iγμ∂μ + qγμAμ

� �
ψ +mq�qG ϕð Þψ = 0, ð10Þ

∂μ G ϕð ÞFμν½ � = −�ψqγνψ: ð11Þ
Again, the indices are ν = 0 and μ = j = 1, 2, 3 as defined

in the previous section. These choices are made deliberately
to avoid the creation of the chromomagnetic field, so we can
focus on the chromoelectric field which creates the flux tube
picture, relevant for our analysis. Therefore, Equation (11)
becomes

∇∙ G ϕð ÞE½ � = �ψqγ0ψ = j0 = ρ, ð12Þ

where we have substituted Fj0 = −E. Expressing the above
equation in spherical coordinates and integrating the
results for electric field solution yields the same result as
Equation (7).

Expanding Equation (9) in radial coordinates to ease our
analysis, we get

−
1
r2

d
dr

r2
dϕ
dr

� �
−
1
2
∂G ϕð Þ
∂ϕ

E2 + ∂V ϕð Þ
∂ϕ

− �ψmq�qψ
∂G ϕð Þ
∂ϕ

= 0:

ð13Þ

Here, we replace FμνFμν = −2E2 and zero otherwise. This
follows from the choice of indices defined above. For simplic-
ity, we will also substitute (ε0 = 1)

λ = q
4π , ð14Þ

thus,

d2ϕ
dr2

+ 2
r
dϕ
dr

= −
1
2
∂G ϕð Þ
∂ϕ

λ

r2G ϕð Þ
� �2

+ ∂V ϕð Þ
∂ϕ

− �ψmq�qψ
∂G ϕð Þ
∂ϕ

,

ð15Þ

which implies

d2ϕ
dr2

+ 2
r
dϕ
dr

= ∂
∂ϕ

V ϕð Þ + λ2

2
1

V ϕð Þ
1
r4

− �ψmq�qψV ϕð Þ
" #

:

ð16Þ

It has already been established that GðϕÞ =VðϕÞ—see
[49, 50] and references therein—for slowly varying tachyons.
This result will be used throughout this paper. In the above
equation, if we consider a relatively large distance of particle
separation from the charge q source, we can ignore the term
with λ2; hence, the equation reduces to

∇2ϕ = ∂V ϕð Þ
∂ϕ

1 − qmq�qδ r!
� 	h i

: ð17Þ
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We have used the general definition �ψψ ≃ ρðrÞ = qδð r!Þ
in the above equation.

Switching on the perturbation around the vacuum, ϕ0 =
1/α, i.e., ϕðrÞ→ ϕ0 + ηðrÞ, here, ηðrÞ is a small fluctuation
about the true vacuum of the potential, then, Equation (17)
becomes

∇2 ϕ0 + ηð Þ = ∂V ϕð Þ
∂ϕ

1 − qmq�qδ r!
� 	� 	

∇2ϕ0 + ∇2η

= ∂V
∂ϕ ϕ0

+ ∂2V
∂ϕ2













ϕ0

η

0@ 1A 1 − qmq�qδ r!
� 	� 	

⇒ ∇2η

= 4α2 1 − qmq�qδ r!
� 	� 	

η,

ð18Þ

where in the last step, we have used Equation (17) and antic-
ipated the property of the scalar potential that we shall define
shortly.

3.1. Determining QCD-like Vacuum and Gluon
Condensation. This section will be a continuation of the
review under “Gluodynamics and QCD-like Vacuum” con-
tained in Ref. [50, 51]. We know that the Lagrangian for
gluodynamics is symmetric under conformal transformation,
when treated classically, i.e., ∣εv∣⟶ 0. Without any quan-
tum corrections, its energy-momentum tensor trace is
zero, θμμ = 0. As a result, it produces vanishing gluon con-
densate hFμνFμνi = 0, in the classical limit and nonvanish-
ing gluon condensate hFμνFμνi ≠ 0, with quantum
corrections. Thus, quantum effects distorts the scale invari-
ance [52–56] and brings about QCD energy-momentum ten-
sor (θμν) trace anomaly

θμμ =
β gð Þ
2g FaμνFa

μν, ð19Þ

a phenomenon well known in the QCD theory. Here, βðgÞ is
the QCD beta-function of the strong coupling g, with a lead-
ing term

β gð Þ = −
11g3

4πð Þ2 : ð20Þ

This model produces vacuum expectation value

θμμ

D E
= −4 εvj j: ð21Þ

We will now compute the trace of the energy-momentum
tensor from the Lagrangian Equation (8) and compare the
result with the result obtained above. This comparison is pos-
sible because the third and the fourth terms in Equation (8)
clearly break the scale invariant making it possible for
comparison with Equation (21). We calculate the energy-
momentum tensor trace (θμμ) by substituting Equation (9) into
the expression

θμμ = 4V ϕð Þ + ϕ□ϕ, ð22Þ

and this yields

θμμ = 4V ϕð Þ − ϕ
∂V
∂ϕ

−
ϕ

4
∂G
∂ϕ

FμνFμν + qδ r!
� 	

mq�qϕ
∂G
∂ϕ

= 4~V ′ + ~G′FμνFμν − 4qδ r!
� 	

mq�q
~G′ = 4~Vef f ′ + ~G′FμνF

μν:

ð23Þ

Here, we have redefined

~V ′ =V −
ϕ

4
∂V
∂ϕ

, ~G′ = −
ϕ

4
∂G
∂ϕ

, ~V′ef f = ~V ′ − qδ r!
� 	

mq�q
~G′:

ð24Þ

Comparing Equation (23) to Equation (21), we get

~G′ ϕð ÞFμνFμν

D E
= −4 εvj j + ~V′ef f ϕð Þ

D E
: ð25Þ

We rescale ~V ′eff ðϕÞ to include the vacuum energy density
−∣εv∣, i.e.,

~V′eff ⟶ −∣εv∣~V′eff , ð26Þ

consequently,

~G′ ϕð ÞFμνFμν

D E
= 4 εvj j ~V′eff − 1

D E
: ð27Þ

This equation follows the classical limit, where the gluon
condensate vanishes when jεvj⟶ 0 [57]. Again, we will dem-
onstrate in the subsequent sections that the gluon condensate
increases with mass and remains nonvanishing atmq�q = 0, i.e.,
when the quark mass is “removed” after confinement. This is a
consequence of chromoelectric flux tube confinement.

3.2. Choosing the Appropriate Tachyon Potential.We select a
suitable tachyon potential

V ϕð Þ = 1
2 αϕð Þ2 − 1
� �2, ð28Þ

which produces tachyon condensation at low energies. This
potential follows the restriction

V ϕ = ϕ0ð Þ = 0, ∂V
∂ϕ ϕ=ϕ0 = 0, ∂V

∂ϕ





 




ϕ=0

= 0: ð29Þ

These restrictions are necessary to stabilize an asymptot-
ically free system as well as its vacuum [58]. To proceed with
the computations, we will require a suitable definition of the
three dimensional Dirac delta functions (δð r!Þ) that appears
in Equation (18). Consequently, we define δð r!Þ in the limit
of step function as [59].
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δ r!
� 	

=
1
4π lim

R→0
3
R3

� �
, if r ≤ R,

0, r > R,

8><>: ð30Þ

where R is the radius of the hadron and r is the interpar-
ticle separation distance. Solving Equation (18) in the
region r ≤ R, i.e., we are considering the presence of the
particles inside the hadron, we get

η′′ rð Þ + 2
r
η′ rð Þ + 2Kη rð Þ = 0, ð31Þ

where K = 2ðð3qmq�q/4πR3Þ − 1Þα2. This equation has solu-
tions given as

η rð Þ =
cosh

ffiffiffiffiffiffiffiffiffi
2 Kj jp

r
� 	
rα

ffiffiffiffiffiffiffi
Kj jp and η rð Þ =

sin
ffiffiffiffiffiffi
2K

p
r

� 	
rα

ffiffiffiffi
K

p , for r ≤ R,

ð32Þ

where ∣K∣ = −K = 2ð1 − ð3qmq�q/4πR3ÞÞα2. Thus, Equation
(31) has two different solutions each corresponding to dif-
ferent physical regimes. The hyperbolic cosine represents a
solution in the low energy regime (IR regime) while the
sine function presents solution in the high energy regime
where the particles are asymptotically free (UV regime)
and some contribution from the IR regime where the par-
ticles is in a confined state. We will consider these solu-
tions separately as we proceed.

Outside the hadron, r > R, δð r!Þ = 0, we have

η′′ rð Þ + 2
r
η′ rð Þ + 2K0η rð Þ = 0, ð33Þ

where K0 = −2α2, which has a solution

η rð Þ =
cosh

ffiffiffiffiffiffiffiffiffiffiffi
2 K0j jp

r
� 	
αr

ffiffiffiffiffiffiffiffi
K0j jp and η rð Þ = sin ffiffiffiffiffiffiffiffi2K0

p
r

� �
αr

ffiffiffiffiffiffi
K0

p , for r > R:

ð34Þ

A quark which is kicked out of the pointlike region this
way, at relatively high energy, behaves like a massless particle
but remains confined to the hadron as would be shown later.
For now, we will focus our attention on the solution obtained
in the region r ≤ R (inside the hadron) represented by
Equation (32). The color dielectric function for this solution
takes the form

G ϕ0 + ηð Þ =V ϕ0 + ηð Þ = V ϕð Þ ϕ0
+V ′ ϕð Þ




 



ϕ0
η

+ 1
2V

′′ ϕð Þ ϕ0
η2 +O η3

� �
⟶G ηð Þ = V ηð Þ = 1

2V
′′ ϕð Þ





 




ϕ0

η2:

ð35Þ

Tachyon fields are generally unstable with negative mass
squared; therefore, it is a common phenomenon to find their
vacuum states being unstable. In this case, we choose a poten-
tial whose true vacuum is at VðϕÞjϕ0 = 0. Switching on per-
turbation expansion about ϕ0 will results in a generation of
square mass proportional to V ′′ðϕÞjϕ0 . This stabilizes the
tachyon fields and reduces their velocities significantly, mak-
ing them viable for analysis in the infrared (IR) regime of the
model. Simply put, tachyon fields are naturally associated
with instability in the quantum field theory; hence, we per-
turb the fields about its true vacuum where the potential
has its minima. As a result, our perturbation should be
understood as a mechanism to stabilize the tachyon fields
[60]. Following the above equation, the color dielectric func-
tion in the IR regime becomes

G ηð Þ = 2α2η2 = 2
∣K ∣ r2

cosh2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ∣ K ∣

p
r

� 	
: ð36Þ

Substituting the above result for GðηÞ into the electric
field equation in Equation (7), we get

E = λ

r2G
= λ

r2 2/r2 ∣ K ∣ð Þ cosh2 ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ∣ K ∣

p
r

� �� � : ð37Þ

The same tachyon potential and the procedure adopted
here were used in [45] to confine light quarks at a finite tem-
perature. Consequently, the tachyons are expected to gener-
ate mass at V ′′ðϕÞjϕ0 leading to a particle-like state
resulting in tachyon condensation [61, 62]. It follows that
the vacuum stability is independent of the constituent quark
mass appearing in the Lagrangian density. These properties
observed from this type of potential makes it more efficient
for computing confinement potentials and glueball masses
for heavy or light (anti-)quark systems. From the aforemen-
tioned analysis, we can associate f α = 1/α to the decay con-
stant of the tachyons; the higher its value, the faster the
tachyons decay and by extension, the more unstable the
QCD-like vacuum created in this process and the vice versa.

3.3. Potentials, Glueball Masses, and Constituent
Quark Masses

3.3.1. The Potential of the Particles inside the Hadron. Using
the well-known relation for calculating electromagnetic
potentials

Vc rð Þ = ∓
ð
Edr, ð38Þ

to determine the confinement potential Vcðr,mq�qÞ. Now, we
apply the hyperbolic cosine function at the left side of
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Equation (32) representing the solution in the IR regime to
get

Vc r,mq�q

� �
= ∓

λ
ffiffiffiffiffiffiffiffi
∣K ∣

p
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ∣ K ∣

p
r

� �
2
ffiffiffi
2

p

+ c = ∓
λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βqmq�q

� �q
α tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 1 − βqmq�q

� �q
αr

h i
2 + c:

ð39Þ

Here, β is a constant representing the depth of the
delta function well, i.e., β = δðR⟶ 0Þ = 3/ð4πR3Þ. The
above equation gives the net potential observed by massive
(anti-)particle pairs ((anti-)quark pairs). In effect, particles
of the same kind (two particles or two antiparticles) repel each
other while particles of different kinds (particle and antiparti-
cle) attract; for example, color (blue) attracts an anticolor
(antiblue) of the same kind or colors of different kinds (blue
and green) attract each other and vice versa [12, 63].

We choose the negative part of the potential which corre-
sponds to the potential of an antiparticle. It is appropriate to
choose q = −1which also corresponds to an anticharge.We will
later find that q = −1 is associated with an anticharge which is
identifiable with an anticolor charge carried by the gluons. Con-
sidering that we are dealing with the potential of an antiparticle,
this choice is justifiable. Also, we will choose R = ð3/4πÞ1/3, i.e.,
β = 1 and c = 0 (c is the integration constant). Consequently, the
net static potential (a combined scalar and vector potentials)
seen by an antiparticle confinement in the region r ≤ R, in the
rest frame of a heavy source, is given by

Vc r,mð Þ = −
λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +mq�q

� �q
α tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 1 +mq�q

� �q
αr

h i
2 , ð40Þ

and its string tension is given as (the parameters combined as

follows are in general related according to the form ðmq�q + 1/
ð2πα′Þ1/2Þ~α2, where ~α2 = α2/ð2πα′Þ1/2. This is because the pre-
cise relationship between the tachyon potential and color dielec-

tric function is GðϕÞ = ð2πα′Þ2VðϕÞ, where α′ is the Regge
slope which has dimension of length squared. However, we
have assumed 2πα′ = 1 along the paper.)

σc mq�q

� �
= −λ mq�q + 1

� 	
α2 = mq�q + 1

� �
α2: ð41Þ

The scalar potential contribution here is due to the heavy
point-like source situated at the center of the hadron. In this
regime or at relatively large interparticle separations r, particles
are always confined with hadron degrees of freedom. This result
does not present UV effects, i.e., the Coulombic potential effect
at r⟶ 0. If we choose σc~1GeV/fm and α = 0:99 such that
f α ≃ 1, we obtain mq�q = 10:10MeV, which lies within the
range of u and d quark masses. It is important to add that
this potential is good for investigating light quarks such as
u, d and s quarks, since the potential already lies in the sta-
ble regime of the theory where all the quarks are confined
into hadrons. Heavy quarks such as c quarks start experienc-

ing the degeneracy (pair production) as shown in Figure 1
with dashed lines. Therefore, this model is recommended
for confining light quarks such as u, d, or s only.

This result accounts for both spin-dependent and spin-
independent relativistic corrections as QCD predicts for
slowly moving quark systems. Because there are spinless
quarks (comparatively light) in a slow motion around the
heavy point-like antiquark source at the origin. The comotion
of the light quarks relative to the central massive static anti-
quark source creates spin-dependent corrections at short
ranges (vector-type interaction) and spin-independent correc-
tion at long distances (scalar-type interaction) [64] giving rise
to the net potential. To this end, when the surrounding
comoving quarks are far away from the heavy source, the
string tension that binds them to the massive antiquark source
will break leading to pair production (a (anti-)quark pair cre-
ation), a phenomenon well known in the QCD theory. How-
ever, in the presence of a heavy antiquark source, the new
quark created in the process remains attractive towards the
original source whereas the new antiquark created in the pro-
cess remains attractive towards the “break-away” quark. In
this regard, the (anti-)quark pairs will always remain confined
once there exist, at least, a heavy source. The process remains
the same if we consider a heavy quark source as well. This
characteristic is depicted by the linear nature of the string ten-
sion changing with mq�q and constant when mq�q = 0.

We will now analyse the behaviour of the particles in the
UV regime where the particles are relatively close, i.e., small
interparticle separation r, with quark and gluon degrees of
freedom. We will use the solution of the sine function at
the right side of Equation (32) for this analysis,

η rð Þ =
sin

ffiffiffiffiffiffi
2K

p
r

� 	
αr

ffiffiffiffi
K

p : ð42Þ

Substituting this result into the color dielectric function,
Equation (36) results in

Gs rð Þ = 2
Kr2

sin2
ffiffiffiffiffiffi
2K

p
r

� 	
: ð43Þ

Substituting the above equation into Equation (38),

Vs =
ð

λ

2r2 sin
ffiffiffiffiffiffi
2K

p
r

� 	
/r
ffiffiffiffi
K

p� 	2 dr, ð44Þ

we get

Vs mq�q, r
� �

= −
λ
ffiffiffiffi
K

p
cot

ffiffiffiffiffiffi
2K

p
r

h i
2
ffiffiffi
2

p

+~c ≃ −
1
4r + K

6 r +~c ≃ −
1
4r +

mq�q − 1
� �

α2

3 r

+ O r3
� �

+~c,
ð45Þ
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with string tension

σs =
mq�q − 1
� �

α2

3 , ð46Þ

where we have chosen the positive part of the potential corre-
sponding to λ = q = 1 and ~c = 0. It is known in perturbation
QCD that the dominant interaction at small distances,
r⟶ 0, is Coulombic one-gluon exchange (OGE).

We can estimate the running quark mass, (mq�q), using
this result, if we consider a typical hadron of mass 1GeVwith
radius 1 fm as determined in electron scattering with an esti-
mated string tension σs~1GeV/fm and a decay of f α = 1. We
can estimate the running quark mass as mq�q = 4GeV, a typi-
cal mass for heavy quarks. The mass is slightly less than the
mass of a, b quarks, mb = 4:18 ± 0:03GeV on mass-
independent subtraction scheme ( �MS) at a scale of μ = 2
GeV as reported in the Review of Particle Physics of the Par-
ticle Data Group [45]. In addition, light quark masses (such
as u, d, and s quark masses) are difficult to determine due
to their small masses relative to the hadron scale, so it is

sometimes difficult to classify and significantly identify their
influence within hadrons. Thus, this model is viable for inves-
tigating confinement of quarks with masses mq�q ≥ 4GeV;
below this threshold, the quarks are expected to be asyptoti-
cally free in the UV regime. It is therefore convenient to study
the behaviour of light quarks using the IR potential developed
in Equation (40), instead of the Cornell-like potential in Equa-
tion (45) known for confining heavy quarks [54].

3.3.2. String Tension. Generally, the Cornell potential for
confining heavy quarks is given by

V rð Þ = −
e
r
+ σr +V0, ð47Þ

where e and σ are the Cornell fit parameters, but σ is related
to the lattice spacing a as σ~1/a2 and V0 is the self energy of
the static source. The separation distance, r, between the par-
ticles determines the magnitude of a, i.e., large distances
imply wide a and vice versa [65]. Determination of e is
strictly phenomenological; its larger value corresponds to a
smaller mass and vice versa. In relation to our model, we
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Figure 1: A graph of net potential, Vcðr,mq�qÞ, against (r,mq�q) for specific values of mq�q (a) and an infinite mq�q (b).
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normalized it at V0 =~c = 0, this is to remove the divergence
known to be caused by self-energy contribution in the con-
tinuum limit and e = 0:25 [66]. Unlike the quenched approx-
imation where the particle and antiparticle numbers are
independently conserved, in this model, the conserved quan-
tity is the baryon number due to the presence of the current
quark mass and a constituent quark mass function. As would
be shown explicitly later, light quark-antiquark pairs are cre-
ated in the vacuum resulting from the transition in the string
tension connecting the two static sources leading to hadroni-
zation. When the energy carried by the string tension con-
necting the two static sources exceeds its critical value at
some separation distance r = r∗ or some critical mass mq�q =
mc, the string will “break” and decay into light static mesons.
Thus, the Coulomb effect e is rather pronounced for higher
masses and weaker if the mass involved is slightly weaker
than the infrared mass—see the results published in Ref.
[67]. Thus, in the limit r⟶ r∗, the potentials stop rising
with distance r and the static source quark becomes screened
by the light quarks formed in the vacuum. Similar behaviour
is observed when we keep the distance fixed and increase the
mass, i.e.,mq�q ⟶mc. At the ground state, σc > σs. To obtain
confinement, the σc can contain a current mass within the
range 0 ≤mq�q ≤ 10:10MeV whereas σs can contain a current
mass within the range 4 ≤mq�q ≤mc GeV due to the UV con-
tributions. The running masses for the IR and the UV
regimes can be compared with the results of the running
masses calculated using various QCD sum rules within the
size of a hadron. The masses are given as �muð1GeVÞ = 5:2
± 0:5MeV, �mdð1GeVÞ = 9:2 ± 0:5MeV, �msð1GeVÞ = 159:5
± 8:8MeV, and �mbð1GeVÞ = 5:8 ± 0:06GeV [68, 69].

3.3.3. Vector Potential. Using the solution at the left side of
Equation (34), i.e., outside the regime of the pointlike source,
we will have two separate potential contributions: vector
potential due to the gluonic sector and the massless quark
and a scalar potential energy contribution from the system
of the pointlike particles (hadron). Here, the hadron serves
as a massive point-like source that confines the massless
quark. We will compute the vector potential in this section
while we reserve the calculations of the scalar potential energy
and the net potential energy for the next section. Using Equa-
tions (37) and (38), the vector potential becomes

Vv rð Þ = ∓
λ
ffiffiffiffiffiffiffiffi
K0j jp

tanh
ffiffiffiffiffiffiffiffiffiffiffi
2 K0j jp

r
h i

2
ffiffiffi
2

p + c = ∓
λα tanh 2rαð Þ

2 + c,

ð48Þ

with string tension

σv = ∓λα2 = ∓
λ

f 2α
: ð49Þ

This corresponds to the short-range Thomas spin-orbit
interactions as highlighted in the introduction. Again, faster
tachyon decay means weak string tension while slow decay

means strong string tension and stronger confinement. Sim-
ilar results is obtained if we set mq�q = 0 in Equation (39).

3.3.4. Scalar Potential. To determine the resulting scalar
potential due to the hadron, we compare our results from
Equation (10) with the generalized Dirac equation where
the scalar and the vector potentials coexist as

cbα p̂ + bβm0c
2 +V rð Þ

h i
ψ = 0: ð50Þ

Here, we have used Pμ = ððE/cÞ, P!Þ, Aμ = ðΦðrÞ, A!Þ;
assuming that the quarks are scalar (spinless) and static, we

have E = A
!
=ΦðrÞ = 0. In spherical wall potential, we can

impose the restriction

V rð Þ =
S rð Þ, for r ≤ R,
0, for r > R,

(
ð51Þ

where r is the interquark separations and R is the radius of
the hadron. Here, VðrÞ = SðrÞ represents the scalar potential
in the Dirac equation. Thus, Equation (50) can be rewritten
as

cbα p̂ + bβm0c
2

� 	
ψ + S rð Þψ = 0, ð52Þ

where bα and bβ are Dirac matrices. Also, p̂⟶ −i∇ (ℏ = 1) is
the momentum operator,m0 is the rest mass of the fermions,
and c is the speed of light in vacuum. The vector potential is
normally introduced by minimal substitution of the momen-
tum Pμ ⟶ Pμ − gAμ while the scalar potential is introduced
by the mass term m⟶m0 + S, where g is a real coupling
constant. It should be noted that the vector and scalar poten-
tials are coupled differently in the Dirac equation (57). Com-
paring Equation (10) and Equation (52), we can identify the
first and second terms of both equations as the interaction
terms and the third terms as the scalar potentials [70, 71].
We leave out the vector potential because it has already been
calculated in Sec.3.3.3, so it is of no further interest. The
resulting scalar potential seen by the fermions is

S r,mq�q

� �
=mq�qG rð Þ = 1

2mq�qV ′′ ϕð Þ





ϕ0

η2 rð Þ

= 2mq�qα
2η2 =mq�q

2
r2 ∣ K ∣

cosh2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ∣ K ∣

p
r

� 	� �
:

ð53Þ

This result represents Thomas spin-orbit interactions at
long ranges, whereas the short-range Thomas spin-orbit
interactions are partially dominated giving way to scalar
interactions only. As a result, the interactions are thought
of as being concentrated on the various quark coordinates.
Interestingly, the scalar potential energy is simply a product
of mq�q and the color dielectric function. This gives an
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indication that confinement in this scenario has a direct rela-
tion with tachyon condensation and mq�q of the system.

Meanwhile, some authors have predicted vector domi-
nance over scalar for interquark potentials, suggesting that
scalar dominance will imply that all quark combinations
are confined. Contrary to that, only the energetic combina-
tions are preferred phenomenologically [12]. We will attempt
to analyse this assertion by computing and comparing the
magnitudes of their coupling constants as they are expected
to appear in the Dirac equation and its significance. The net
confining potential energy of a quark outside the hadron will
be the sum of Equations (48) and (53) yielding

Vnet r,mð Þ = ± q
2α tanh 2αrð Þ

8π
+

mq�q

r2 1 +mq�q

� �
α2

cosh2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 1 +mq�q

� �q
αr

� �
:

ð54Þ

Here, we have multiplied the vector potential in Equation
(48) with an antiparticle charge −q to obtain a vector poten-
tial energy that goes into the net potential energy.

To end this section, we will present the color dielectric
function and the scalar potential for the sine function used
in investigating the particles inside the hadron in the UV
regime. Consequently, the color dielectric function will be

Gs r,mq�q

� �
= 4 − 8K

3 r2
� �

= 4 −
16 mq�q − 1
� �

α2

3 r2
" #

, ð55Þ

and the scalar potential of the hadron reads

Ss r,mq�q

� �
=mq�q 4 − 8K

3 r2
� �

=mq�q 4 −
16 mq�q − 1
� �

α2

3 r2
" #

,

ð56Þ

for λ = q = 1.

3.3.5. Glueball Masses. This model is certain to produce both
vector and scalar glueballs just as vector and scalar potentials
calculated above. Scalar glueball mass has been estimated to
have a value within the range 1:5 to 1:7GeV. This value has
been affirmed by data and calculations [72]. A specific value
was reached in Ref. [73] to be 1:7GeV for fitness, through
unquenched calculation. On the other hand, the existence
of vector glueball mass has been predicted with an estimated
value of 3:8GeV by quenched lattice QCD [74]. The vector
glueball masses are expected to be observed at the ongoing
Beijing Spectrometer Experiment (BESIII) and hopefully
future PANDA experiment at the FAIR Lab [70]. Recent
findings published by BESIII facility [71] point to vector par-
ticles of mass 3:77 to 4:60GeV with precision.

From the tachyon potential in Equation (28), we can
directly calculate the “vector glueball” mass (mgb) as

m2
gb =

∂2V
∂ϕ2







ϕ0

= 4α2: ð57Þ

The scalar glueball mass is then calculated directly from
the Lagrangian in Equation (8) as

m2
gbϕ = −

∂2L
∂ϕ2

* +
ϕ0
= 4α2 1 +mq�q

� �
+ α2 FμνFμν

� �


 



ϕ0
= 4σc,

ð58Þ

where we have substituted ψ�ψ = qδð r!Þ⟶ qβ, q = −1, and
β = 1. Following the analysis in Sec. 3.1, we find that
hFμνFμνijϕ0 = 0. Therefore, the model produces vanishing

gluon condensate in its vacuum (ϕ0). We can now rewrite
Equation (58) in terms of the string tension σc and the vector
glueball mass as

m2
gbϕ =

m2
gbσc

α2
=m2

gbσc f
2
α: ð59Þ

From the aforementioned analyses, we find that the
vector and scalar glueballs depend on the tachyon decay
constant, α = 1/f α. While the vector glueball depends
directly on f α, the scalar glueball only depends on f α
through the string tension σc. Knowing the estimated
values of scalar and the vector glueball masses and the
value of the string tension σc~1GeV/fm, we can fix the
tachyon decay constant within the range, 0 < f α ≤ 1. If we
consider that the tachyons are decaying at half of its max-
imum value, i.e., f α = 0:5, we will obtain mgbϕ = 2GeV and
mgb = 4GeV. This decay regime gives a good agreement
with the vector glueball mass within the range of the
experimental values. That notwithstanding, vector and sca-
lar glueballs are more likely to be observed for slowly
decaying tachyons.

3.3.6. Constituent Quark Masses.Wewould like to make brief
comments on the constituent quark mass functionMðϕÞ that
was mentioned below Equation (8). This function is the same
as the scalar potential energy SðrÞ determined from the Dirac
equation and discussed under Sec. 3.3.4. Here, we will seek to
determine its value for r⟶ 0 and r⟶ r∗, i.e., the excited
state and the ground state, respectively.

Now, expanding the solution for the hyperbolic cosine in
Equation (32) for

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ∣ K ∣

p
r≪ 1, we get

η rð Þ = cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ∣ K ∣

p
r

� �
rα

ffiffiffiffiffiffiffiffi
∣K ∣

p ≃
1

rα
ffiffiffiffiffiffiffiffi
∣K ∣

p 1+∣K ∣ r2
� �

+O r3
� �

:

ð60Þ

Using the expression for GðηÞ in Equation (36) and the
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above solution, we can write

M rð Þ = 2mq�q

r2 ∣ K ∣
1 + 2 ∣ K ∣ r2
� �

+ O r3
� �

=
2mq�q

r2 ∣ K ∣
+ 4mq�q + O r3

� �
:

ð61Þ

Thus, the constituent quark mass for the ground-state
energy will be Mðr⟶ r∗Þ = 4mq�q [66], where r∗ represents
the distance within which the quarks are confined and
beyond it, we have degeneracy. Therefore, the constituent
quark mass (Mr∗

) for the potential in Equation (40) is 40:4
MeV, and degeneracy should be expected beyond this mass
limit.

We can now proceed to equivalently calculate the constit-
uent quark mass (M0) for the highest excited state r⟶ 0 by
using the sine function solution in Equation (32), this yields

M rð Þ = 4mq�q 1 − Kr2

3

� �
+ O r3
� �

: ð62Þ

Therefore, Mðr→ 0Þ = 4mq�q is the constituent quark
mass in this regime; if we choose a running quark mass of
mq�q = 4GeV as calculated above, we get, M0 = 16GeV. So,
the constituent mass (M) in this model framework lies
between 0 ≤M ≤ 16GeV, where 0 ≤Mr∗

≤ 40:4MeV gives
the dynamics of the IR regime while the UV regime can be
studied within 4 ≤M0 ≤ 16GeV.

The quark masses that appear in phenomenological
models are generally the constituent quark mass [45] which
dynamically breaks the chiral symmetry. In nonperturbative
theories, the range for dynamical chiral symmetry breaking,
Λχ, is about 1GeV [75]. It is therefore conventional to say
a quark is heavy ifM >Λχ; in this case, we have explicit chiral
symmetry breaking for c, b, and t quarks while quarks are
classified as light if M <Λχ, leading to spontaneous chiral
symmetry breaking dominance. Quarks in this category
include u, d, and s. In nonrelativistic quark models, one of
the useful parameters is the constituent quark mass which
is determined to be Mu =Md = 350MeV for light quarks in
single gluon exchange (OGE) interaction, while the predicted
mass for a c quark is also Mc = 1:6GeV. Constituent quark
mass models are used to study the effect of dynamical chiral
symmetry breaking, and they are independent of the current
quark mass. The constituent quark mass changes depending
on howmeasurements are made in a particular model frame-
work. The constituent quark masses are greater compared to
the current quark mass and are usually free parameters to fit
in potential models. The masses vary depending on whether
you are using a meson fits, baryon fits, hadron fits, or other
phenomenological models.

3.4. Identification of Coupling Constants. In this section, we
will compare the result from Equation (16) with the well-
known phenomenological models [12, 76], using dilaton in
the gauge theory to confine quarks and gluons withNc colors.
For emphasis, since our model is phenomenological, it lacks

all the degrees of freedom required to fully represent the pure
QCD theory, but our results agree with the QCD spectrum
for scalar and vector potentials.

The results presented above still keeps the electromag-
netic charge q and do not contain the color numbers Nc. This
comparison is intended to help fill in these gaps. Further-
more, the scalar and the vector potentials in the Dirac equa-
tion are of the same weight but coupled differently. This
comparison will enable us to determine their couplings and
relate them to their individual strengths in the QCD-like
model. The same method was used in [49]—and references
herein—to determine couplings as well. The dilaton model
is given as

d2ϕ
dr2

+ 2
r
dϕ
dr

= −
g2

64π2 f ϕ
1 − 1

Nc

� �
exp −

ϕ

f ϕ

 !
1
r4

−
ξ

2f ϕ
exp −ξ

ϕ

2f ϕ

 !
mq�qgδ rð Þ:

ð63Þ

Transforming the exponential potentials of the above
equation to conform with the tachyon potential used, i.e,
exp ð−ððϕðrÞÞ/f ϕÞÞ⟶ 2ðα4ϕ3 − α2ϕÞ and exp ð−ξððϕðrÞÞ/2
f ϕÞÞ⟶ 2ðððα4ϕ3ξ4Þ/16Þ − ððα2ϕξ2Þ/4ÞÞ; hence, Equation
(63) can be rewritten as

d2ϕ
dr2

+ 2
r
dϕ
dr

= g2

32π2 f ϕ
1 − 1

Nc

� �
α2ϕ

r4
+ 2ξ3α2ϕ

8f ϕ
mq�qgδ rð Þ:

ð64Þ

It should be noted that the purpose of this section is to
determine the coupling constants, so the equations have been
simplified to achieve that goal.

Comparing Equations (16) and (64), we can find ξ = 2,
and α2 = 1/f ϕ = 1/f 2α. Here, ξ represents the coupling strength
of the fermions; f ϕ is the mass decay constant of the dilaton
and it is related to the decay constant of the tachyons f α; g
is the gluon charge and it is related to the electromagnetic
charge q. We can rewrite Equations (14), (40), and (41) as

λ = −
g
2π 1 − 1

Nc

� �1/2
, q = −g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

Nc

� �s
, ð65Þ

Vc r,mq�q

� �
= g
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

Nc

� �s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +mq�q

� �q
α tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 1 +mq�q

� �q
αr

h i
2 ,

ð66Þ

σc mq�q

� �
= g
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

Nc

� �s
mq�q + 1
� �

α, ð67Þ

for g⟶ g/ð2 ffiffiffi
2

p Þ, respectively.
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The scalar potential energy observed by the heavy point-
like antiquark source is also given as

S r,mq�q

� �
= 2mq�qα

2η rð Þ2

=mq�q
1

r2 1 +mq�q

� �
α
cosh2 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +mq�q

� �q
αr

� �" #
:

ð68Þ

We find from the above Equation (36) for the dielectric
function G that the larger the quark mass the more stable
the QCD-like vacuum and the faster the tachyons condense
[77]. Since tachyon condensation implies confinement, then
heavier quarks are more likely to be confined than light
quarks [78]. This potential follows the same analysis as the
dielectric function with the tachyons condensing faster in a
multiple of mq�q showing a rather stronger confinement but
vanishes at mq�q = 0. This result represents the energy flow
between a quark and an antiquark pairs at long ranges. On
the other hand, Equation (66) represents the net potential
for confinement observed for a heavy antiquark source in
the origin surrounded by relatively light spinless quarks in
a slow motion.

It is important to state that the net confinement potential
seen in Equation (66) corresponds to a mixture of ξ = 0 (no
mass coupling) and ξ = 1 (Kaluza-Klein-type or mass cou-
pling) [79]. The combined ξ = 1 and ξ = 0 give the net con-
finement of the quarks at all masses inside the hadron.
Also, Equation (68) gives the scalar potential energy, i.e., the
flow of energy between two or more quarks. The coupling
of the scalar potential, ξ = 2, exposes its weakness relative to
the vector potential in Equation (48) by a ratio of 0 : 2. By
simple interpretation, the scalar potential energy must be
coupled strongly in order to coexist with the vector potential
energy which needs no coupling as seen in our model frame-
work and presented in expression Equation (54). It is notice-
able that the scalar potential energy vanishes atmq�q = 0 while
the vector potential energy does not as evidenced in Equation
(54). Consequently, quarks are always in a confined state
[80–83] under the net confining potential Equation (66)
and at mq�q = 0, we retrieve the vector potential Equation
(48). This indicates that the chromoelectric flux generated

by the colored particles remains confined even if we
“remove” the quarks after confinement under the net confin-
ing potential (Vc) [2]. It should be noted also that the net
confinement potential of the color particles is the sum of
the vector and the scalar potentials as presented in (66) and
the net potential energy is also the sum of the vector
and scalar potential energies as expressed in Equation
(54). After knowing all the coupling constants and the
nature of the Dirac delta function, few comments on
Sec. 3.1 will be necessary. Noting that the Dirac delta function
is well defined inside the hadron r ≤ R, with depth β = 3/ð4π
R3Þ = 1, GðϕÞ = VðϕÞ, and an antigluon color charge q⟶ g
= −1ðNc ≫ 1Þ, Equation (24) takes the form

~V ′ef f ϕð Þ = ~V ′ − qδ rð Þm�qq
~G′ =V −

ϕ

4
∂V
∂ϕ

+mq�q −
ϕ

4
∂G
∂ϕ

� �
=V −

ϕ

4
∂V
∂ϕ

mq�q + 1
� �

:

ð69Þ

Substituting Equation (35), recalling that VðηðrÞÞ =Gðη
ðrÞÞ = 2α2η2 for ϕðrÞ⟶ ϕ0 + ηðrÞ, into the above expres-
sion yields

~V ′ef f = 2α2η2 − ϕ0 + ηð Þα2η mq�q + 1
� �

= α2η2 1 −mq�q

� �
− ϕ0α

2η 1 +mq�q

� �
= α2η2 1 −mq�q

� �
− αη 1 +mq�q

� �
for α = 1/ϕ0

�
:

ð70Þ

Since tachyon condensation is faster when ~V′ef f ⟶ 0,
see Figure 2, tachyons condense with increasing mass and
attain its minimum condensation at mq�q = 0 corresponding

to the maximum value of ~V ′. As a results, Eq. (27) yields

ϕ0 + ηð ÞG′ ηð ÞFμνF
μν

D E
= 16∣εv∣ 1 − α2η2 1 −mq�q

� �� �
+ 16∣εv∣ αη 1 +mq�q

� �� �
⟶ αη + α2η2

� �
FμνF

μν� �
= 4∣εv∣ 1 − α2η2 1 −mq�q

� �� �
+ 4∣εv∣ αη 1 +mq�q

� �� �
:

ð71Þ
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Figure 2: A graph for color dielectric function, Gðr,mq�qÞ, against (r,mq�q) for specific values of mq�q (a) and for infinite mq�q (b).
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By this result, tachyon condensation increases with the
increasing mass mq�q and attains its minimum when mq�q = 0.
There is a QCD monopole condensation associated with both
instances (i.e., mq�q = 0 and mq�q > 0), since the gluon conden-
sates do not vanish in any of the two instances. The conden-
sate is higher with increasing mass and relatively low at no
mass. Naturally, confinement results in both instances.

3.5. Tachyon Condensation and Dual Abelian Higgs
Mechanism. For the sake of simplicity, but without lost of
generality, in the previous sections, we have postponed the
discussion concerning the dual description of the confine-
ment in terms of the Higgs mechanism. We shall now com-
plete the discussion by extending the the Lagrangian in
Equation (8) by imposing gauge invariance on the scalar sec-
tor. As such, the degrees of freedom should be carefully chan-
ged. Firstly, we have to consider a charged scalar field, i.e., a
complex scalar field

ϕ = ϕ1 + iϕ2ffiffiffi
2

p : ð72Þ

Wewill leave out the fermion (spinors) coupling from the
original Lagrangian in Equation (8) for this analyses because
it has no direct influence on the outcome of the intended
result. Consequently,

L = −
1
4G ϕj jð ÞFμνF

μν +DμϕD
μϕ∗ −

1
4
~Fμν

~F
μν −V ϕj jð Þ,

ð73Þ

where Fμν = ∂μAν − ∂νAμ and ~Fμν = ∂μ~Aν − ∂ν~Aμ are two

independent Abelian field strengths and Dμ = ∂μ − iq~Aμ is
the Abelian covariant derivative associated with the dual
gauge field ~Aμ which is responsible for the magnetic mono-
pole description in the dual Higgs mechanism. Besides its
original Uð1Þ gauge invariance, the Lagrangian becomes
invariant under the following ~Uð1Þ gauge transformation

ϕ xð Þ⟶ ϕ′ xð Þ = eiqα xð Þϕ~A xð Þ⟶ ~A′ xð Þ = ~A xð Þ − ∂μα xð Þ:
ð74Þ

We can now analyze the dual Higgs mechanism of the
model. Going forward, the potential of the model in Equation
(28) will also take the form

V ∣ϕ ∣ð Þ = 2α4 ϕϕ∗ð Þ2 − 2α2ϕϕ∗ + 1
2 : ð75Þ

The minima of this potential function is given as

∂V
∂ϕ∗

= 0⟶ 4α4 ϕϕ∗ð Þϕ − 2α2ϕ = 0, ∣ϕ ∣h i0 =
ffiffiffiffiffiffiffiffiffiffi
ϕ0ϕ

∗
0

p
=

ffiffiffiffiffiffiffi
1
2α2

r
:

ð76Þ

The nonzero vacuum expectation value breaks the ~Uð1Þ
gauge symmetry spontaneously.

Let us now proceed as in our previous analyses by
expanding about the vacuum of the potential so, for ease of
calculations, we choose physical vacuum configuration

ϕ1min = ϕ0, and ϕ2min = 0: ð77Þ

Now, we choose two real scalar fields ηðrÞ and ζðrÞ [84, 85]
to represent small fluctuations about the vacuum of the
potential.

So we can represent the shifted vacuum as

ϕ = η + ϕh i0: ð78Þ

As such, we can conveniently parametrize the ϕ field as

ϕ = eiζ/ϕ0
ϕ0 + ηð Þffiffiffi

2
p ≈

ϕ0 + η rð Þ + iζ rð Þð Þffiffiffi
2

p : ð79Þ

The Lagrangian for the small fluctuations about the vac-
uum up to quadratic order becomes

L = 1
2 ∂μη∂

μη − 4α2η2
� �

+ 1
2 ∂μζ∂

μζ − 2qϕ0~Aμ∂
μζ + q2ϕ20~Aμ

~A
μ

h i
−
1
4G ηð ÞFμνF

μν −
1
4
~Fμν

~F
μν+⋯:

ð80Þ

Notice that the scalar field η plays the role of the usual
massive Abelian Higgs field and the scalar field ζ is related
to the massless Goldstone boson. Now choosing the gauge,

~Aμ ⟶ ~A′ = ~Aμ −
1
qϕ0

∂μζ, ð81Þ

we can write

1
2 ∂μζ∂

μζ − qϕ0~Aμ∂
μζ + q2ϕ20

2
~Aμ

~A
μ

= q2ϕ20
2

~Aμ −
1
qϕ0

∂μζ
� �

~A
μ −

1
qϕ0

∂μζ
� �

= q2ϕ20
2

~A′μ~A′
μ
:

ð82Þ

Thus, the Lagrangian takes the form

L = −
1
4G ηð ÞFμνF

μν + 1
2 ∂μη∂

μη −V ηð Þ

−
1
4
~F′μν~F′

μν + q2ϕ20
2

~A′μ~A′
μ+⋯:

ð83Þ

This is precisely the Lagrangian (8) evaluated around the
vacuum plus the Lagrangian of the dual gauge field. Notice
that GðηÞ =VðηÞ = 2α2η2 is consistent with (35). Further-
more, as we have well discussed in the previous sections, in
the limit η⟶ 0, we have tachyon condensation and con-
finement. Then at such a limit, we are left with the Lagrang-
ian
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~L = −
1
4
~F′μν~F′

μν + q2ϕ20
2

~A′μ~A′
μ, ð84Þ

which describes the dynamics of a massive dual gauge
field—a consequence of the dual Higgs mechanism.

The equations of motion of the dual gauge field are

∂μ~F′
μν = q2ϕ20~A′

ν, ð85Þ

and that for the static fields give

∇· ~B
!

= ρm, and−∇ × ~E
!

= j
!

m, ð86Þ

where the magnetic monopole charge and current densities

ρm, j
!
m, respectively, are defined by the current density jμ =

q2ϕ20~A′
μ
. So these equations govern a dual superconductor

with the dual London equation ∇ × j
!

m = ð1/λ2Þ ~E!, where

λ = ðq2ϕ20Þ−1/2 is the penetration depth [86]. This scenario
leads to the description of condensed magnetic mono-
poles and confined electric field, as we previously
assumed.

4. Results and Analysis

Plotting the results of Equations (66), (67), (36), (68), (45),
(46), (56), and (55) in Figures 1–8, we assume that f α = β =
1, g/4π = λ = ±1, and Nc ≫ 1. Figure 1 shows graphically
the relationship between the interquark potential Vcðr,
mq�qÞ with (r,mq�q) for a heavy antiquark source. The graph
shows a steady increase in the gradient from mq�q1 to mq�q3
representing an increase in the strength of confinement
from mq�q1 to mq�q3. Figure 3 represents the graph of σcð
mq�qÞ againstmq�q; it shows a linear increase in σcðmq�qÞ against
mq�q with its foot intersecting the σcðmq�qÞ axis at 1 indicating
the strength of interaction even at mq�q = 0. The linearity in
σcðmq�qÞ depicts the confinement that exist between the
(anti-)quark pairs. Figure 2 shows the graph of the QCD-like
vacuum which is equivalent to the tachyon potential. Tachyon
condensation is related to monopole condensation which
translates into confinement. The deeper the depth of the curve,

the more condensed the tachyons and the stronger the
strength of the confinement and the vice versa. Again,
Figure 4 shows the relationship between the scalar potential
Sðr,mq�qÞ with (r,mq�q). We notice that the greater the quark
mass, the deeper the depth of the curve and the smaller the
minima of the curves representing faster gluon condensation.
The above discussions so far are related to the IR regime.
But, the same is true for Figures 5–8 which incorporate
some UV characteristics; the only difference is that heavy
quarks (mq�q ≥ 4GeV) are required to achieve confinement
in this regime due to the UV characteristics. Considering
all the factors discussed above, we can deduce that the vec-
tor potentials are dominant over the scalar potentials for
light quarks in the IR regime and heavy quarks UV regime,
respectively.

By way of analysis, we will compare the vector and the
scalar confinements as captured in literature. The vector
potential takes into account the angular momentum of the
quarks while the scalar potentials do not. The scalar potential
actually thrives on the basis that the angular momentum is
partially eliminated. In the vector confinement, the energy
of the quarks are carried by the gluons (string tension)
whereas in the scalar confinement, the energy is centered
on the quark coordinates. The scalar potential is most useful
in a nonrotating quark frame while the vector potential is a
viable option for a rotating quark frame. Obviously, the
“Thomas precession” that gives rise to vector confinement
differs significantly from the one that gives rise to the scalar
confinement [3–5, 25–27].

The graph in Figure 1(a) is for the different values of
mq�q. It shows the strength of q�q confinement for the dif-
ferent values of mq�q as their separation distance r varies.
The graph shows a steady increase in its gradient as mq�q

is increased from 0 to 0:7GeV. By inference, the particles
are strongly confined with increasing mass. Notwithstand-
ing, a system of fermions remain confined even if the
mass of the fermions is “removed” (mq�q = 0) after confine-
ment due to the chromoelectric flux tube confinement, in
consistence with the QCD theory. The graph in
Figure 1(b) is for the infinite limit of quark masses; it rises
sharply, indicating confinement and flatten up shortly
indicating hadronization. Λχ = 1GeV is the threshold
mass; below which, quarks are classified as light and
beyond which, they are classified as heavy.

The linear nature of the graph indicates that q�q is con-
fined for increasingmq�q. The foot of the graph at 1 shows that
the particles remain confined even at mq�q = 0 in consistency
with the QCD spectrum for heavy quarks.

The graph in Figure 2(a) is for the different values of
mq�q to show how the tachyons condense with the increas-
ing mass. Even though we find some tachyon condensate
at mq�q = 0, we can also see that the condensation is faster
with the increasing mass. The deeper the depth of the
graph, the more condensed the tachyons are and vice
versa. The graph in Figure 2(b) represents the tachyon
condensation for infinite mq�q limits. It shows stronger
tachyon condensation.

0 2 4 6 8 10
0

2

4
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8

10

Figure 3: A graph of string tension σcðmq�qÞ against mass,mq�q, for a
heavy antiquark source.
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The potential vanishes at mq�q = 0, for both graphs, and
increases in depth as mq�q increases as shown in Figure 4(a).
The graph in Figure 4(b) has a deeper depth and represents
stronger confinement. The Sðr,mq�qÞ deceases with mass from
the left until it attains its minimum at Sðr,mq�qÞ⟶ 0 and
starts rising from the minimum towards the right; this is true

for both graphs. The decrease implies stable confinement
while the rise towards the right signifies degeneracy and
screening of the static antiquark source. These are character-
istics demonstrated by light mesons [66].

The graph in Figure 5(a) rises steadily with the increasing
mass indicating strong confinement with the increasing mass
while the graph in Figure 4(b) shows stronger confinement
with an infinite increase in the quark mass.

The graph shows strong confinement with increasing
quark mass mq�q.

The potential vanishes at mq�q = 0. The scalar potential
increases with the increasing mass. Thus, the higher the
quark mass, the more likely the quarks will be confined even
at higher energy regimes (small r) for finite quark masses as
shown in Figure 7(a). For infinite quark masses (right), the
scalar potential also increases as mq�q ⟶∞, consequently
confining the quarks at high energy regimes.

The graph in the left panel shows a slight increase in
tachyon condensation with the increasing quark mass, so
the increase in the quark mass goes into confining the quarks
at higher energies r⟶ 0. Likewise, in the right panel, the
tachyon condensation increases steadily as mq�q ⟶∞
resulting into confinement at higher energy regimes.
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Figure 4: A graph of the scalar potential Sðr,mq�qÞ against (r,mq�q) for specific values of mq�q (a) and infinite mq�q (b).
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Figure 5: A graph of the Cornell-like potential Vsðr,mq�qÞ against (r,mq�q) for specific values of mq�q (a) and infinite mq�q limit (b).
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Figure 6: A graph of string tension σsðmq�qÞ resulting from the
Cornell-like potential against mass, mq�q, for a heavy quark source.
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5. Conclusions

The model gives an insightful details about the QCD theory
in both the IR and the UV regimes making it more efficient
for consideration. We have calculated the net potential of
the slowly moving quarks inside the hadron, vector potential,
scalar potential energy, net potential energy, and the string
tensions associated with them in both regimes. Vector and
scalar glueball masses which are consequences of the IR
regime were also studied and their values for f α = 0:5 (conse-
quently, ϕ0 = 500MeV) and σc~1GeV/fm was calculated and
compared with the existing QCD lattice results for quenched
(no quark fluctuation) and unquenched (hybrid fluctuation)
approximations, respectively.

The dominance of the vector potential expected in the
QCD theory was clearly demonstrated by computing the
coupling strengths ξ for both the vector and the scalar poten-
tials. We also find that the scalar potential (energy) must be
strongly coupled in order to coexist with the vector potential
(energy) which needs no coupling at all in this model frame-
work. The vector and the scalar potentials should be under-
stood as resulting from relativistic spin-orbit corrections at
short and long ranges, respectively. The vector potential
(energy) shows confinement of chromoelectric flux at zero

mass, but the scalar potential (energy) vanishes at the same
mass. Thus, the vector potential (energy) is more suitable
for confining light quarks while at least a heavy source is
required to obtain scalar potential (energy). Furthermore,
we established the relation between tachyon condensation,
dual Higgs mechanism, QCD monopole condensation [87],
and confinement. Finally, we intend to continue our series
on this subject by studying confinement of fermions at a
finite temperature.
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Figure 7: A graph of the scalar potential Ssðr,mq�qÞ against (r,mq�q) for specific values of mq�q (a) and infinite mq�q limit (b).
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