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Introduction

In chemical or biochemical industrial applications, a huge 
number of sensors is utilized to monitor production processes 
[1]. The obtained data is used to actively control the evolution 
of the reactions in order to, for example, maintain the quality 
of the synthesized products or keep the amount of waste as 
low as possible [2]. In such systems, physical fluid property 
sensors are used to determine characteristics such as density 
or viscosity. To this end, several measurement devices are 
already on the market [3, 4]. Various sensor designs have been 
presented over the years [5–7]. For sensing viscosity, resonant 
sensor systems offer particularly high sensitivity. Many dif-
ferent designs have been presented, such as in [8–11] or [12], 
in which most operate in the higher-frequency regime above 
20 kHz or in the MHz regime. Sometimes these sensors are 
small and fragile and thus not suited for use in production 
plants. The high resonance frequency results in a very thin 
fluid layer being sensed directly on the surface of the sensor 

[13]. The adhesion of particles at the sensor surface can cause 
major problems.

The sensor setup presented in this work was designed 
to work in the low-frequency regime below 10 kHz, where 
the penetration depth of the imposed shear displacement is 
increased avoiding the aforementioned problems. We intro-
duced the concept for this setup only recently [14]. In this 
paper, we present the design process of the sensor. In addition, 
a more accurate mathematical model taking the fluid damping 
into account is introduced. Long-term measurements are per-
formed for different temperatures and finally the accuracy of 
the sensor system is reviewed.

Setup

The demonstrator device is machined of aluminium. Figure 1 
shows a cross-section of the sensor setup. The sensor is based 
on two coaxially aligned pipes where the outer one, featuring 
two flywheels with permanent magnets, is actuated to perform 
torsional oscillations by means of magnetic fields. The sensi-
tive part of the device is the outer pipe shown in figure 1(3) 
(do  =  12 mm, di  =  8 mm, l  =  130 mm). Two flywheels 
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Abstract
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are located at the ends of this pipe (d  =  30 mm, h  =  1 mm 
figure  1(10)), each containing four neodymium permanent 
magnets (d  =  3 mm, h  =  1 mm, figure 1(8)) that are used for 
the actuation and readout of the oscillations. The inner pipe 
(do  =  6 mm, di  =  4 mm, l  =  64 mm, figure 1(4)) is coaxially 
aligned to the outer pipe. This pipe does not move during 
the measurements and is only used to guide the fluid through 
the sensor to achieve a homogeneous filling of the measure-
ment chamber. The center of the pipe structure is attached 
to a mechanical spring (d  =  60 mm, h  =  4 mm, figure  1(2)) 
whose other end is mounted to the surrounding housing 
(140  ×  70  ×  70 mm3, figure 1(1)) and is used to mechanically 
decouple the pipes from the housing. The center of the pipe 
structure is also the nodal point of the torsional oscillation 
mode. If the outer pipe oscillates in this mode, the nodal point 
does not move and little energy is coupled into the housing or 
into the inner pipe. On each side of the sensor housing, four 
electromagnetic coils (figure 1(5)) are placed. These coils are 
rotated by 10° with respect to the equilibrium position of the 
permanent magnets mounted into the flywheels (figure 1(8)). 
Due to this angular displacement, a rotatory force acts on the 
flywheels once the coils are driven accordingly. The coils are 
protected by the coil housing figure  1(6). For the filling of 
the sensor with fluid, two Luer lock adapters (figure 1(7)) are 
screwed to the outer pipes. For temperature measurements, 
a hole is drilled in the mounting spring and the inner pipe, 
where a temperature sensor such as a PT100 can be placed 
(figure 1(9)).

In the demonstrator setup, the two Luer lock connectors 
(figure 1(7)) are placed on the flange of the outer pipe as close 
as possible to the mounting spring. The fluid is filled from 
the inlet (figure 1(7)), from where it flows into the cylindrical 
space between the inner and outer pipe to the left end of the 
sensor, through the inner pipe on the right side of the sensor, 
then from the right side into the cylindrical space between the 
inner and outer pipe to the outlet, which is located opposite 
to the inlet. Due to this special pipe system, the sensor can be 
used as a flow-through sensor.

The sensor setup offers different oscillation modes which 
can be used to determine the viscosity and/or density of a 
liquid. All these modes have different characteristics and yield 
different sensitivities. The lowest order modes are illustrated 
in figure 4. The most interesting mode for viscosity measure-
ments is the anti-symmetric (torsional) mode. In this mode the 
outer pipe itself acts as a torsional spring and the two flywheels 
on the end oscillate against each other, i.e. inversely phased. 
The center of the pipe’s axis is the nodal point of this torsional 
oscillation mode, which means that ideally the points located 
at the circumference of the pipe are not moving. As the reso-
nator structure is attached to the mounting spring at this point, 
little energy is transferred to the housing of the sensor. This 
enables very high quality factors and thus higher sensitivities 
particularly for low viscous fluids. The inner surface of the 
outer pipe interacts with the fluid. As the surface velocities 
vary along the longitudinal axis of the pipe according to the 
mode shape, the sensitivity of the sensor is higher at the ends 
of the pipe.

Actuation and readout

For the actuation and readout, electromagnetic coils are used. 
Combined with the permanent magnets in the flywheels, they 
are used to excite different mechanical oscillation modes. 
The most interesting mode for viscosity measurements is the 
torsional mode (see figure 4). For the demonstrator setup we 
used two coils on each side of the sensor. The coils on the 
left side were used to actuate the resonator and the coils on 
the right side were used as readout coils. It is also possible 
to implement the actuation and the readout on the same side 
of the sensor but in this case the cross-talk between the coils 
has to be eliminated by arranging the permanent magnets and 
choosing the winding direction of the coils accordingly. For 
the implemented separated actuation and readout, the cross-
talk is not a problem due to the distance between both ends 
of the pipe. The force acting on the permanent magnets is lin-
early related to the current through the actuation coils. (Note: 
Due to the one-sided actuation principle, a spurious force 
along the axial direction of the pipe also acts on the sensor. 
This force could be compensated by using the abovemen-
tioned symmetric arrangement of actuation coils at both ends 
of the sensor pipe.) The readout signal is generated due to 
the movement of the permanent magnets in the vicinity of the 
coils. The induced voltage depends on the rate of change of 
the magnetic flux density in the coils. Therefore, the induced 
voltage is related to the velocity of the permanent magnets. As 

Figure 1.  Cross-section of the sensor setup consisting of (1) 
housing, (2) mounting spring, (3) oscillating outer pipe, (4) inner 
pipe, (5) electromagnetic actuation coil, (6) coil housing, (7) in/
outlet with Luer lock adapter, (8) holes for permanent magnets,  
(9) hole for a temperature sensor, and (10) flywheel.
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readout electronics a MFA200 module from Microresonant 
(a spin-off company of our institute)3 is used. The module is 
based on hardware and algorithms presented in [15, 16].

Simulation

To devise the first design, a 1D model was used (see figure 2) 
consisting of three flywheels (moments of inertia J1, J2 and 
J3), two torsional springs representing the outer pipe (spring 
constants: c1 and c2), and a torsional spring modeling the 
mounting structure (spring constant c3). The deflection angles 
of the three flywheels are defined as ϕ1,ϕ2 and ϕ3.

The differential equations  for this model are simple and 
easy to handle. The actuation input for the system is a torque 
M1 at the left side of the sensor (provided by the coils and per-
manent magnets). The output is the induced voltage at the right 
side, which is set proportional to ϕ̇2 = ω2. The linear time 
invariant (LTI) system can be described with a simple state 
space model. Figure 3 shows the transfer function between the 
input M1 to the output ϕ̇2 of the model in frequency domain.

The three clearly visible resonances correspond to the 
symmetric, anti-symmetric and the higher order mode pointed 
out in figure  4. This simple model was used to design the 

dimensions of the setup in order to achieve resonances that are 
easy to distinguish in terms of frequency. The most important 
design parameters are the moment of inertia of the flywheels 
J1 and J2, the spring constant of the outer pipes c1 and c2 and 
the fluid damping d1 and d2. The spring constants c1 and c2 
can be calculated using a linear beam model. For the damping 
constants d1 and d2 a more accurate model is needed, the mod-
eling of which is outlined in the next section.

After fixing the dimensions, a more complex COMSOL 
model was established to evaluate the frequencies of other 
modes not covered by the simple model.

Figure 4 shows the first eight modes of the mechanical 
resonator structure, where increasing deflection amplitude 
are color-coded from blue to red. The outer surface of the 
mounting spring was set as a fixed constraint. The relevant 
modes of the oscillator setup are shown on the right side 
in figure 4. The mode at 2356 Hz is mainly sensitive to the 
mass of the liquid. Here, both pipes and the contained liquid 
are moving along the longitudinal axis, i.e. they are oscil-
lating against the mounting spring (see also [14]). Due to 
the mass of the liquid, the resonance frequency is shifted. 
The symmetric mode is at 4662 Hz. In this mode, both pipes 
are rotationally oscillating against the mounting spring. This 
mode has a larger sensitive surface because the wall speed is, 
in contrast to the anti-symmetric mode, approximately uni-
form along the length of the pipe. In this mode, the surface of 
the inner pipe is also moving and therefore interacting with 
the liquid. The mode is sensitive to the viscosity and the den-
sity of the liquid. This mode does not feature a node at the 
center, and therefore mechanical energy is coupled out via 
the mounting spring. As already noted, the most interesting 
mode of the setup is the anti-symmetric mode. This mode has 
its nodal point in the area where the pipe system is clamped 
to the mounting spring, reducing mechanical energy transfer 
to the housing. In this mode, the outer pipe acts as torsional 
springs between the two flywheels at its ends. As described 
above, the inner surface of the outer pipe interacts with the 
fluid. The sensitivity is higher at the ends of the pipe where 
the surface velocity peaks. The last oscillation mode shown 
is at 11 kHz and represents a higher order mode, where the 

Figure 2.  Sketch for 1D model.

Figure 3.  Resonance behavior of the 1D model.

Figure 4.  Different modes of the setup simulated in COMSOL. 
High deflection amplitudes are shown in red, lower deflection 
amplitudes in blue.

3 www.micro-resonant.at
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flywheels oscillate symmetrically against the mounting base 
in the center. This mode is also a torsional mode. In con-
trast to the anti-symmetric mode, this mode has two nodal 
points on the longitudinal axis which are not located at the 
mounting point of the pipe system, and therefore this mode 
has no advantage compared to the anti-symmetric mode. In 
this paper, we will mainly focus on the utilization of the anti-
symmetric mode.

Fluid modeling

In order to incorporate the interaction with the fluid, a more 
accurate model for the mechanical oscillation was needed. 
To do so, the differential equation of a torsionally oscillating 
pipe featuring an inner pipe, which is considered to rest, was 
solved.

Figure 5 shows the considered geometry. First of all, a 
mechanical model for the empty resonator is derived. As the 
oscillation is anti-symmetric and the mounting spring is in the 
nodal point of the oscillator, it is sufficient to model only one 
half of the oscillator and to place a rigid wall at the center 
position. The 1D wave equation  describing the transient 
problem is transformed to the frequency domain yielding a 
Helmholtz equation with complex torsional angle amplitudes 
φ and wavenumber k:

d2

dx2 φ = −k2φ,� (1a)

k =
ω

υT
,� (1b)

υT =

 
G
ρ

,� (1c)

where ω , υT, G and ρ  denote angular frequency, bulk shear 
velocity, shear modulus and material density of the pipe, 
respectively. For the moment, the fluid loading is not con-
sidered, but is implemented in a later step by modifying the 
wavenumber k to a complex value.

The general solution to (1a) with expansion coefficients A 
and B is given by (2) and the boundary conditions are gov-
erned by (3) and (4):

φ = A cos (kx) + B sin (kx) ,� (2)

φ0 = φ (0) , φ1 = φ (L) ,� (3)

M0 = M (0) , M1 = M (L) ,� (4)

where L denotes the length of the pipe. These general boundary 
conditions are chosen to allow for a representation using a 
transmission matrix relating torsional amplitudes and torques 
at x  =  0 and x  =  L.

The relationship between the torque M and the contortion 
angle φ as well as the definition of the torsional moment of 
area IT are given by

M = GIT
d
dx

φ,

IT =
π

2
(
R4

a − R4
i
)

,

where Ra  and Ri are the outer and the inner radius of the outer 
pipe, respectively. The transmission matrix relating moment 
and angle can be derived using (2)–(4). For the rigid flywheels 
with a moment of inertia J connected at the end, the relation 
can be written as

ñ
φ0

M0

ô
=

ñ
cos (kL) − sin(kL)

GITk

GITk sin (kL) cos (kL)

ô ñ
1

Jω2

ô
φ1.

The condition for the anti-symmetric mode is that φ1 �= 0 
exists for φ0 = 0, which leads to the transcendental equation

cot (kL) =
Jω2

GITk
� (5)

and can be transformed into a dimensionless form using (equa-
tions (1a)–(1c)) and introducing dimensionless frequency εn 
and system parameter a:

εn = a cot (εna) .

The dimensionless frequency εn of vibrational mode n is 
defined by

εn =
ωr,n

ω0
, ω0 =

…
GIT

JL
,

where ω0 denotes the eigenfrequency of a system with a hypo-
thetically massless torsion pipe. The dimensionless system 
parameter a is defined as

a = ω0τ , τ = L/vT,

where τ  is the propagation time of torsional waves along the 
length L of the pipe.

The intrinsic damping of the system can be taken 
into account by introducing a complex shear modulus 
G*  =  (G′  +  jG″), where j =

√
−1 ; the complex part of G* 

models the damping.
Next the influence of the fluid is implemented in the model 

by calculating the drag forces at the inside of the outer pipe. 
For this, the model for an in-plane oscillating plate was used 
for the curved surface of the pipe. This is a valid approach 
when Ri is much larger than the penetration depth of the 
shear waves (see (6c)). The drag-force on an oscillating plate, 
placed parallel to a rigid wall at a distance H, can be calcu-
lated to (see also [17, 18])

Figure 5.  Reduced mechanical model for the anti-symmetric mode.

Meas. Sci. Technol. 30 (2019) 015101
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Fps = −u0A (1 − j)

 
ρfηfω3

2
K,� (6a)

K = coth

Å
(1 + j)

H
δ

ã
,� (6b)

δ =

 
2ηf

ρfω
,� (6c)

where u0, A, ρf, ηf, ω  and δ denote displacement, area, fluid 
density, fluid viscosity, angular oscillation frequency and 
penetration depth, respectively. The factor K accounts for the 
influence of the adjacent wall. K approaches unity when the 
penetration depth δ is small compared to the gap H such that 
the fluid space appears as an infinite half space.

Figure 6 shows the characteristic shear wave for an oscil-
lating pipe for different times. In order to introduce this drag 
force into the model, we calculate the drag torque per length 
from (6a) (see also [17]):

d
dx

Mps = −
Ä
πR3

i (1 − j)
√

2ρfηfω3
ä

Kφ (x) .
� (7)
In this equation  the gap distance H in equation  (6a) can be 
written as Ri − ra, i.e. the difference of the inner radius of the 
outer pipe and the outer radius of the inner pipe. By inserting 
(7) into the differential equation of a damped torsional beam 
(see [19]) with an additional distributed damping torque Mps:

GIT
d2

dx2 φ (x) + ω2ρITφ (x) = − d
dx

Mps (x) ,

and bringing it to the following form:

d2

dx2 φ (x) = −k2

Ñ
1 + 2 (1 − j)

δ

Ri

ρf

ρ

K
R4

a
R4

i
− 1

é

︸ ︷︷ ︸
α(ω)

φ (x) ,
� (8)

similar to equation (1a) with a complex-valued dimensionless 
correction term α(ω). It is clearly visible that the sensitivity of 
the sensor can be influenced by the choice of Ra and Ri.

Figure 6.  Shear wave and velocity distribution of a fluid in the sensor setup (ρ  =  1000 kg m−3, η  =  1 Pa.s, ω  =  48 380 rad s−1, 
δ  =  0.2 mm). (Note: The viscosity was chosen high to improve the visibility of the shear wave.)

Meas. Sci. Technol. 30 (2019) 015101
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εn =
√
αa cot

(
εn
√
αa

)
.� (9)

The complex dimensionless frequencies εn are determined 
numerically from equation (9) and the natural frequency and 
Q factor of the nth mode can be calculated by [20]

ωn = Re {εn}ω0,

Qn =
Re {εn}

2 |Im {εn}|
.

Measurements

The first measurements that were made were the resonance 
characteristics of the sensor setup for different viscosities. For 
this we used different water–glycerol mixtures. As readout 
electronics a MFA200 from Microresonant was used. Figure 7 
shows the measured frequency response for different viscous 
liquids at 25 °C. The reference values were measured with 
a Stabinger™ Viscometer from Anton Paar. The air-filled 
sensor setup shows a very high quality factor Q of 9200. The 
damping in this case is caused mainly by the intrinsic losses 
of the material itself and the eddy current damping associated 
with the moving permanent magnets. The quality factor Q and 
the resonance frequency fr were calculated using a frequency 
estimator [15].

The blue curve in figure 8 was fitted to the measurement 
results. This curve can be used as a calibration curve to calcu-
late the viscosity.

To evaluate the temperature dependence and the accuracy 
of the resonator system, we measured 0W30 engine oil at dif-
ferent temperatures. The temperature influence on the sensor 
setup itself was modeled by equation  (10), described in the 
next section.

For the temperature measurements, the sensor setup was 
placed in a Weiss WKL 100 climate chamber. Due to the large 
thermal mass of the sensor system, a long settling time of 12 h 
was chosen. Figure 9 shows the temperature profile used for 
the measurements.

Figure 10 shows the response of the sensor setup during 
the whole measurement time. The quality factor Q increases 
with increasing temperature due to the decreasing viscosity 
of the fluid. The temperature steps are clearly visible. The 
quality factor Q changes from 914 to 1611 for viscosities η 
from 176 mPa · s to 42.3 mPa · s. (Note: The reference values 
for the viscosity and density were measured with a Stabinger™ 
Viscometer from Anton Paar, see table  1.) The resonance 

Figure 7.  Resonance curve for different viscous fluids. With 
increasing viscosity the quality factor Q decreases and the 
resonance frequency fr is shifted towards lower frequencies.

Figure 8.  Fitting results for the quality factor Q of the 
measurements for the anti-symmetric mode.

Figure 9.  Long-term measurements for five different temperatures. 
The red line shows the temperature measured by the climate 
chamber. The blue line is the temperature of the sensor system, 
provided by a PT100 mounted directly in the sensor system (see 
also figure 1(9)).

Meas. Sci. Technol. 30 (2019) 015101
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frequency, on the other hand, decreased from 7605 Hz to  
7542 Hz.

Figure 11 shows a histogram of the quality factors Q 
which were determined at different sampling times. The 
lower plot illustrates the measurement spread for a particular 
temperature (25 °C in this example). For each temperature 
step, only samples during the final 2 h were used to account 
for the temperature settling of the setup. This measurement 
series demonstrates the temperature dependency of the oil’s 
viscosity.

Table 1 shows the measured parameters. The reference 
values for viscosity and density were measured using the 
aforementioned Stabinger™ Viscometer SVM 3000 from 
Anton Paar. The value for the quality factor Q and the reso-
nance frequency fr are the mean values of the last 757 values 
(sampled during approx. 2 h) for each temperature step; the σ 
value is the associated standard deviation.

Discussion

In order to calculate the viscosity from the measured param
eters, a simplified model is introduced, preserving the structure 
of the model previously developed (see equation (7)). As for 

the measured viscosity range, the penetration depth δ =
»

2η
ρω  

of the shear displacement wave is small compared to the dis-
tance H; the factor K in equation (6a) can be neglected. We 
end up with a simplified model for the quality factor Q (see 
also [21]):

Figure 10.  Quality factor Q and resonance frequency fr of the 
sensor over time. The temperature was following the temperature 
profile shown in figure 9.

Table 1.  Measured parameters for oil samples at different 
temperatures. The viscosity and density values were measured with 
a Stabinger™ Viscometer SVM 3000 from Anton Paar, the quality 
factor Q and the resonance frequency fr were measured with a 
MFA200 from Microresonant.

T/°C η/mPa · s
ρ/kg 
m−3 Q/1 σ(Q) fr/Hz σ(  fr)

10 176.01 837.3 913.5 0.27 7605.2 7.3  ×  10−3

20 102.86 831.0 1151.8 0.35 7584.8 4.3  ×  10−3

25 80.643 827.9 1270.3 0.35 7574.5 7.7  ×  10−3

30 64.165 824.7 1398.6 0.31 7564.1 30.7  ×  10−3

40 42.306 818.5 1611.4 0.38 7542.6 14.8  ×  10−3
Figure 11.  Histogram of the quality factor Q measurements, of the 
last 2 h for each temperature shown in figure 10.

Figure 12.  Damping factor D  =  1/(2Q) versus  √(η ρ).

Meas. Sci. Technol. 30 (2019) 015101
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D = ω (x1
√
ηρω + x2T + x3) ,� (10)

Q =
1

2D
,� (11)

where x1, x2 and x3 are fitting parameters depending on the 
geometry, the temperature dependency and the intrinsic 

damping of the setup. In this empirical model a linear temper
ature dependence of the intrinsic damping was assumed. As 
the relative change in temperature is relatively small (a range 
of 30 °C was covered), this assumption was considered justi-
fied for a first-order approximation.

Figures 12 and 13 show that the simplified model derived 
from equation  (10) matches well with the measurements. To 
calculate the viscosity from the measured parameters, equations 
(10) and (11) are solved for η. (Note: To do so the density of the 
fluid has to be known from additional measurements, in our case 
we used the values obtained with the Stabinger™ Viscometer.)

The relative errors for the calculated viscosities ηcalc are 
very low (see table  2): all relative errors are smaller than 
1.13%. For this estimation the mean values of the measure-
ment points used in figure 14 were compared to the reference 
values measured with the Stabinger™ Viscometer.

The standard deviation is small compared to the relative 
error of the viscosity measurement, which means that the rela-
tive error can be reduced by refining the model and improving 
the temperature control of the setup.

Conclusions

We presented a viscosity measurement setup based on a 
balanced torsionally resonating pipe with two flywheels 
and electromagnetic actuation and readout. We performed 
measurements at five different temperatures to evaluate the 
accuracy and the stability of the measurement system. We 
developed different accurate models for the design as well 
as for the calibration of the model. Measurements with a 
Stabinger™ Viscometer were used to calibrate the temper
ature-dependent model derived in equation (10). Doing so, a 
high accuracy with a relative error smaller than 1.13% for vis-
cosity η (see table 2) could be achieved.

In a next step we will increase the viscosity range to much 
higher values so that the influence of the inner pipe is also 
visible. In so doing, the penetration depth of the shear wave 
(equation (6c)) could be increased and the influence of the 
inner pipe will no longer be negligible anymore. The param
eter K (equation (6b)) will differ from one and the simplified 
model in equation (10) will not be valid anymore.
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Figure 13.  Quality factor Q versus  √(η ρ).

Table 2.  Calculated viscosity.

T/°C η/mPa · s
ρ/kg 
m−3

ηcalc/
mPa · s

Relative 
σ(ηcalc) %

Relative 
error %

10 176.01 837.3 174.67 0.063 0.762
20 102.86 831.0 102.64 0.068 0.217
25 80.643 827.9 80.09 0.064 0.326
30 64.165 824.7 63.44 0.053 1.129
40 42.306 818.5 42.77 0.064 1.105

Figure 14.  Histogram of the viscosity η determined from the 
measured quality factor Q, temperature T, resonance frequency fr 
and density ρ (compare figure 11).
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