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ABSTRACT

This paper presents a novel algorithm so-called VFC4.5 for
building decision trees. It proposes an adaptation of the way
C4.5 finds the threshold of a continuous attribute. Instead of
finding the threshold that maximizes gain ratio, the paper
proposes to simply reduce the number of candidate cut points
by using arithmetic mean and median to improve a reported
weakness of the C4.5 algorithm when it deals with continuous
attributes. This paper will focus primarily on the theoretical
aspects of the VFC4.5 algorithm. An empirical trials, using 49
datasets, show that, in most times, the VFC4.5 algorithm leads
to smaller decision trees with better accuracy compared to the
C4.5 algorithm. VFC4.5 gives excellent accuracy results as C4.5
and it is much faster than the VFDT algorithm.

Introduction

Decision trees are one of the most widely used classification techniques. Many
variations of the decision tree algorithm were proposed in the literature (Saqib et al.
2015). They include Classification And Regression Tree (CART) (Breiman et al.
1984), Iterative Dichotomizer 3 (ID3) (Quinlan 1986), CHi-squared Automatic
Interaction Detector (CHAID) (Kass 1980), and Conditional Inference Trees
(Hothorn, Hornik, and Zeileis 2006). A decision tree is a classifier expressed as a
recursive partition of the training instances. It is constructed in a top-down
manner, in each iteration, the instance space is partitioned by choosing the best
attribute to split them (Agrawal and Gupta, 2013; Patel and Singh 2015).

An attribute in a learning problem may be nominal (categorical), or it may be
continuous (numerical). Numerical attributes with a very large, even infinite
domain, become an important challenge in areas of pattern recognition, machine
learning, and data mining. Mining data with numerical attributes require discre-
tization before or throughout the process of model building (Garcia et al. 2013). A
special kind of discretization is performed through the decision tree construction
process. The decision tree algorithm uses binarization which splits the numerical
values into two intervals (Yang and Chen 2016).
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C4.5 is one of the best known and most widely used decision tree
algorithms (Lu, Wu, and Bongard 2015). Its accuracy level is high enough,
independently of the data volume to be processed. One of the latest
studies that compares decision trees and other learning algorithms
shows that C4.5 has a very good combination of error rate and speed
(Hssina et al. 2014; Lim, Loh, and Shih 2000). Various studies identify the
C4.5 algorithm as one of the top classifiers in data mining (Wu et al.
2008). The algorithm has the ability to handle an incomplete training
dataset (Garca Laencina et al. 2015), and to prune the resulting decision
tree in order to reduce its size and optimize the decision path. C4.5 also
has the ability to deal with continuous attributes. It handles continuous
attributes using the binarization process. Those attributes are replaced by
the discrete ones using threshold values which separate data into two
intervals (Behera and Mohapatra 2015; Kotsiantis 2013; Perner 2015).

Even for C4.5 and other algorithms that can directly deal with quanti-
tative data, learning is often less efficient and less effective. Several
researchers reported that the C4.5 algorithm contains some weakness in
domains with continuous attributes. They offer evidence that it can be
more benefited from continuous attributes by using a new discretization
method, or by developing some process in the C4.5 binarization method
(Chong et al. 2014; Quinlan 1996; Sumam, Sudheep, and Joseph 2013). In
2013, Sudheep, Sumam, and Joseph reported that the binarization process
in C4.5 is computationally intensive (Sumam, Sudheep, and Joseph 2013).
To perform binarization, the continuous attribute values are first sorted.
This process is time consuming and it is not practical for large datasets.
To sort the attribute values, the C4.5 algorithm uses the Quick Sort
method with complexity O(nlog(n)). Despite this, several authors showed
that the learning process may be dominated by sorting of continuous
attribute values.

The generalization limit in domains with continuous attributes is the
most important problem in the C4.5 algorithm. The selected threshold
value can not reflect and judge the generalization capability of the con-
tinuous attribute. So, the C4.5 algorithm may use continuous attributes
with a low generalization performance to split data. Deciding based on
those attributes will increase the tree size and decrease the model accu-
racy. Liu and Setiono (Liu and Setiono 1995) reviewed and compared
C4.5’s performance with Chi2 global discretization and concluded that
Chi2 discretization is effective in improving C4.5 performance. These
authors found that Chi2 global discretization performed as well as C4.5
local discretization, and occasionally improved its accuracy (Liu and
Setiono 1995). A recent research compares Multiple Scanning, and C4.5
discretization shows that using a cut point that reflects the data distribu-
tion can improve the decision tree performance. The authors proved that



APPLIED ARTIFICIAL INTELLIGENCE ’ 121

using Multiple Scanning discretized data yields more accurate and less
complex decision trees in many cases (Grzymala- Busse and Mroczek,
2015). But, discretization as a preprocessing task neglects the correlation
between the conditional attributes and the class attribute (Wang et al.
2015). Thus, the problem of dealing with continuous attributes could be
addressed by choosing an appropriate threshold value that defines per-
fectly the interval borders. In this setting, we prose statistical mean and
median as an alternative to threshold searching process in the C4.5
algorithm. In this paper, a new algorithm called Very Fast C4.5
(VEC4.5) is proposed.

The rest of the present paper is organized as follows: section 2 describes
in details the C4.5 Binarization process. The new algorithm is denoted in
section 3 with a mathematical formulation. Experimental investigations
are drawn in section 5 and 6, where a set of tests are carried out to
measure the efficiency of the VFC4.5 applied on different databases in
comparison with the initial C4.5 algorithm, VFDT, and CART algorithms.

C4.5 algorithm

There have been many variations for decision tree algorithms. C4.5 is one
of the well-known decision tree induction algorithms (Quinlan 2014). In
1993, Ross Quinlin proposed the C4.5 algorithm which extents the ID3
algorithm (Quinlan 1986). Using information gain ratio to select the best
attribute, C4.5 avoids ID3’s bias toward features with many values that
occurs (Ooi, Tan, and Cheah 2016; Zhu et al. 2014). C4.5 has the ability
to handle continuous attributes by proposing two different tests in func-
tion of each attribute values type.

At the training stage, the C4.5 uses the top down strategy based on the
divide and conquer approach to construct the decision tree (Liu and
Gegov 2016). It maps the training set and uses the information gain
ratio as a measurement to select splitting attributes and generates nodes
from the root to the leaves. Every illustrating path from the root node to
the leaf node forms a decision rule to determine which the class of a new
instance is (Dai and Ji 2014). The root node contains the whole training
set, with all training case weights equal to 1.0, to take into account
unknown attribute values (Quinlan 2014). If all training cases of the
current node belong to one single class, the algorithm terminates.
Otherwise, if all training cases belong to more than one class, the algo-
rithm calculates the information gain ratio for each attribute A;. The
attribute with the highest information gain ratio is selected to split
information at the node (Mu et al. 2017). For a discrete attribute A;, the
information gain ratio is computed by splitting training cases of the
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current node in function of each value of A; (Ibarguren, Prez, and
Muguerza 2015). If A; is a continuous attribute, a threshold value must
to be found for the splitting (Pandya and Pandya 2015).

Given a node S with n instances, described by a matrix of continuous
attributes A,,, = [Ay,...,A,] where each row i is an horizontal vector of

m attribute values A"\ = [Agi), o ,Aﬁ,?] pre-classified by a class C() which

ml —

is an element of the vertical class vector C,,;; = [C(l), ey C("‘)} " Consider
a continuous attribute Aj = [xyj,..., ], the C4.5 algorithm selects the
optimal cut point cp, that maximizes information gain to divide samples
in S into two subsets: A; < cp, and A;>cp,. As can be seen from algo-
rithm 1, attribute values should be sorted with ascending order first, only
distinct values are retained to select the candidate cut points. Then, the
algorithm identifies the candidate cut points Eq. (1):

Xij + X(iy1);
ccpij:{%w,izl,...,n—l} (1)

For each CCP, samples in S are split into two intervals §; =
[min{A;},ccpy] and S, = [ccpy, max{A;}] to compute the information
gain Eq. (2) for all condidate cut points:

Gain (S, ccpyj) = info(S) — <% info(Sy) + %inf0(32)> (2)

where the information entropy info() measures the class impurity and the
amount of information, and symbol |x| is the size of x. Then, the optimal
cut point Eq. (3) is selected as a threshold value for attribute A; :

cpoj = arg max{Gain(S, CCP:’J')}?:_: ®)

Once threshold value is selected, the algorithm calculates the gain ratio to
compare the discriminative ability of the candidate attributes and select
the optimal one in order to split the current node Eq. (4).
Gain (S, cpo;
GainRatio(S, cp,j) = M (4)
Splzt(S, cpoj)

where the split information is calculated as in Eq. (5)

: [Sif 1S 1S, 1S
Split(S, cpoj) = —— logy — — — logy —~ (5)
! N NN N
The attribute that maximizes information gain ratio is selected as the best
splitting feature, and the algorithm split the current node in function of the
selected attribute. ['h]
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Algorithm 1 C4.5 Find threshold algorithm

1: Inputs: A, : matrix of continuous attributes;
2: Outputs:

A,: the optimal attribute;

Cp,: the optimal cut point;
3: For each attribute A;, j=1,...,m do

4:  Sort attribute values xyj, ..., Xy

5:  Find all potential cut points ccpyj, ..., ccpy;
6:  For each cut point ccpy, i =1, ...,k do

7: Calculate information gain Gain(S, ccpy)
8 end

9:  Select the optimal cut point ¢p,;

10:  Calculate splitting performance Split(S, cpy)

11:  Calculate gain ratio GainRatio(S, cpo;)

12: end

13: Select the optimal attribute A, and its cut point cp,

Very fast C4.5 algorithm

When analyzing real valued data and estimating subsets in data distribu-
tion, measures of central tendency can be used to identify and separate
populations with different characteristics. The mean and median have been
utilized as a binary cut-off to estimate threshold values and then to
identify data outliers in geochemical data (Reimann, Filzmoser, and
Garrett 2005). Also, median-based binarization is recently used to perform
feature selection (Sugiyama and Borgwardt 2017). Combined with var-
iance, mean is used as a threshold value in decision tree induction
(Sumam, Sudheep, and Joseph 2013). Thus, measures of central tendency
have been presented in several research studies to deal with real valued
data. However, several practical questions arise when dealing with arith-
metic mean and median as a threshold value. It is important to identify
cases where such a simple measures can separate data into two pure
subsets and cases where it might fail. Also, it is crucial to measure the
efficiency of mean and median-split based on different data distributions
to investigate their sensitivity and stability. To answer all these questions,
we start by discussing theoretical characteristics of both the mean and
median.

Mean or average is the representative value of the whole group of data. The
arithmetic can take any value not observed in the original set of data, which can
improve the generalization ability of a cut point (Lewis 2012). In this setting,
using the mean as a threshold value will improve the classification of unseen
cases. The median is also widely used as a measure of central tendency, and it is
the central value in the set of data. It divides the data into two equal halves. This
measure is affected by the number of values observed in the distribution (Rubin
2012). As shown in Eq. (6), the arithmetic mean involves both distribution
values (x;) and number of observations (n). That is why the mean is sensitive
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to the outlier values in a dataset, in such a case, the mean cannot deliver a
relevant cut point. Whereas, as can be seen from Eq. (7), the median value is
affected only by the number of observations (n), it is not sensitive to outlier
values. The presence of outlier data values or the shape of frequency distribution
has a dramatic impact on mean value (Sharma 2012), that is why, in such cases
arithmetic mean could be replaced by the median (Reimann, Filzmoser, and
Garrett 2005).

1 n
Mean = - Zz;xi (6)
Median = x(n —21- 1) (7)

In order to answer the research questions related to the performances of
mean and median as a splitting criterion, and which of those techniques
yields most precise cut points, we simulate seven different continuous
distributions:

(1) Scenario 1: The Cauchy distribution with the location value 0.0 and
the scale value 1.0.

(2) Scenario 2: The exponential distribution with the rate value 1.0.

(3) Scenario 3: The gamma distribution with the shape parameter 0.067
and the scale rate 0.008.

(4) Scenario 4: The log-normal distribution with the mean value 1.0 and
the standard deviation 1.0.

(5) Scenario 5: The logistic distribution with the location value 0.0 and the
scale value 1.0.

(6) Scenario 6: The normal distribution with the mean value 0.0 and the
standard deviation 1.0.

(7) Scenario 7: The Weibull distribution with the shape value 0.75 and the
scale value 1.0.

For each scenario 200 instances are simulated for two classes. Thus,
for each scenario, according to the mean, median, and C4.5 threshold,
three cut points are selected as can be seen from Figure 1. The previous
simulations are repeated 10 times in order to compute sensitivities and
specificities.

As can be seen from Figure 1, the three measures are strongly
dependent to the data distribution except when the examples are nor-
mal distributed. As shown in scenario 6 (Normal distribution), mean,
median, and C4.5 threshold provide the same cut points. Consider
Table 2 which summarizes the accuracy rate for the three measures
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Cauchy distribution Exponential distribution Gamma distribution Log-normal distribution Logistic distribution Normal distribution Weibull distribution
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Figure 1. Seven different distributional scenarios.

against the different scenarios, we can assume that in most cases C4.5
threshold results in better accuracies.

In accordance with Table 2 and Figure 1, the cut points provided by the
mean is slightly higher than the median cut point which is explained by the
presence of extreme values in both scenario 4 and 7. Thus, in those cases,
median cut points are more accurate than the mean ones. On the other hand,
the mean cut point shows a smallest increase in error rate when instances are
strongly fluctuated (i.e., scenario 5). Otherwise, a closer inspection of the
results in Table 2 shows that in all scenarios there is at least one of the two
cut points generated by mean and median that is slightly better or close to
the C4.5 threshold cut point results. Thus, it is necessary to adopt both of
mean and median as a candidate cut points and then to select the one that
maximizes information gain. As shown in Figure 2, the associated sensitiv-
ities and specificities found by mean and median method are usually slightly
higher than those detected with the C4.5 threshold technique. As already
shown in Table 2 for the mean and median cut points, also for sensitivities
and specificities from Figure 2, using both the mean and median as cut
points can yield to slightly higher or the same results as obtained using the
C4.5 threshold technique.

The mean and median can communicate important information about
data distribution. To cope with extreme values, we propose the use of mean
and median as candidate cut points. In fact, in a class imbalanced dataset,
extreme values may represent a minor class (Figure 1 (gamma distribution)).
In this case, we suggest the mean as a threshold value. In other cases, median
as it is not affected by extreme values can provide a more suitable threshold
value (Figure 1 (Weibull distribution)). In this case, we provide two potential
cut points, and then we compute information gain for both of them. It is
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important to look the dispersion of a dataset when interpreting the measures
of central tendency, which is why we will use the cut point that maximizes
information gain as a threshold value.

Algorithm description

The proposed VFC4.5 algorithm uses three processes that are respon-
sible for achieving the tree construction: attribute selection, attribute
binarization, and dataset splitting. The first and the last ones are the
same as in the C4.5 algorithm. We introduce the use of mean and
median as a candidate cut points in the attribute binarization process.
Let A,,, be a matrix of continuous attributes, with n instances and m
attributes. Algorithm 2 provides the optimal attribute and cut point to
split the n samples into two subsets. For each attribute, it calculates
mean and median values. Once the splitting performances for both of
mean and median is computed, the cut point that yields the highest
value is set as a threshold value for the given attribute. Finally, algo-
rithm 2 compares the splitting performances of all attributes and selects
the optimal one.

Algorithm 2 V FC4.5 Find threshold algorithm

1: Inputs: A, : matrix of continuous attributes;
2: Outputs:
A,: the optimal attribute;
cp,: the optimal cut point;
3: For each attribute A;, j = 1,...,m do
Calculate mean; and median;, xyj, ..., Xy
Find all potential cut points ccpsj = mean;, ccpy; = median;
For each cut point cp; do
Calculate information gain Gaing,
end
9:  Select the optimal cut point ¢p,
10: Calculate splitting performance Split(S, cpo;)
11:  Calculate gain ratio GainRatio(S, cpo;)
12: end
13: Select the optimal attribute A, and its cut point cp,

L S A

Analysis of time complexity

Suppose that there are k cut points cpij = [cpyj, . .., cpx] for each attri-
bute A;. As described in algorithm 1, C4.5 starts with sorting the n
examples for the m attributes which leads to a minimum complexity of
O(mnlogn). In steps 5, the algorithm selects k cut points for each
attribute A;, j =1,...,m with a complexity of O(mn). Then in steps 6
to 9, it calculates the split information for each cut point which leads to
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Table 1. Summary description of classification Datasets.

# Dataset Ex. Atts. Num. Nom. cl.
1 Airlines 539383 8 3 5 2
2 Amazon commerce reviews 1500 10001 10000 1 50
3 Anneal 898 39 6 33 5
4 Appendicits 106 8 7 1 2
5 Audiology 226 70 0 70 24
6 Australian 690 15 8 7 2
7 Balance scale 625 5 4 1 3
8 Banana 5300 3 2 1 2
9 Bands 365 20 19 1 2
10 Bank marketing 4521 17 7 10 2
11 Bank marketing full 45211 17 7 10 2
12 Banknote authentication 1372 5 4 1 2
13 Blood transfusion service 748 5 4 1 2
14 Breast tissue 106 10 9 1 6
15 Clevheart disease 303 14 6 8 2
16 Contraceptive method choice 1473 10 2 8 3
17 Cnae 9 1080 857 856 1 9
18 Coil2000 9822 86 2 84 2
19 Cylinder bands 540 40 18 22 2
20 Flags 194 30 2 28 8
21 German credit 1000 21 8 13 2
22 Glass 214 10 9 1 6
23 Glioma16 50 17 16 1 2
24 Haberman 306 4 3 1 2
25 Heart disease hungarian 294 14 13 1 2
26 Heart disease processed 200 14 13 1 5
27 Hill valley with noise 1212 101 100 1 2
28 Hill valley without noise 1212 101 100 1 2
29 Leukemia haslinger 100 51 50 1 2
30 Lsvt voice rehabilitation 126 311 310 1 2
31 Lung cancer 32 57 56 1 3
32 Lymphography 148 19 3 16 4
33 Madelon 2600 501 500 1 2
34 Mammographic mass 961 6 5 1 2
35 Marketing 6876 14 13 1 9
36 Newthyroid 215 6 5 1 3
37 Ozone 2536 73 72 1 2
38 Page blocks 5473 1 10 1 5
39 Parkinsons 195 23 22 1 2
40 Pasture 36 23 22 1 3
41 Satimage 6435 37 36 1 6
42 Shuttle 57999 10 9 1 7
43 Spambase 4597 58 57 1 2
44 Spectheart 267 45 44 1 2
45 Squash stored 52 25 24 1 3
46 Tae 151 6 4 2 3
47 Thyroid allbp 2800 27 26 1 5
48 Unbalanced 856 33 32 1 2
49 Wholesale region 440 8 7 1 3

a complexity of O(mnk). Selecting the optimal cut point ¢p, leads to a
complexity of O(mk). Finally, the time complexity of algorithm 1
is O(mnlogn + mn + mnk + mk).
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Table 2. Summary description of classification accuracy.

Distribution Mean Median 4.5
Cauchy 75 77 78
Exponential 41 57 40
Gamma 42 80 40
Log-normal 90 68 66
Logistic 70 69 66
Normal 59 60 59
Weibull 30 18 20

Table 3. Parameters of algorithms.

Algorithm Parameters

4.5 Pruned tree: true, confidence factor: 0.25, examples per leaf: 2
Reduced-error pruning: 3.

CART Pruned tree: true, heuristic: true, examples per leaf: 2
Reduced-error pruning: 5.

VFC4.5 Pruned tree: true, confidence factor: 0.25, examples per leaf: 2
Reduced-error pruning: 3.

VFDT Batch size:100, hoeffding Tie threshold: 0.05, leaf prediction

Strategy: Naive Bayes adaptive, Decimal places: 2, Split criterion:
Information gain split.

The main advantage of the proposed algorithm is that it avoids the sorting
process with complexity of O(mn log n), also for each attribute, there are only
two cut points to evaluate. In algorithm 2, we start by computing mean and
median for each attribute with a complexity of O(2mn). In steps 6 to 9, the
algorithm calculates the split information for each cut point which leads to a
complexity of O(2mn). Selecting the optimal cut point in algorithm 2 leads
to a complexity of O(2m) while there are only to cut points to evaluate.
Thus, the time complexity of algorithm 2 is O(4mn + 2m).

Experimental setup

In this section, experimental comparisons are conducted on 49 (UCI)
machine learning datasets. In order to investigate the VFC4.5’s performance,
the results are compared to those of C4.5, VFDT, and CART algorithms. This
section specifies all the properties and issues related to datasets, validation
procedure, and the parameters of used algorithms. We carried out experi-
ments on 49 datasets taken from the UCI repository (UCI, 2015). Datasets
with and without continuous attributes were used to train the VFC4.5
algorithm. Also, small and large datasets were used in order to investigate
VEC4.5’s performance. Table 1 summarizes the main properties of the data.
For each dataset, it includes the name, number of instances, number of
numeric and nominal attributes, and number of classes. Ten-fold cross-
validation was used to evaluate the performance of the algorithms. We
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Table 4. Comparisons of testing accuracy results of different DT algorithms.

Dataset c4.5 CART VFC4.5 VEDT
1 66,287 — 66,317 64,617
2 43,800 45,733 45,267 57,867
3 98,441 98,330 98,330 76,169
4 85,849 84,906 86,793 85,849
5 77,876 73,009 77,876 36,283
6 84,058 86,087 85,797 84,783
7 76,640 79,040 79,840 90,560
8 89,038 89,377 89,076 68,547
9 63,288 62,466 69,863 63,014
10 88,985 89,648 89,693 88,144
1 90,319 90,440 90,275 89,518
12 98,542 98,251 99,125 94,461
13 77,808 77,005 79,144 75,802
14 37,736 34,906 39,623 48,113
15 77,558 54,209 77,888 83,828
16 52,139 94,034 52,682 50,170
17 88,796 85,648 88,982 78,056
18 93,952 55,194 93,963 93,922
19 57,778 35,567 57,778 47,037
20 59,278 73,900 59,278 53,093
21 70,500 59,815 72,100 75,600
22 66,822 70,561 71,963 47,196
23 74,000 66,000 74,000 80,000
24 71,569 72,876 71,895 73,203
25 77,891 78,571 79,592 82,313
26 26,500 27,000 34,000 24,000
27 49,670 54,125 55,116 49,835
28 50,495 59,406 58,746 51,238
29 69,000 72,000 74,000 88,000
30 75,397 76,984 83,333 67,460
31 40,625 46,875 53,125 43,750
32 77,027 80,858 78,378 77,027
33 69,039 80,500 73,923 59,462
34 82,102 82,102 83,039 80,957
35 31,065 76,351 30,817 31,196
36 92,093 34,424 93,488 96,744
37 96,333 91,163 97,122 97,122
38 96,876 97,122 96,017 90,682
39 80,513 85,641 91,282 75,385
40 77,778 91,667 80,556 72,222
41 86,278 86,713 85,439 79,534
42 99,971 99,966 99,881 97,383
43 92,930 92,212 93,278 78,443
44 74,906 78,277 76,405 79,401
45 65,385 67,308 69,231 61,539
46 59,603 54,967 56,954 47,682
47 66,571 69,821 68,214 57,643
48 98,598 98,598 98,598 98,598
49 69,773 71,818 71,818 71,818
Mean 73,418 73,610 75,585 70,697

used the J48 tree (the C4.5 decision tree implementation) of Weka software
(Witten et al. 2016) to implement the new algorithm VFC4.5. Table 3
summarizes the parameters of the used classifiers.
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Table 5. Comparisons of sensitivity and specificity results of different DT algorithms.

# C4.5 CART VFC4.5 VFDT

sens spec sens Spec sens spec sens spec
1 0.662 0.663 0 0 0.661 0.633 0.645 0.646
2 0.442 0.438 0.494 0.457 0.437 0.453 0.615 0.579
3 0.984 0.984 0.982 0.983 0.983 0.983 0.58 0.762
4 0.849 0.858 0.84 0.849 0.859 0.868 0.861 0.858
5 0.736 0.779 0.677 0.73 0.736 0.779 0.567 0.363
6 0.841 0.841 0.862 0.861 0.858 0.858 0.85 0.848
7 0.732 0.766 0.742 0.79 0.724 0.798 0.835 0.906
8 0.892 0.89 0.894 0.894 0.891 0.891 0.691 0.685
9 0.631 0.633 0.612 0.625 0.693 0.699 0.397 0.63
10 0.875 0.89 0.881 0.896 0.871 0.897 0.859 0.881
11 0.895 0.903 0.895 0.904 0.894 0.903 0.878 0.895
12 0.985 0.985 0.983 0.983 0.991 0.991 0.945 0.945
13 0.764 0.778 0.742 0.77 0.762 0.791 0.661 0.758
14 0.382 0.377 0.381 0.349 0.381 0.396 0.447 0.481
15 0.776 0.776 0.426 0.542 0.773 0.779 0.838 0.838
16 0.521 0.521 0.884 0.94 0.521 0.527 0.521 0.502
17 0.904 0.888 0.863 0.856 0.903 0.89 0.86 0.781
18 0.897 0.94 0.556 0.552 0.902 0.94 0.899 0.939
19 0.334 0.578 0.127 0.356 0.334 0.578 0.52 0.47
20 0.57 0.593 0.725 0.739 0.57 0.593 0.561 0.531
21 0.687 0.705 0.592 0.598 0.708 0.721 0.746 0.756
22 0.67 0.668 0.693 0.706 0.712 0.72 0.509 0.472
23 0.742 0.74 0.667 0.66 0.742 0.74 0.823 0.8
24 0.687 0.716 0.674 0.729 0.679 0.719 0.68 0.732
25 0.777 0.779 0.782 0.786 0.783 0.796 0.826 0.823
26 0.275 0.265 0.308 0.27 0.333 0.34 0.148 0.24
27 0.497 0.497 0.541 0.541 0.551 0.551 0.498 0.498
28 0.255 0.505 0.594 0.594 0.588 0.587 0.521 0.512
29 0.691 0.69 0.722 0.72 0.74 0.74 0.88 0.88
30 0.748 0.754 0.763 0.77 0.831 0.833 0.64 0.675
31 0.406 0.406 0.511 0.469 0.511 0.531 0.449 0.438
32 0.776 0.77 0.809 0.809 0.76 0.784 0.798 0.77
33 0.69 0.69 0.805 0.805 0.709 0.739 0.595 0.595
34 0.822 0.821 0.821 0.821 0.821 0.83 0.81 0.81
35 0.29 0.311 0.749 0.764 0.287 0.308 0.269 0.312
36 0.921 0.921 0.299 0.344 0.925 0.935 0.967 0.967
37 0.957 0.963 0.911 0.912 0.943 0.971 0.943 0.971
38 0.967 0.969 0.943 0.971 0.957 0.96 0.923 0.907
39 0.802 0.805 0.856 0.856 0.911 0.913 0.697 0.754
40 0.772 0.778 0.933 0.917 0.806 0.806 0.724 0.722
41 0.861 0.863 0.862 0.867 0.851 0.854 0.819 0.795
42 1 1 1 1 0.999 0.999 0.983 0.974
43 0.929 0.929 0.922 0.922 0.926 0.933 0.799 0.784
44 0.751 0.749 0.691 0.783 0.75 0.764 0.63 0.794
45 0.66 0.654 0.718 0.673 0.72 0.692 0.63 0.615
46 0.595 0.596 0.548 0.55 0.571 0.57 0.485 0.477
47 0.66 0.666 0.696 0.698 0.66 0.682 0.559 0.576
48 0.972 0.986 0.972 0.986 0.972 0.986 0.972 0.986
49 0.529 0.698 0.516 0.718 0.516 0.718 0.516 0.718

To demonstrate the usefulness and performance of our decision tree
algorithm, we use accuracy, sensitivity and specificity as a performance
measure to compare the generalization classification rate of VFC4.5 against
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Table 6. Comparisons of tree complexity results of different DT algorithms.

c4.5 CART VFC4.5 VFDT

#leaf #size #leaf #size #leaf #size #leaf #size
1 147918 152908 0 0 111459 116168 3858 3967
2 312 623 134 267 317 633 1 1
3 35 47 10 19 52 69
4 3 5 2 3 4 7 0 0
5 32 54 22 43 32 54 2 2
6 31 58 6 11 18 32 2 2
7 52 103 13 25 73 145 1 1
8 46 91 39 77 124 247 5 7
9 34 67 9 17 52 103 1 1
10 104 146 10 19 134 198 5 7
11 1168 1716 43 22 816 1209 49 67
12 15 29 16 31 20 39 2 3
13 9 17 10 19 13 25 1 1
14 25 49 8 15 27 53 1 1
15 30 51 5 9 18 31 2 1
16 157 263 1 1 150 243 1 1
17 57 113 60 119 58 115 1 1
18 9 17 18 35 8 15 5 9
19 1 1 1 1 1 1 287 1
20 50 69 7 13 50 69 1 1
21 103 140 3 5 929 140 1 1
22 30 59 8 15 35 69 1 1
23 5 9 2 3 3 5 1 1
24 3 5 3 5 21 41 1 1
25 18 35 3 2 25 49 1 1
26 50 29 1 1 53 105 1 1
27 1 1 116 231 198 395 1 1
28 1 1 151 301 217 433 1 1
29 9 17 7 13 12 23 1 1
30 10 19 5 9 8 15 1 1
31 6 1 3 5 9 17 1 1
32 21 34 10 19 19 30 1 1
33 182 363 34 67 222 443 1 1
34 1 21 8 15 10 19 1 1
35 1180 2359 9 17 1133 2265 1 1
36 9 17 25 49 8 15 1 1
37 25 49 8 15 1 1 1 1
38 44 87 1 1 49 97 1 1
39 12 23 7 13 15 29 1 1
40 6 9 3 5 7 1 1 1
41 318 635 97 193 375 749 1 1
42 24 47 28 55 55 109 5 9
43 117 233 7 13 106 211 3 5
44 21 41 7 13 15 29 1 1
45 4 7 4 7 8 14 1 1
46 34 67 8 15 28 55 1 1
47 224 447 17 33 178 355 1 1
48 1 1 1 1 1 1 1 1
49 1 1 1 1 1 1 1 1

C4.5, VEDT, and CART algorithms. Nevertheless, in decision tree, other
measures are required to investigate the model complexity. We refer to the
tree size, number of leaves, and time taken to build the model. Those
performance measures will be adopted to measure the tree complexity. For
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Table 7. Comparisons of training time results of different DT algorithms.

DataSet 4.5 CART VFC4.5 VFDT
1 660.28 — 357.79 3.86
2 187.35 617.78 110.03 363.35
3 0.16 0.65 0.14 0.06
4 0 0.02 0 0
5 0.01 0.03 0.01 0.05
6 0.01 0.05 0.05 0.02
7 0.01 0.06 0.05 0.01
8 0.05 0.42 0.02 0.04
9 0.01 0.04 0.02 0.01
10 0.35 3.83 0.4 0.2
1 2.98 61.99 1.19 0.61
12 0.01 0.07 0.02 0.01
13 0 0.04 0 0
14 0.02 0.02 0 0.01
15 0 0.06 0.03 0.03
16 0.02 0.1 0.07 0.01
17 217 12.55 152 4.84
18 3.7 65.02 2.23 0.72
19 0 0.02 0.01 0.02
20 0 0.01 0.01 0.01
21 0.02 0.06 0.06 0.01
22 0.01 0.02 0.01 0.01
23 0 0.01 0 0
24 0 0.01 0.01 0
25 0.02 0.02 0 0.01
26 0 0.03 0 0.01
27 0.05 432 0.16 0.1
28 0.05 3.82 0.12 0.08
29 0 0.04 0.02 0.01
30 0.06 0.23 0.02 0.05
31 0 0.01 0 0.01
32 0.01 0.02 0 0
33 4.01 14.02 0.62 1.15
34 0 0.07 0.01 0.01
35 0.57 6.21 0.48 0.31
36 0.01 0.01 0 0.01
37 0.24 3.02 0.27 0.17
38 0.19 2.16 0.26 0.17
39 0 0.03 0.02 0.01
40 0 0.01 0 0.01
41 0.69 13.02 0.47 1.15
42 1.93 103.14 117 2.97
43 0.89 14.31 0.83 0.29
44 0.02 0.03 0.02 0.01
45 0.01 0.13 0.01 0.03
46 0 0.02 0.01 0
47 0.23 3.3 0.2 0.14
48 0.04 0.16 0.08 0.02
49 0.02 0.05 0.01 0.01
Mean 17.677 19.393 9.764 7.767

all experiments, we have used the Wilcoxon test (Wilcoxon 1992) as a
nonparametric statistical test. The Wilcoxon test is simple, safe, and robust
test used for statistical comparisons of classifiers.
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Table 8. Wilcoxon’s signed rank tests of testing accuracies.

Method 4.5 CART VFC4.5 VFDT
4.5 — 0.3601 0.000003 0.08894
CART — — 0.01651 0.1637
VFC4.5 —- —- —- 0.001

Table 9. Comparisons of testing accuracy results on artificial data.

# #instances c4.5 CART VFC4.5 VEDT
1 1000 0.01 0.01 0.01 0.01
2 10000 0.12 0.9 0.1 0.12
3 100000 0.52 2.6 0.31 0.1
4 1000000 0.97 5.01 0.69 5.07
5 5000000 21.73 —_ 4.82 178.9

Analysis and empirical results

The collection of training sets, described previously, was applied to compare the
performance of the algorithms. Table 4 presents the algorithms performance in
term of correctly classified instances over the 49 datasets. Table 5 summarizes
sensitivity and specificity. Similarly, Table 6 summarizes the results associated with
tree size and number of leaves for each classifier considered. We use the test
accuracies from Table 4 and run a Wilcoxon signed-rank test considering a level
of significance equal to a = 0.05. Table 8 shows the Wilcoxon test results of all
used measures. We carried out all possible comparisons using the performance
measures in Table 4. Finally, Table 7 and Table 9 contain all detailed results for
training time.

Once the accuracy results are presented in the mentioned tables, we can point
out that the algorithms that achieve the highest accuracy on different datasets are
quite different. For about half of the datasets, the decision trees created by the
proposed algorithm overcome the solutions of all other algorithms. Generally,
VFC4.5 outperforms the other algorithms, it increase the average accuracy level
compared to C4.5, CART, and VFDT by, respectively, 2.09%, 1.93%, and 4.78%.
Notably, as the VFC4.5 algorithm generally yields the highest accuracy, it also
produces the highest values for specificities, therefore, the smallest values for
sensitivities as mentioned in Table 5. Investigating the impact of the type of
attributes, we observe that VFC4.5 has higher accuracy when the datasets contain
only continuous attributes (line 9, 22, 26, 30, 31, and 39 from Table 3). In those
cases, VFC4.5 outperforms all other algorithms. Besides, for mixed data, it is
observed that VFC4.5 does not fail in all cases compared to C4.5, where results
are quite similar. But clearly, CART has higher accuracy in those cases, indepen-
dently of the number of classes (line 11, 16, 20, and 32 from Table 3). Also, it is
observed that VFC4.5 can perform best on binary-class datasets. It yields higher
accuracy on 26 datasets compared to C4.5 results, it only fails to improve the
performance on dataset Bank marketing full. However, this statement does not



APPLIED ARTIFICIAL INTELLIGENCE ’ 135

hold for datasets with limited sample size, where VFDT outperforms the results of
all other algorithms (line 15, 23, 25, 29 and 44 from Table 3). in this setting, classes
distribution has also an important impact on accuracy results. The proposed
algorithm improves the C4.5 accuracy in class-imbalanced data with only few
dominating classes (line 9, 22, 39 and 49 from Table 3). However, in cases where
there are many dominating classes, the CART algorithm yields the highest accu-
racy. To investigate the difference between the algorithms and validate the previous
results, we ran a Paired Wilcoxon’s signed rank test. The results are reported in
Table 8. It can be seen that there are no significant differences between C4.5,
CART, and VFDT algorithms. However, all of them are statistically different from
the VFC4.5 algorithm. Furthermore, to attest the effectiveness of the VFC4.5
algorithm we make a second Wilcoxon signed rank test, which gives significance
even at o« = 0.01.

The VFC4.5 algorithm can also achieve reduction on the number of nodes,
it outperforms the C4.5 results in 22 cases. In 20 datasets, the proposed
algorithm improves both accuracy and tree size. But, the VFC4.5 creates
more complex trees than CART and VFDT algorithms. This is explained by
the higher accuracy achieved by the VFC4.5 algorithm.

Table 7 and Table 9 report the training time for real and artificial datasets.
The results show that our algorithm performs faster than C4.5 in all cases.
Compared to the VFDT results, the proposed algorithm fails to improve the
training time in datasets with few examples. In contrast, for the datasets with
high instances number (lines 4 and 5 from Table 9) and features (lines 2, 17,
and 33 from Table 7), a significant time reduction has been achieved by using
the VFC4.5 algorithm.

Conclusion

In this paper, we proposed a novel algorithm to speed up and improve the
C4.5 algorithm performances. The results show that using mean and median
as a threshold values can significantly speed up the process of binarization.
But, also it improves the accuracy results. The results also show that for large
number of training examples, VFC4.5 is faster than the VFDT algorithm and
more accurate than C4.5. In contrast, experiments show that VFC4.5 fails in
cases with few training examples and class imbalanced data with many
dominating classes. For our future work, we plan to improve the VFC4.5
algorithm results on the two mentioned cases.
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