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Understanding the inferences of data-driven, machine-learned models can be seen as a
process that discloses the relationships between their input and output. These
relationships consist and can be represented as a set of inference rules. However, the
models usually do not explicit these rules to their end-users who, subsequently, perceive
them as black-boxes and might not trust their predictions. Therefore, scholars have
proposed several methods for extracting rules from data-driven machine-learned models
to explain their logic. However, limited work exists on the evaluation and comparison of
these methods. This study proposes a novel comparative approach to evaluate and
compare the rulesets produced by five model-agnostic, post-hoc rule extractors by
employing eight quantitative metrics. Eventually, the Friedman test was employed to
check whether a method consistently performed better than the others, in terms of the
selected metrics, and could be considered superior. Findings demonstrate that these
metrics do not provide sufficient evidence to identify superior methods over the others.
However, when used together, these metrics form a tool, applicable to every rule-
extraction method and machine-learned models, that is, suitable to highlight the
strengths and weaknesses of the rule-extractors in various applications in an objective
and straightforward manner, without any human interventions. Thus, they are capable of
successfully modelling distinctively aspects of explainability, providing to researchers and
practitioners vital insights on what a model has learned during its training process and how
it makes its predictions.

Keywords: explainable artificial intelligence, rule extraction, method comparison and evaluation, metrics of
explainability, method automatic ranking

1 INTRODUCTION

Explainable Artificial Intelligence (XAI) has become a fundamental sub-field of Artificial Intelligence
(AI). Its ultimate goal is to develop methods and techniques to produce data-driven machine-learned
models with high accuracy and a high degree of explainability. In this context, explainability
corresponds to the degree of transparency and understandability of the inner functioning of a model,
and its inferences, as perceived by end-users. The availability of “big-data” and advances in
computational processing have pushed machine and deep learning to a new high. This has led
to the fast development of new and accurate models in a variety of domains. Unfortunately, most of
these models are regarded as “black-boxes” due to their underlying complex structures that are
unintelligible to end-users, thus requiring an explanation. As a consequence, several methods have
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emerged to extract information from trained models by trying to
re-trace their inferential process in automatic ways (Došilović
et al., 2018; Rizzo and Longo, 2018b). Some of these methods are
model agnostic, meaning that, theoretically, they are suitable for
any learning algorithms that can be wrapped with a layer of
explanations. A subgroup of these methods extracts a set of rules
that mimics the inferential process of the underlying machine-
learned model (Došilović et al., 2018). The extracted rules can be
in conflict with the expert domain knowledge pre-training of the
model, thus perplexing the consumers of such tools. However, it
must be considered that such rules aim at correctly representing
the functioning of the black-box, thus the relationships between
the independent variables of the input data with its dependent
variable. Therefore, this conflict can be an essential signal of an
issue occurring in the black-box model. Recent studies have
attempted to solve these issues by integrating symbolic
representations of knowledge with machine-learned models
and producing explanations in the form of symbolic rules
(Besold and Kühnberger, 2015). However, these rules are built
upon a set of symbols not always and easily interpretable by lay
humans. As a consequence, others attempted at building methods
that generate if-then rules that should be more intuitive for
humans, thus adding a meaningful descriptive layer to the
underlying model (Letham et al., 2015). Nonetheless, little
effort was devoted to assessing the degree of explainability of
these rules objectively and quantitatively. From an in-depth
analysis of the evaluation studies retrieved from the scientific
literature, it was possible to notice that the authors took into
account only a small number of notions and requirements to be
satisfied by a rule-based explanation that aims to be intuitive and
effective (Ferri et al., 2002; Freitas, 2006; Lakkaraju et al., 2016;
Bologna and Hayashi, 2018; Ignatiev, 2020). An interpretable
ruleset must contain a few short and concise rules whilst covering
as many input instances as possible. Furthermore, none of these
evaluation studies provides a tool to rank a set of rule-extraction
methods according to the measurements of these notions to find
out if one of them can be considered superior to the others.

This study aims at filling the above gap by proposing a
framework for evaluating and comparing the degree of
explainability of rule-based explanations automatically
generated by XAI methods across eight metrics. These metrics
assess various aspects of the explainability of automatically
generated rulesets. If the rules score high according to all the
metrics, they can provide valuable insights to researchers and
practitioners about what a machine-learned model has learned
from the input data during the training process. In other words,
the rules can exhibit the model’s inner functioning and make
explicit its logic. A set of objective, quantitative metrics also can
form a versatile evaluation tool not bound to any particular rule-
extraction method or model’s architecture. In detail, the research
question tackled by this experiment is: “To what extent can a set
of quantitative metrics be employed to assess and compare the
degree of explainability of different if-then rule extraction
methods?” The remainder of this manuscript is organised as
follows. Section 2 summarises the strategies used by scholars to
generate explanations of machine-learned models, with a focus
on rule-extraction algorithms. Section 3 describes the design of

this secondary research experiment and the metrics employed to
evaluate and compare the degree of explainability of rulesets
extracted by five XAI post-hoc model agnostic methods. Section
4 discusses the findings obtained from the experiment.
Eventually, Section 5 emphasises the contribution to the body
of knowledge and define future research directions.

2 RELATED WORK

In the last few decades, researchers have tried to comprehend and
explain the inner mechanics of data-driven machine-learned
models in various ways (Longo et al., 2020; Guidotti et al.,
2018). Consequently, several methods for explainability have
been proposed over the years. These methods can be
categorized along five dimensions (Vilone and Longo, 2021a),
as shown in Figure 1. The first dimension is the scope of their
explanation. The methods with a global scope attempt to make
the entire inferential process of a model transparent and
understandable as a whole. In contrast, the objective of local
methods is to explain the inferential process around a specific
input instance. Methods for explainability can generate
explanations at two different stages. Ante-hoc methods tackle
the explainability of a model from its implementation and during
training. The goal is to make it naturally explainable while still
trying to reach optimal accuracy and minimal error. Post-hoc
methods, instead, keep a trained model unchanged and mimic or
explain its behaviour by using an external explainer at testing
time. The format of the input data of a model, which can be
numerical/categorical, pictorial, textual, or a times series, can play
an essential role in constructing a method for explainability
because the logic followed by a learning technique can vary
according to its inputs. The same can be said for the output
format of the explanation itself, which can be numerical, rule-
based, textual, visual, or mixed.

Explanations can have numerical formats as crisp values,
vectors of numbers, matrices or tensors. These values provide
a quantitative estimate of the relevance of the input features over
the predictions of a model (Alain and Bengio, 2017; Kim et al.,
2018). However, many people perceive numbers as dull and
difficult to understand. Visual explanations illustrate, in a very
appealing manner, the inner functioning of a model via graphical
tools. Researchers have exploited several types of charts to make
them as intuitive as possible and adapt the explanations to
different input data and applications. For example, heat maps
highlight the most influential parts of pictorial inputs to the target
feature, such as areas of an image or a video, by using different
colours (Ribeiro et al., 2016; Strobelt et al., 2018). Alternatively,
data-flow graphs are employed to represent the inner structure of
complex neural networks where each node represents either a
layer or a neuron of the layer, and the edges the connections
between layers of neurons (Wongsuphasawat et al., 2018).
Textual explanations, consisting of natural language statements
either written or orally uttered, are another intuitive form of
explanation for humans. An example of these explanations is the
phrase “This is a Brewer Blackbird because this is a blackbird with
a white eye and long pointy black beak” produced by an explainer

Frontiers in Artificial Intelligence | www.frontiersin.org November 2021 | Volume 4 | Article 7178992

Vilone and Longo Quantitative Evaluation of Rule Extractors

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


of an image classification model (Hendricks et al., 2018). Rules
have a schematic, logical format, more structured than visual and
textual explanations, but still intuitive for humans. They can be in
the form of if-then statements with AND/OR operators, such as
IF (X1 > 0.61) AND (X2 < 0.15) THEN Class1, and they are apt for
reporting combinations of input features and their activation
values (Fung et al., 2005; Bologna and Hayashi, 2017). Some
rulesets structured as decision trees can be translated into logical
formulas by combining split predicates along paths from inputs
to predictions into logical conjunctions (AND) and all the paths
related to an output class into logical disjunctions (OR) (Bride
et al., 2018). Other rules employ symbolic logic, a formalized
system of primitive symbols and their combinations such as
(Country � USA) ∧ (28 < Age < � 37) → (Salary > 50K)
where → logical operator joins the antecedents to their
consequent (Ribeiro et al., 2018). Following this logic, rules
can be implemented as fuzzy rules where one or more
premises are linked to a consequent that can be true to a
degree, instead of being entirely true or false. In these rules,
antecedents and consequent are represented as fuzzy sets
(Guillaume, 2001). The combination of fuzzy rules and
learning algorithms can produce a powerful tool to perform
reasoning and explain the inner logic of machine-learned
models like neural networks (Palade et al., 2001). Such rules
can be seen as arguments in the field of formal argumentation and
reasoning. An argument, like a rule, presents a claim (or
conclusion) that derives, soundly or not, from a set of
premises. Arguments can be organised in a dialogical structure
by employing attacks. Attacks represent conflicts between the
premises and/or the conclusions of two or more arguments.
Arguments and attacks form a graph of arguments that might
possess an optimal explanatory capacity, suitable for representing
the inner functioning of black-box data-drivenmodels (Rizzo and
Longo, 2018a,b). Eventually, some explanations employ one or
more of the formats described so far (visual, textual, rules,
numeric) to exploit their strengths and overcome their
weaknesses. Some methods generate a mix of visual and

textual explanations. For instance, Image Caption Generation
with Attention Mechanism explains the logic of image classifiers
by accompanying the classified images with captions highlighting
in words their relevant parts (Xu et al., 2015). Other methods
justify the prediction of a new input instance by identifying the
most similar training samples or prototypes (Yeh et al., 2018).

Extracting explainable rules is one of the strategies followed by
some global, post-hoc, model agnostic XAI methods to add a
layer of explainability to a machine-learned model. Rules are built
by approximating a model to be explained with a ruleset having a
higher degree of interpretability. The underlying assumption is
that, as long as the approximation quality is good, the statistical
properties of the complex model are reflected in the interpretable
rulesets. These rule extraction methods exploit various
techniques. Genetic Rule EXtraction (G-REX) uses genetic
algorithms to extract if-then rules with AND/OR operators
(Johansson et al., 2004b,a). GLocalX is also based on a genetic
algorithm to produce local rules explaining the prediction made
by a classifier on each input instance (Guidotti et al., 2019; Setzu
et al., 2021). The rules explicit both the factual reasons beyond the
model’s logic and a set of counterfactuals highlighting which
changes to the instance features lead to a different outcome. The
local rules are hierarchically aggregated into a ruleset that covers
the entire input space and represents a global explanation of the
underlying model. Anchor generates if-then rules highlighting
the “anchors” of an input dataset (Ribeiro et al., 2018). These are
the features of a dataset that are sufficient for a classifier to make a
prediction. For instance, the words “not bad” often appears in
statements expressing a positive sentiment, thus can be
considered anchors in sentiment analyses. Anchor uses two
algorithms to identify the candidate rules with the highest
estimated precision over a dataset. Precision is computed as
the fraction of correct predictions. The first algorithm, a
bottom-up formation of anchors, starts from an empty ruleset
and iteratively adds a rule for each feature predicate. The second
one instead consists of a beam-search for anchors. It starts from a
set containing all the possible candidate rules and then selects the

FIGURE 1 | Classification of methods for explainability proposed in Vilone and Longo (2021a).
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most precise ones. Model Extraction (Bastani et al., 2017) and
Partition Aware Local Model (PALM) (Krishnan and Wu, 2017)
approximates complex models with decision trees whose
structure can be easily examined by end-users to determine if
the rules match intuition. Model Extraction uses the
Classification and Regression Trees algorithm (CART) and
trains the extracted decision trees over a mixture of Gaussian
distributions fitted to the input data using expectation
maximisation. PALM consists of a two-part surrogate model: a
meta-model, constrained to be a decision tree, partitioning the
training data, and a set of sub-models fitting the patterns in the
subset of data within each partition. Mimic Rule Explanation
(MRE) selects a set of prototypes representing the whole input
space and records the output class assigned to them by a model
(Asano and Chun, 2021). Then, it perturbs each prototype to find
out the maximum surrounding region where the predicted class
remains unchanged. The resulting ruleset consists of the
Cartesian product of finite intervals limiting these regions.

Along with research focused on the development of rule
extraction methods, another branch of research in XAI is
devoted to evaluating their degree of explainability. Scholars
have identified a few attributes and notions that affect the
degree of explainability of a ruleset (Bologna and Hayashi,
2018; Ferri et al., 2002; Freitas, 1999, 2006; Ignatiev, 2020;
Lakkaraju et al., 2016; Vilone and Longo, 2021b). Rule size is
one of such attributes, and it refers to the number of instances
satisfied by a rule. Usually, researchers aim to extract rules that
cover a large portion of the input data and support the discovery
of new natural principles. Nonetheless, sometimes small rules
might capture exceptions occurring in the data that can interest
scientists. Furthermore, it might be more difficult, but more
interesting, to discover rules aimed at predicting minority
classes when the imbalance of class distributions occurs in the
data. Attribute costs represent the effort to collect or get access to
the actual value of an attribute of the data. For instance, it is easy
to assess the gender of a patient, whereas other health-related
parameters can require an expensive investigation (Freitas, 1999).
Rules that use only attributes based on easily accessible data are
more appealing as they help keep the costs of an experiment low.
In some domains of application, such as medicine, it is vital to
assess the misclassification costs of a ruleset because the
erroneous classification of an instance might have a significant
impact, not only in monetary terms but also in numbers of
human lives. To be quantified, all these costs require integrating
the user’s domain knowledge which is a manual and time-
consuming process. Luckily, scholars have identified several
other attributes of explainability that can be assessed
objectively as they need the information provided by the input
and output data without relying on domain knowledge (Alonso
et al., 2018; Abdul et al., 2018; Miller, 2019; Lakkaraju et al., 2016).
The symbolic rules extracted by Discretized Interpretable
Multilayer Perceptron (DIMLP) from ensembles of artificial
neural networks are compared with boosted shallow trees and
support vector machines. The comparison is made by computing
the complexity, measured as the total number of rule antecedents
per ruleset, the prediction accuracy and the fidelity of the rulesets
(Bologna and Hayashi, 2018) (see Table 3 for the definition of

fidelity). Four criteria, translated into five metrics, have been
proposed to evaluate the degree of explainability of if-then rules
automatically generated by a method called Interpretable
Decision Sets (Lakkaraju et al., 2016, 2017). According to
these criteria, rulesets can be considered interpretable if (I) its
rules describe non-overlapping areas of the feature space, (II) its
rules cover most (ideally all) data points and (III) most (ideally
all) the classes in the data, and (VI) the ruleset comprises a small
number of concise rules. The five resulting metrics are (I) fraction
overlap which captures the extent of overlap between every pair of
rules of a ruleset, (II) fraction uncovered which computes the
fraction of the input dataset not covered by any rule, (III) average
rule length which captures the average number of antecedents of
each rule, (IV) number of rules which is the cardinality of the
ruleset, and (V) fraction of classes which measures the fraction of
the output classes in the data predicted by at least one rule. The
second metric can be considered as the inverse of completeness,
which is a requirement identified in other studies, and it was thus
preferred to the fraction uncovered (Cui et al., 2019). Beyond
these attributes and metrics, scholars proposed other quantitative
validation factors that must be fulfilled by every type of
explanation automatically generated by an XAI method. These
include the correctness of a ruleset, measured as the portion of the
dataset correctly classified by rules, its fidelity to the predictions of
the model and robustness, understood as the capacity to
withstand small perturbations of the inputs that do not
affect the predictions of the model, thus should not affect
the predictions of the ruleset. The rules should also be
minimal, meaning that they could not be discarded without
compromising the prediction accuracy of the ruleset. These
metrics must be maximised to generate trustable explanations
(Ignatiev, 2020). Fidelity, correctness and the average number
of rules were used to compare the degree of explainability of
three rulesets automatically extracted from machine-learned
models in (Veerappa et al., 2021). The correctness of these
rulesets was assessed with the F1 − scores. Despite these efforts
to propose evaluation approaches and metrics for
explainability, there are still critical gaps in this area of
XAI. Firstly, there is no general consensus among scholars
on when an explanation can be considered as such. Thus, it is
impossible to say with certainty if a machine-generated
ruleset represents a viable solution to the XAI quest.
Secondly, it is unknown which salient properties a ruleset
must possess to be effective and understandable by end-users.
This study aims at filling these gaps by proposing an
evaluation framework for rule-extraction methods for
explainability. In accordance with Adadi and Berrada
(2018), scholars have produced enough material to make
this objective achievable.

3 DESIGN AND RESEARCH METHODS

The subset of methods for explainability generating if-then rules
from the inferences of machine-learned models is quite large, so it
was necessary to narrow it down by adding the following three
inclusion criteria:
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1. The methods must be model-agnostic, meaning that they do
not consider the internal components of a model such as
weights or structural information. Therefore they can be
applied to any black-box model. This limits the choice of
the post-hoc methods as the ante-hoc ones are inherently
model-specific.

2. The extracted rules must represent a global explanation of a
black-box model.

3. The output ruleset must be comprised of if-then rules or rules
that can be translated into this format.

Five rule-extraction methods fulfil these criteria, namely
C4.5Rule-PANE, REFNE, RxREN, RxNCM, and TREPAN
(described in section 3.2). Their respective algorithms are
described in the following section and summarised with the
pseudo-codes in the first section of the Supplementary Material.

3.1 The Experiment Design
To answer the research question, the experiment was designed as
shown in the diagram of Figure 2. Amodel, which is the output of
a learning algorithm (in this study, feed-forward neural networks)
trained on an input dataset, and an evaluation dataset were fed
into the five methods for explainability under analysis. Each
method extracted a set of if-then rules whose degree of
explainability was assessed with eight objective and
quantitative metrics. This process was repeated over 15
datasets and their neural networks.

3.2 Rule Extraction Methods
Rule Extraction From Neural Network Ensemble (REFNE) was
developed to extract symbolic rules from ensembles of trained
neural networks, but it can be easily applied also to other learning
approaches (Zhou et al., 2003). The REFNE algorithm replaces
the original labels of a training dataset with those predicted by the
trained model. Subsequently, REFNE queries the underlying
model to generate new instances to be added to the training
dataset. These instances are created by randomly selecting the
value of each feature across its range, so diverse input patterns can
appear as frequently as the data allow and the entire input space is
covered as much as possible. According to the authors, it is
enough to double the size of the training set to generate accurate

rules mimicking the underlying trained model. To extract rules,
REFNE randomly selects a categorical feature and checks if there
is a value such that all the instances possessing it fall into the same
class. If this condition is satisfied, a rule is created with the value
as antecedent. Otherwise, another categorical feature is selected,
and the same process is repeated. If no rules have been created
after examining all the single features, the algorithm performs a
pairwise analysis of the categorical features by combining their
values and checking if it is possible to create new rules with two
antecedents. The algorithm keeps increasing the number of
combined attributes. Rules are limited to only three
antecedents because, according to the authors, longer rules are
unintelligible to humans (Zhou et al., 2003). When all the
categorical features have been examined, the continuous ones
are discretised and considered as new categorical features. The
process terminates when no more rules can be created, or all the
input instances have been covered. In the original design, the
discretisation process is carried out with the ChiMerge algorithm.
However, in this study, the ChiMerge algorithm was replaced
with a less compute-intensive discretisation process, as described
in the second section of the Supplementary Material. Finally, a
new rule is added to the output ruleset only if its fidelity (as
defined in Table 3) to the underlying model is above a user-
defined threshold.

C4.5Rule-PANE is an alternative method to REFNE, and it
also extracts if-then rules from ensembles of neural networks
(Zhou and Jiang, 2003). It uses the C4.5 rule induction algorithm
to construct a ruleset that mimics the inferential process of the
underlying model from a synthetic dataset built by (I) replacing
the original labels of the training dataset with those predicted by
the underlying model and (II) creating new instances generated
by randomly selecting the values of the input features from their
ranges and feeding them into the model.

Similarly, TREPAN induces a decision tree by querying the
underlying trained model to determine the output class of each
instance (Craven and Shavlik, 1994; Craven and Shavlik, 1996),
thus replacing the original labels. Subsequently, it splits each node
of the tree by using the gain ratio criterion. To ensure a minimum
sample of instances available at each node, TREPAN queries the
underlying network to generate new samples. The previously
selected splits that lie on the path, from the root to the node under

FIGURE 2 | Diagrammatic view of the design of the experiment for evaluating and comparing the explainability of rule-sets, automatically extracted from neural
networks by different methods for explainability.
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analysis, are considered constraints. TREPAN generates a
complete instance by randomly selecting values for each
feature while satisfying the constraints. To model each
feature’s marginal distribution, TREPAN uses frequency
counts for discrete features and kernel density estimation
method to model continuous features. TREPAN expands trees
using a best-first expansion algorithm where the best node has the
greatest potential to increase the fidelity of the extracted tree to
the network. To evaluate a node n, TREPAN uses the function
reach(n) × [1 − fidelity(n)] where reach(n) is the estimated
fraction of instances that reach n and fidelity(n) is the
estimated fidelity of the tree to the network for those
instances. The split values of each node are selected using m-
ofn expressions constructed with a hill-climbing search process
that begins by selecting the best binary split. Then, it employs a
beam search method, with beam width as a user-defined
parameter, to find the best m-ofn split according to the gain-
ration criterion, utilised as the split evaluation function. TREPAN
uses two independent criteria to decide when to stop creating new
nodes: 1) the tree has reached the maximum tree size, which is a
user-specified parameter (in this experiment, this limit was set
equal to 15 to limit the computational time), and 2) a node is set
as a leaf if, with high probability, the node covers only instances
belonging to the same class.

Rule Extraction by Reverse Engineering (RxREN) (Augasta
and Kathirvalavakumar, 2012) is based on a recursive algorithm
to generate hierarchical if-then rules. It relies on a reverse
engineering technique to trace back relevant input features
that lead to the final results. Then, it prunes the insignificant
input neurons whilst requiring that the accuracy of the pruned
model decreases at most by 1% from the original model. Next, it
computes the data ranges of each significant neuron in each
output class by iteratively removing one input feature at a time
and measuring the impact on the number of misclassified
instances. This process can be seen as a feature selection
approach, and it is easily applicable to other architectures.
Rule Extraction from Neural Network using Classified and
Misclassified data (RxNCM) (Biswas et al., 2017) is a

modification of RxREN. It includes the input instances
correctly classified in the range determination process, besides
the misclassified ones exclusively considered by RxREN.

3.3 Dataset
These methods were tested on 15 public datasets (listed in
Table 1) retrieved from the UCI Machine Learning
Repository1 and briefly described in the next paragraph. The
datasets were selected according to the following criteria: (I) all
the datasets must be handcrafted, meaning that their features
were manually engineered by humans and not the output of an
algorithm, (II) they must contain enough instances to avoid the
curse of dimensionality, meaning too many features for too few
instances. A typical rule of thumb is that there must be five
training samples for each feature (Theodoridis and Koutroumbas,
2009). To be on the safe side, the number of instances must be at
least in the order of ten thousand, and (III) the dependent variable
is categorical, ideally with more than two target classes, whereas
the independent variables are both continuous and categorical
predictors.

The Adult database is based on the 1994 US Census, and it was
designed to train models to predict whether a person makes or
not over $50K. The Avila dataset contains information about 800
images of the “Avila Bible,” a Latin copy of the whole Bible
produced during the XII century by 12 Italian and Spanish
copyists individuated from a palaeographic analysis of the
manuscript. Thus, the prediction task is to associate each
image with the copyist who drew it. The Bank marketing
dataset collects data related to a marketing campaign carried
out by Portuguese banks. The output variable registered whether
the customer subscribed to a term deposit. The Chess dataset
contains the coordinates of the White King and Rook and the
Black King and Knight, whereas the output variable records the
optimal depth-of-win for the White in 0–16 moves. Otherwise, it
assigns a draw. Similarly, the Connect-4 dataset reports all the 8-

TABLE 1 | Properties of the selected datasets.

Dataset Total instances No.
of input features

No. of continuous
(categorical) features

No. of classes

Adult 48,842 14 6 (8) 2
Avila 20,867 10 10 (0) 12
Bank marketing 45,207 20 11 (9) 2
Chess 28,056 6 3 (3) 18
Connect 4 67,557 42 0 (42) 3
Cover type 581,012 54 10 (44) 7
Credit card default 30,000 23 20 (3) 2
EEG eye state 14,980 14 14 (0) 2
HTRU 17,898 8 8 (0) 2
Letter recognition 20,000 16 16 (0) 26
Occupancy 12,417 5 5 (0) 2
Online shopper intention 12,330 17 14 (3) 2
Person activity 164,860 4 3 (1) 11
Shuttle 58,000 9 9 (0) 7
Skin 245,057 3 3 (0) 2

1https://archive.ics.uci.edu/ml/index.php
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ply positions in the connect-4 game in which none of the players
has won yet, and the next move is not forced. The output variable
is the theoretical outcome of the game for the first player (win,
loss, draw). The Cover Type dataset contains 12 cartographic
measures of 4 wilderness areas of the Roosevelt National Forest of
northern Colorado to predict the seven forest cover types,
depending on the major trees species in these areas. The
Credit Card Default dataset was designed for classification
models that predict whether Taiwanese clients will suffer
failure to repay their credit card debts. The EEG Eye State
dataset reports the combined information of continuous
electroencephalogram (EEG) measurements and the eye state
(either open or close), the target variable. The High Time
Resolution Universe (HTRU) dataset describes the physical
properties of stars to determine whether they are pulsars or
not. The objective of the Letter Recognition dataset is to
identify each of the 26 capital letters of the English alphabet,
displayed on black-white images, from 16 primitive numerical
attributes (statistical moments and edge counts) calculated over
the pixels. The Occupancy dataset was created for the binary
classification problem of determining whether a room is occupied
from environmental information such as temperature, humidity,
light ,and CO2. Online Shopper Intention records thousands of
sessions on e-commerce websites. The negative output class
represents customers who did not buy anything, whilst the
positive class represents sessions that ended with purchasing
the searched item. The Person Activity dataset contains data
related to 11 physical activities, such as walking or sitting,
recorded from people wearing four ankles, belts, and chest
sensors. The Shuttle dataset reports nine numerical attributes
of a shuttle, and it was designed for the classification task of
determining its flight stage, such as if it is flying at a high altitude
or if it is either taking off or landing. Finally, the Skin dataset
contains information on the three colour channels of images,
some of which contain faces of various ages, races, and genders.
The scope is to determine which images represent people’s faces.

Before being fed into a machine-learned model, the datasets
were pre-processed to handle missing data and remove correlated
variables, which can cause issues in the training process of the
models. None of the selected datasets contains missing data, so no
action was required. However, some input features had to be
discarded because they could not be considered valid predictors
as they did not represent discriminative attributes. These
features are:

• “fnlwgt” of the Adult dataset, which contains the statistical
weights assessing how many US citizens are represented by
each subject

• The client “ID” from the Credit Card Default dataset
• “Sequence name” (which correspond to the subject code),
“timestamp” and “date” from the Person Activity dataset

Afterwards, a correlation analysis was performed on each
dataset to detect pairs of highly correlated features. If this was
the case, one of the two strongly correlated features was discarded
to reduce multicollinearity risk. Firstly, a correlation matrix
containing the Spearman’s rank correlation coefficients of each

pair of input features was computed for each dataset.
Unfortunately, there is no consensus on the thresholds
between strong, moderate and weak correlations among the
scientific community. In this study, the range of the absolute
Spearman’s rank values, which is (0, 1), was split into three
segments, where values in the range (0, 0.33) are considered weak,
(0.33, 0.66) moderate and (0.66, 1) strong correlations. Secondly,
it was necessary to find an objective way to decide which variable
of each strongly correlated pair should be discarded. The best
subset selection analysis was carried out to chose, among all the
possible combinations of not-strongly-correlated variables, the
combination that best fits the outcome variable (Hocking and
Leslie, 1967). A linear regression model was built over each
combination of the input variables strongly correlated with at
least another variable (this analysis excluded those variables that
do not show any strong correlations). These models were then
sorted in descending order according to the R2 value. The
combination free from strong-correlated pair of variables and
with the highest R2 was selected. The best subset selection
approach was chosen for its simplicity and because it requires
little computational time and resources. Finally, some of the
chosen datasets are unbalanced, meaning that their target
variables have more instances in one specific class than the
others. Due to this disparity, some learning algorithms might
classify all the input instances into the majority class whilst
ignoring the other minority classes. To avoid this issue, each
dataset was split into a training and a validation dataset by using
the stratified five-fold cross-validation technique to ensure that
each class is represented with the same proportion as in the
original dataset (Stone, 1974). Additionally, the Synthetic
Minority Over-Sampling Technique (SMOTE) has been
applied to the training datasets to up-sample the minority
classes, thus giving each class the same chance to influence the
resulting trained model (Chawla et al., 2002).

3.4 Models
The models trained on the 15 datasets were all feed-forward
neural networks with two fully-connected hidden layers, both
coupled with a dropout layer (see Figure 3). These networks were
chosen to assess the feasibility of the proposed experiment. The
number of nodes in the hidden layer, together with other
hyperparameters of the networks, such as the node’s activation
function, was determined by performing a grid search to reach the
highest feasible prediction accuracy. Table 2 reports the list of the
optimal values of the hyperparameters together with the
prediction accuracy obtained on the 15 datasets. The loss
function was set equal to the categorical cross-entropy since
the networks were trained on categorical variables. Studies
show that the categorical cross-entropy function has
advantages over other loss functions, like those based over the
squared-error (Kline and Berardi, 2005). The early stopping
method was utilized to avoid overfitting during the training
process by limiting the number of training epochs and stop
the training process when the validation accuracy of the model
did not improve for five epochs in a row. In any case, the number
of training epochs could not exceed 1000. The dropout rates were
varied in the range from 0 to 50% (in units of 10%), the batch size
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was searched among 1, 16, 32, 64, 128, and 256 whilst the number
of neurons in each hidden layer (both layers have the same
number of neurons) was selected by following the method
proposed in (Doukim et al., 2010). In the first iteration, the
number of hidden neurons was determined using the binary
search mode. This number was selected from 1, 2, 4, 8, 16, 32,
64, and 128 and corresponded to the value with the highest
prediction accuracy. Then, a sequential search was used in the
neighbourhood of the previously selected value by increasing
it by one unit to check if there is a further improvement in the
prediction accuracy value. This second step was performed

when the accuracy was lower than 80%. Each neural network
was trained five times over the five training subsets extracted
from each input dataset with the five-fold cross-validation
technique. The network with the highest validation
accuracy was selected and fed into the rule-extraction
methods.

3.5 Metrics
Eight metrics were selected to assess, in an objective and
quantitative manner, the degree of explainability of the
rulesets generated by C4.5Rule-PANE, REFNE, RxREN,

FIGURE 3 | Architecture of the feed-forward neural networks.

TABLE 2 | Optimal hyperparameters of neural networks obtained through grid search procedure, grouped by dataset, and their resulting accuracies.

Model parameters Dataset list

Adult Avila Bank Chess Connect 4

Optimizer Adam RMSprop Adamax SGD SGD
Weight initialisation Uniform He-Uniform Normal Lecun-Uniform He-Uniform
Activation function Tanh Relu Softplus Softplus Softmax
Dropout rate 0% 0% 10% 0% 0%
Batch size 128 16 16 8 8
Hidden neurons 16 32 32 24 8

Accuracy 86.73% 94.87% 92.40% 77.07% 68.21%
(validation set) (82.08%) (83.88%) (90.81%) (34.40%) (68.61%)

Cover type Credit card default EEG eye states HTRU Letter recognition

Optimizer NAdam NAdam Adadelta RMSprop RMSprop
Weight initialisation Normal Lecun-uniform Glorot-uniform Normal Glorot-Uniform
Activation function Hard sigmoid Relu Softsign Softsign Linear
Dropout rate 0% 0% 0% 20% 0%
Batch size 256 64 1 16 64
Hidden neurons 64 32 32 4 16

Accuracy 83.18% 54.44% 54.53% 93.72% 72.47%
(validation set) (56.67%) (74.70%) (55.34%) (97.77%) (72.45%)

Occupancy Online shopper intention Person activity Shuttle Skin

Optimizer RMSprop Nadam RMSprop RMSprop Adamax
Weight initialisation Zero Normal Lecun-Uniform He-Uniform He-Uniform
Activation function Sigmoid Tanh Tanh Softsign Softsign
Dropout rate 30% 50% 0% 0% 40%
Batch size 64 64 256 32 16
Hidden neurons 2 8 256 4 3

Accuracy 90.49% 79.18% 56.20% 99.52% 90.26%
(validation set) (99.24%) (92.17%) (43.87%) (98.72%) (98.23%)
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RxNCM, and TREPAN from the neural networks trained on the
15 datasets. The objectivity is reached by excluding any human
intervention or expert’s background knowledge in this evaluation
process. Two of these metrics, number of rules and average rule
length, are attributes of explainability and measure the syntactic
simplicity of the rules. The ideal ruleset should minimise both of
them in order to be easily interpreted and understood by end-
users (Lakkaraju et al., 2016). Fraction of classes and fraction
overlap enhance the clarity and coherence of the extracted rules.
Whilst the fraction overlap should be minimised to avoid
conflicts between the rules, the fraction of classes should be
maximised to guarantee that all the target classes, even the
minor ones, are considered. A ruleset must also score high in
the remaining four metrics (completeness, correctness, fidelity,
and robustness), which measure the agreement between the
explanation method and the machine-learned model. This
means that the ruleset can appropriately classify any input
instances, it is faithful to the underlying model, and its
inferences do not vary when inputs are slightly distorted by
applying a Gaussian noise. These eight metrics can be easily
measured from the inferences of the machine-learned models and
the rulesets without requiring the integration of domain
knowledge. Table 3 reports their definition and the formulas
used to calculate them.

The final step of this scientific experiment consists of ranking
the selected methods for explainability according to these eight
metrics in an objective and automatic way. To be verified with a
statistical test, the research hypothesis is that there are statistically
significant differences in the degree of explainability of rulesets
automatically extracted by the five rule-extraction methods. The
Friedman test, a non-parametric statistical test designed to detect

differences in treatments (the four methods for explainability)
across multiple test attempts (the eight metrics), was applied to
check whether any methods for explainability ranked consistently
higher (or lower) according to the metrics of choice. The
alternative hypothesis of the test is that there are significant
differences in the results of the five methods; hence one of them
can be ranked as the best. The Friedman test was chosen instead
of ANOVA because it was not possible to fulfil the latter’s
assumption on the distribution of the samples. Samples must
come from normally distributed populations with equal standard
deviations.

4 RESULTS AND DISCUSSION

Results related to the four metrics measuring the syntactic
simplicity and coherence of the 15 machine-generated rulesets
are presented in Table 4 and in Figures 4, 5 grouped respectively
by method for explainability and dataset. Figures 6, 7 report the
results of the other four metrics, namely completeness,
correctness, fidelity and robustness. An example of a ruleset
automatically generated by the rule extraction methods is
shown in Figure 8.

Noticeably, C45Rule-PANE and TREPAN produced rulesets
that reach 100% of completeness throughout all the datasets. This
means that their rules cover all the training and test datasets
instances. RxREN and RxNCM fail to reach full completeness on
four and eight datasets, respectively. REFNE can be ranked as the
worst, according to this metric, as its rulesets cover the entire
input space on four datasets: Adult, Connect-4, Cover Type, and
Online shopper intention. This is because the algorithm can only

TABLE 3 | Objective metrics to assess the explainability of rulesets.

Factor Definition Formula

Completeness Ratio of input instances covered by rules (c) over total input instances (N) Cui et al. (2019) c
N

Correctness Ratio of input instances correctly classified by rules (r) over total input instances Ignatiev (2020) r
N

Fidelity Ratio of input instances on which the predictions of model and rules agree (f) over total instances Saad and Wunsch
(2007)

f
N

Robustness The persistence of methods to withstand small perturbations of the input (δ) that do not change the prediction of the
model (f (xn)) Alvarez-Melis and Jaakkola (2018); Liu et al. (2017)

[t]∑
N

n�1 f(xn )−f(xn+δ)
N

Number of rules The cardinality of the ruleset (A) generated by the four methods under analysis Freitas (1999); García et al. (2009);
Lakkaraju et al. (2016)

|A|

Average rule length The average number of antecedents, connected with the AND operator, of the rules contained in each ruleset
Lakkaraju et al. (2016); Wu et al. (2018). ai represents the number of antecedents of the ith rule and R � |A| the
number of rules

∑
R

i�1ai
R

Fraction of classes Fraction of the output class labels in the data are predicted by at least one rule in a rulesetR. A rule r is represented
by a tuple (s, c) where s is the set of antecedents and c is a class label. |C| represents the number of class labels
Lakkaraju et al. (2016)

1
|C|∑c′ ≤ C1(∃r � (s, c) ∈ R|c � c′)

Fraction overlap The extent of overlap between every pair of rules of a ruleset. Given two rules ri and rj, overlap is the set of data points
that satisfy the conditions of both rules Lakkaraju et al. (2016)

2
R(R−1)∑ri ,rj ,i ≤ j

overlap(ri ,rj )
N
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TABLE 4 |Quantitative measures of the degree of explainability of the rulesets automatically generated by 5 rule-extractor methods over 15 datasets according to 8 metrics.

Dataset REFNE C4.5-PANE RxNCM RxREN TREPAN REFNE C4.5-PANE RxNCM RxREN TREPAN

Completeness Correctness

Adult 1.0 1.0 1.0 1.0 1.0 0.4748 0.8112 0.2441 0.7521 0.8097
Avila 0.3349 1.0 1.0 1.0 1.0 0.2453 0.8323 0.1888 0.4109 0.4547
Bank 0.0102 1.0 1.0 1.0 1.0 0.0102 0.9246 0.1107 0.1123 0.9273
Chess 0.0 1.0 1.0 0.9911 1.0 0.0 0.2431 0.1095 0.1495 0.1623
Connect 4 1.0 1.0 1.0 1.0 1.0 0.0955 0.6734 0.6641 0.2462 0.6586
Cover type 1.0 1.0 1.0 1.0 1.0 0.4835 0.6448 0.4882 0.0353 0.4387
Credit card default 0.9442 1.0 0.9994 1.0 1.0 0.7017 0.748 0.7783 0.7787 0.7787
EEG eye states 0.3455 1.0 0.9826 0.9997 1.0 0.1936 0.5267 0.451 0.5511 0.6008
HTRU 0.9184 1.0 0.9889 1.0 1.0 0.8966 0.9715 0.8975 0.9221 0.9749
Letter recognition 0.0015 1.0 0.999 1.0 1.0 0.0008 0.6903 0.0766 0.0395 0.1295
Occupancy 0.6989 1.0 0.6734 0.9835 1.0 0.6957 0.9485 0.5732 0.7548 0.9928
Online shopper intention 1.0 1.0 0.9986 1.0 1.0 0.8467 0.9266 0.8135 0.8455 0.9258
Person activity 0.3504 1.0 1.0 1.0 1.0 0.0157 0.4251 0.1966 0.1984 0.4109
Shuttle 0.1909 1.0 0.9996 0.9839 1.0 0.1873 0.9872 0.1185 0.7859 0.9339
Skin 0.9858 1.0 0.6736 0.9995 1.0 0.8958 0.9019 0.2738 0.792 0.7829

Fidelity Robustness

Adult 0.4774 0.9793 0.2985 0.6972 0.8996 1.0 0.9996 0.5059 0.7551 0.7948
Avila 0.2492 0.8991 0.204 0.3603 0.4207 0.6644 0.5877 0.872 0.9808 0.9169
Bank 0.0102 0.9849 0.0687 0.0695 0.9701 1.0 0.9808 0.0 0.9999 0.9566
Chess 0.0 0.3291 0.1252 0.2202 0.2309 1.0 0.9968 0.0 0.5046 0.871
Connect 4 0.0226 0.7786 0.7609 0.2227 0.7565 1.0 0.4273 0.5067 0.8729 0.694
Cover type 0.4602 0.7704 0.4645 0.0522 0.448 1.0 0.6769 0.4982 0.8744 0.4128
Credit card default 0.8187 0.9417 0.925 0.925 0.925 0.756 0.9997 0.9916 0.9923 1.0
EEG eye states 0.1699 0.8191 0.4214 0.3368 0.6856 0.6545 0.9967 0.9992 1.0 0.9997
HTRU 0.9059 0.9966 0.8922 0.945 0.9922 0.9285 0.9958 0.9971 0.9682 0.9975
Letter recognition 0.0008 0.7975 0.0828 0.0428 0.148 0.9985 0.9918 0.7563 0.9968 1.0
Occupancy 0.6961 0.9944 0.5731 0.7138 0.9589 0.7025 0.9968 0.9852 0.9976 1.0
Online shopper intention 0.8536 0.9773 0.783 0.7997 0.9586 0.1496 0.9964 0.3177 0.4988 0.9586
Person activity 0.0308 0.7478 0.1 0.0995 0.3056 1.0 0.3747 0.5008 0.9995 0.2431
Shuttle 0.1873 0.9962 0.1205 0.7751 0.9264 0.8091 0.9997 0.9445 0.9993 1.0
Skin 0.9858 0.9957 0.3282 0.6987 0.8539 0.0927 1.0 0.9204 0.9983 1.0

Average rule length Number of rules

Adult 2.0 16.526 1.0 1.0 4.5556 822 1152 2 4 9
Avila 2.0013 17.8939 1.0 1.0 9.0 13483 10769 4 1 2
Bank 1.0 12.0694 1.0 1.0 1.0 9 1079 2 2 2
Chess 0.0 16.1055 1.0 1.0 17.7778 0 24769 11 1 9
Connect 4 3.0 18.8273 1.0 1.0 4.0 3 7115 2 7 9
Cover type 2.0 20.8636 1.0 1.0 3.7778 103187 150534 2 18 9
Credit card default 1.6091 14.6388 1.0 1.0 12.3333 8467 2885 1 1 3
EEG eye states 2.0025 13.8801 1.0 1.0 9.0 16173 2768 2 1 2
HTRU 1.0116 9.8545 1.0 1.0 2.0 1382 550 1 2 2
Letter recognition 3.0 15.1698 1.0 1.0 13.0 538 13826 5 1 4
Occupancy 1.911 9.4584 1.0 1.0 2.0 326 397 2 1 2
Online shopper intention 1.9484 11.8254 1.0 1.0 18.0 9623 1346 2 2 9
Person activity 1.0 18.8819 1.0 1.0 3.3333 33507 91562 4 7 9
Shuttle 2.453 17.268 1.0 1.0 6.0 22028 9466 3 1 2
Skin 2.0 9.5413 1.0 1.0 2.0 53695 460 2 1 2

Fraction of classes Fraction overlap

Adult 1.0 1.0 0.5 0.5 1.0 0.0236 0.0 1.0 0.4999 0.0
Avila 0.9167 1.0 0.3333 0.0833 0.0833 0.0671 0.0 0.9992 0.0 0.0
Bank 0.5 1.0 0.5 0.5 1.0 0.0013 0.0 1.0 1.0 0.0
Chess 0.0 1.0 0.4444 0.0556 0.2222 0.0 0.0 0.8403 0.0 0.0
Connect 4 0.3333 1.0 0.3333 0.3333 1.0 0.7992 0.0 1.0 0.4286 0.0
Cover type 0.2857 1.0 0.1429 0.1429 0.7143 0.0017 0.0 1.0 0.2816 0.0
Credit card default 1.0 1.0 0.5 0.5 1.0 0.7245 0.0 0.0 0.0 0.0
EEG eye states 1.0 1.0 1.0 0.5 0.5 0.0804 0.0 0.0 0.0 0.0
HTRU 1.0 1.0 0.5 1.0 0.5 0.4095 0.0 0.0 0.1433 0.0
Letter recognition 0.0385 1.0 0.1923 0.0385 0.0385 0.0 0.0 0.7133 0.0 0.0
Occupancy 1.0 1.0 1.0 0.5 0.5 0.0056 0.0 0.0893 0.0 0.0
Online shopper intention 1.0 1.0 1.0 0.5 1.0 0.9781 0.0 0.9397 1.0 0.0
Person activity 0.3636 1.0 0.0909 0.1818 0.2727 0.0 0.0 1.0 0.5696 0.0
Shuttle 1.0 1.0 0.4286 0.1429 0.1429 0.0164 0.0 0.9333 0.0 0.0
Skin 1.0 1.0 1.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0

The scores related to the rule-extractionmethod(s) that performed the best on each dataset, according to certain metrics, are highlighted in bold to improve the readability of the table. This
was not done for all the metrics because in some cases, like completeness, is very clear which method(s) is superior.
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consider up to three features to create a rule, and, given the size
and complexity of the datasets, they might not be enough to cover
the entire space. According to the authors who proposed REFNE,
each rule should not have more than three antecedents to be
comprehensible. Thus they limited to three the number of
attributes to create the rule’s antecedents. Furthermore,
REFNE fails to produce any rule for the Chess datasets as it

cannot find any combination of single values (for the categorical
features) or ranges of values (for the continuous features)
associated with a single class. The Chess dataset was inspected
manually, and it was possible to find only a few combinations of
three input features associated with a single class. These candidate
rules were identified by the REFNE algorithm but subsequently
discarded as they did not reach the fidelity threshold set equal to

FIGURE 4 |Quantitative measures of the degree of explainability of the rulesets automatically generated by 5 rule-extractionmethods over 15 datasets, grouped by
method.
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50% in this study. This threshold was chosen because it allows
REFNE to extract a ruleset for all the other 14 datasets, but it
keeps the number of rules relatively low on the majority of them.
No other parameter tuning was carried out to avoid the risk of
maximising a set of parameters at the expense of others, as this
was not the objective of this study. Nonetheless, REFNE
generated rulesets with thousands of rules on all the other
datasets but four: Bank, Connect 4, Letter recognition and

occupancy (notice that the y-axis of the barcharts related to
the number of rules was converted into the logarithmic scale to
make visible the results related to RxNCM, RxREN, and TREPAN
which returns rulesets that are significantly smaller than those
produced by REFNE and C45Rule-PANE). This places REFNE as
the second-worst method in terms of the number of rules,
surpassed only by C45Rule-PANE. C45Rule-PANE is the method
that produces, by far, the biggest rulesets in terms of the number of

FIGURE 5 |Quantitative measures of the degree of explainability of the rulesets automatically generated by 5 rule-extractionmethods over 15 datasets, grouped by
dataset.
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rules and average length. However, C45Rule-PANE can be
considered the most coherent method as its ruleset cover all the
output classes without overlapping areas. Apparently, TREPAN is
the method that manages to reach the best compromise between
syntactic simplicity and coherence as it generates small rulesets
containing rules that do not overlap. However, they manage to cover
all the output classes on five datasets: Adult, Bank, Connect 4, Credit

card default, andOnline shopper intention. RxNCMand RxREN are
the methods that extract the smallest rulesets, but they cannot be
considered coherent, especially in terms of overlapping areas. This is
because their algorithms analyse each input feature separately. They
split each feature into intervals, according to the distribution output
class within those intervals, in isolation, without considering the
interactions between features.

FIGURE 6 |Quantitative measures of the degree of explainability of the rulesets automatically generated by 5 rule-extractionmethods over 15 datasets, grouped by
method.
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Focusing on the four metrics assessing the degree of agreement
between the rule extractor and the underlying model
(completeness, correctness, fidelity, and robustness), it is
possible to notice that REFNE can be still ranked as the worst
also in terms of correctness and fidelity. On the other hand,
C4.5Rule-PANE performed better than the other four methods
for explainability in terms of correctness and fidelity whilst has
mixed results in terms of robustness. However, as noticed before,

the barcharts related to the number of rules and their average
length suggest some drawbacks. To reach these results, C4.5Rule-
PANE indeed produced the biggest rulesets across all the fifteen
datasets. This hampers the interpretability of its rulesets.
TREPAN does not excel in any of these four metrics,
except completeness, but it has better results than RxNCM,
RxREN, and REFNE regarding correctness and fidelity. On the
other hand, TREPAN seems, in general, less robust than these

FIGURE 7 |Quantitative measures of the degree of explainability of the rulesets automatically generated by 5 rule-extractionmethods over 15 datasets, grouped by
dataset.
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three methods. Likely, this is because their algorithms are
forced to generate small rulesets that must cover ample areas
of the input space; thus, small perturbations of the input data
go unnoticed.

Finally, the information entropy of the metrics was calculated
to quantify the level of “information” or “uncertainty” inherent in
their possible outcomes (see Figure 9). The entropy was assessed
with the Kullback-Leibler divergence, as implemented in the
Python package Scipy, which is equal to ∑n {pk (n)* log [pk
(n)/qk (n)]} where pk (n) and qk (n) are the probability and
the numeric value of event n, respectively. The events correspond
to the values of the eight metrics across the datasets and the rule
extractors. All the events have a probability equal to one. The
number of rules is the metric with the highest entropy, followed
by fraction overlap. This is to be expected as these are the two
metrics with the highest variability in their results. The number of
rules can go from 1 up to several thousand. There are two
methods, C4.5Rule-PANE and TREPAN, that generate ruleset
without overlapping rules, whilst other methods can have rules
that cover the same input space, thus bringing the fraction
overlap up 100%.

In summary, this experiment provided a few interesting
insights into the analysed rule-extraction methods. Firstly, the
metric number of rules have an entropy that is, considerably
higher than the entropy of the other metrics, thus making it the
most informative metric of the whole bunch. Secondly, the results
suggest a trade-off between the size of the rulesets in terms of both
the number of rules and antecedents and the other six metrics,
namely completeness, correctness, fidelity and robustness, the

fraction of classes and overlap. In other words, when amethod for
rule extraction produces small rulesets or short rules, then the
latter six metrics tend to score low. To test this hypothesis, the
rank Spearman’s rank correlation coefficients between each pair
of metrics were calculated (see Figure 10). The range of these
coefficients was split into the three subsets to analyse the
correlations of the input features of the 15 datasets. One pair
of variables can be considered strongly correlated since its
Spearman’s rank coefficient is higher than 0.66: fidelity-
correctness. The pair fidelity-fraction of classes has a
coefficient of 0.61, just below the threshold. This result should
be expected as fidelity cannot be attained if the rulesets ignore the
minority classes. However, fidelity-correctness is not intuitive as a
ruleset cannot be both faithful and correct if the underlyingmodel
reaches a low prediction accuracy. This happened because 12 out
of 15 of the neural networks trained on the chosen datasets assign
more than 70% of the input instances to the correct class.
Additionally, all the five rule-extraction methods mimic as
much as possible the inferences made by the underlying
neural networks that were structured to reach the highest
feasible prediction accuracy. Consequently, the most faithful
methods also reach a high level of correctness. There are other
pairs of metrics that can be considered moderately correlated,
such as completeness-average rule length and average rule length-
fidelity, as they fall in the range (0.33, 0.66). Noticeably, the
number of rules and average rule length are moderately correlated
with all the other metrics and also among them (their Spearman’s
rank correlation coefficient is 0.6). This means that there is no
strong evidence supporting our observation that there is a trade-

FIGURE 8 | Example of ruleset automatically generated by a rule-extraction method. In this case, the ruleset was created by RxNCM from the Chess dataset.

FIGURE 9 | Information entropy of the eight metrics for explainability.

Frontiers in Artificial Intelligence | www.frontiersin.org November 2021 | Volume 4 | Article 71789915

Vilone and Longo Quantitative Evaluation of Rule Extractors

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


off between the size of the rulesets and the other six metrics. It is
worth pointing out that fraction overlap shows negative
correlations with all the other metrics (the only exception is
the number of rules), whereas all the other pairs are positively
correlated, with a few exceptions such as robustness-
completeness and robustness-number of rules. However, none
of these can be considered a strong correlation, and this might be
the outcome of the specific combinations of data, machine-
learned models and rule-extractors analysed in this experiment.

Finally, the Friedman test was applied to check whether a
method can be considered superior (or inferior) to the others
according to the eight metrics under analysis across the selected
datasets. The test output statistics and p-values are reported in
Table 5 and Figure 11. None of the p-values is lower than the
typical tolerance level of 1%, and only one is lower than 5%
(Credit card default). Thus, there is no evidence supporting the
alternative hypothesis for 14 out of 15 datasets, meaning that
none of the five methods performs consistently better (or worst)
than the others. In the case of the Credit card default, there is
weak evidence that a method ranks consistently higher or lower
than the others. Looking at Figure 11, it is possible to notice that
REFNE’s total ranks are significantly lower than the ranks of the
other methods; thus, it might be considered the worst method.
The Credit card default dataset has no categorical features and
only two output classes; thus REFNE struggles in finding
combinations of values of the input features associated with a
class. The EEG eye state dataset is similar to the Credit Card
default and, as a matter of fact, its p-value is 6% and it is the
second lowest one. The Friedman test was also applied by
considering the datasets as repetitions of the same experiment,
thus calculating a unique p-value to determine if a rule-extraction
method performs better (or worse) than the others across all the

datasets. The result is a Friedman coefficient of −1414 and a
p-value equal to 1. A post-hoc analysis revealed that the
distributions of the total ranks of the five methods across all
the metrics and datasets overlap (Figure 12). This supports the
outcome of the Friedman test because none of the methods ranks
consistently as first (or last). In conclusion, it is not possible to say
that a method is always superior to the others. There is not a one-
fits-all solution. Despite this finding, the eight evaluation metrics
provide a quick and objective tool to highlight the strengths and
weaknesses of each method for explainability. This is vital
information for researchers when choosing the most suitable
explanation tool for their projects.

5 FINAL REMARKS AND
RECOMMENDATIONS

This study presented a novel approach to evaluate and compare
five methods for explainability, namely C45Rule-PANE, REFNE,
RxNCM, RxREN, and TREPAN, which extract rules from black-
box machine-learned models based on feed-forward neural
networks. These models were trained on 15 datasets with
handcrafted features that humans manually engineered.
Missing data and strongly correlated variables were removed
from the datasets in advance of the training of the model to avoid
issues during the learning process. Additionally, the distribution
of the input instances over the various output classes was taken
into consideration to ensure that the training instances were
evenly spread among the target classes. The split into the training
and validation datasets was carried out with the stratified five-fold
cross-validation technique to ensure the original proportion of
each class was preserved. The SMOTE algorithm was applied to

FIGURE 10 | Correlation matrix of the results related to the eight evaluation metrics exploited to assess the degree of explainability of machine-generated rulesets.
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TABLE 5 | Output statistics and p-values of the Friedman test, grouped by dataset.

Dataset list

Adult Avila Bank Chess Connect-4

Test statistic 4.0 6.139 6.574 3.090 0.716
p-value 0.406 0.189 0.16 0.543 0.949
Superior/inferior method NA NA NA NA NA

Cover type Credit card default EEG eye state HTRU Letter recognition

Test statistic 1.623 10.482 9.042 7.614 4.482
p-value 0.805 0.033 0.060 0.107 0.345
Superior/inferior method NA REFNE (inferior) NA NA NA

Occupancy Online shopper intention Person activity Shuttle Skin

Test statistic 6.730 5.790 1.506 7.974 2.809
p-value 0.151 0.215 0.825 0.093 0.590
Superior/inferior method NA NA NA NA NA

The bold value highlights the unique case where the Friedman test returns a p-value lower than 5%, thus providing evidence that there is a rule-extraction method which can be ranked as
the best (or the worst).

FIGURE 11 | Total ranks of the five rule-extraction methods, grouped by methods (A) and datasets (B).

FIGURE 12 | Distribution of the total ranks of the five rule-extraction methods across datasets and metrics.
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each fold to up-sample the minority classes and guaranteeing that
the classifiers did not ignore them. The surrogate model, out of
five, with the highest validation accuracy, was selected as the final
model. Eight quantitative and objective metrics were identified in
the literature to assess the degree of explainability of the rulesets
extracted by the five XAI methods from the 15 trained neural
networks. These are ruleset cardinality, number of antecedents,
completeness, fidelity, correctness, robustness, and fraction of
classes and overlap. Eventually, the Friedman test verified
whether one of the selected methods ranked consistently
higher than the others across these metrics. The experiment
did not provide sufficient evidence to support the alternate
hypothesis of the Friedman test. Hence, none of the methods
outperformed the others throughout all the datasets. However,
the results suggested the presence of a trade-off between the two
metrics measuring the syntactic simplicity of the rulesets
(number of rules and average length) and the other six
metrics. A correlation analysis was carried out over the eight
metrics to support this observation, but only fidelity and
correctness showed a strong correlation. At the same time, the
number of rules and the average rule length were weakly
correlated with the other six metrics. Thus, the observation
that there is a trade-off between these two groups of metrics
had to be rejected. Despite all, the selected metrics proved to be
apt to highlight the weaknesses and strengths of the tested rule-
extraction methods, thus providing scholars with a multi-
dimensional approach to evaluate their XAI methods in a
straightforward, quantitative, and objective manner without
any human intervention and bias. To the best of our
knowledge, this is the first study of its kind that tested many
rule-extraction methods for explainability over such a variety of
datasets, designed for various classification problems, with
metrics that measure different aspects of machine-generated
rulesets, such as their syntactic simplicity, their internal
coherence and their degree of agreement with the underlying
models.

Future work will extend this research study by investigating
additional explainability metrics, by training deeper neural
networks, by employing datasets containing additional types of
input data, such as texts and images. Furthermore, with a human-
in-the-loop approach, it is worth investigating the correlation of

selected quantitative objective metrics with subjective perceptions
of humans. In this regard, developing a valid and reliable
questionnaire for explainability represents the next challenge
for the XAI community. Another future work is to add an
extra layer of explainability that transforms the machine-
generated rules into a format, such as textual or visual
explanations, which is more appealing for humans, in
particular lay end-users. A way to produce this layer can
consist of exploiting advances in defeasible reasoning and
argumentation by using knowledge-bases constructed with a
human-in-the-loop approach (Rizzo and Longo, 2018b,a; Zeng
et al., 2018). Another possible solution is to utilise neuro-
symbolic learning and reasoning in parallel, each one
informing the other at all stages of model construction and
evaluation (Garcez et al., 2015).

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://archive.ics.uci.edu/ml/datasets.php.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

FUNDING

The work described in this manuscript is part of a
doctoral research project funded by the Technological
University Dublin.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/frai.2021.717899/
full#supplementary-material

REFERENCES

Abdul, A., Vermeulen, J., Wang, D., Lim, B. Y., and Kankanhalli, M. (2018).
“Trends and Trajectories for Explainable, Accountable and Intelligible Systems:
An Hci Research Agenda,” in Proceedings of the CHI Conference on Human
Factors in Computing Systems (Montréal, Canada: ACM), 582–599.

Adadi, A., and Berrada, M. (2018). Peeking inside the Black-Box: A Survey on
Explainable Artificial Intelligence (Xai). IEEE Access 6, 52138–52160.
doi:10.1109/access.2018.2870052

Alain, G., and Bengio, Y. (2017). “Understanding Intermediate Layers Using
Linear Classifier Probes,” in 5th International Conference on Learning
Representations, Workshop Track Proceedings (Toulon, France:
ICLR), 68.

Alonso, J. M., Castiello, C., and Mencar, C. (2018). “A Bibliometric Analysis of the
Explainable Artificial Intelligence Research Field,” in International Conference
on Information Processing and Management of Uncertainty in Knowledge-

Based Systems (Cádiz, Spain: Springer), 3–15. doi:10.1007/978-3-319-
91473-2_1

Alvarez-Melis, D., and Jaakkola, T. S. (2018). “On the Robustness of
Interpretability Methods,” in Proceedings of the 2018 ICML Workshop in
Human Interpretability in Machine Learning (Stockholm, Sweden: ICML),
66–71.

Asano, K., and Chun, J. (2021). “Post-hoc Explanation Using a Mimic Rule for
Numerical Data,” in Proceedings of the 13th International Conference on
Agents and Artificial Intelligence - Volume 2: ICAART,. INSTICC
(SciTePress), Vienna, February 4–6, 2021 (SCITEPRESS), 768–774.
doi:10.5220/0010238907680774

Augasta, M. G., and Kathirvalavakumar, T. (2012). Reverse Engineering the Neural
Networks for Rule Extraction in Classification Problems. Neural Process. Lett.
35, 131–150. doi:10.1007/s11063-011-9207-8

Bastani, O., Kim, C., and Bastani, H. (2017). “Interpretability via Model
Extraction,” in Fairness, Accountability, and Transparency in Machine
Learning Workshop (Halifax, Nova Scotia, Canada: FAT/ML), 57–61.

Frontiers in Artificial Intelligence | www.frontiersin.org November 2021 | Volume 4 | Article 71789918

Vilone and Longo Quantitative Evaluation of Rule Extractors

https://archive.ics.uci.edu/ml/datasets.php
https://www.frontiersin.org/articles/10.3389/frai.2021.717899/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frai.2021.717899/full#supplementary-material
https://doi.org/10.1109/access.2018.2870052
https://doi.org/10.1007/978-3-319-91473-2_1
https://doi.org/10.1007/978-3-319-91473-2_1
https://doi.org/10.5220/0010238907680774
https://doi.org/10.1007/s11063-011-9207-8
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Besold, T. R., and Kühnberger, K.-U. (2015). Towards Integrated Neural-Symbolic
Systems for Human-Level AI: Two Research Programs Helping to Bridge the
Gaps. Biologically Inspired Cogn. Architectures 14, 97–110. doi:10.1016/
j.bica.2015.09.003

Biswas, S. K., Chakraborty, M., Purkayastha, B., Roy, P., and Thounaojam, D. M.
(2017). Rule Extraction from Training Data Using Neural Network. Int. J. Artif.
Intell. Tools 26, 1750006. doi:10.1142/s0218213017500063

Bologna, G., and Hayashi, Y. (20182018). A Comparison Study on Rule Extraction
from Neural Network Ensembles, Boosted Shallow Trees, and Svms. Appl.
Comput. Intelligence Soft Comput. 2018, 1–20. doi:10.1155/2018/4084850

Bologna, G., and Hayashi, Y. (2017). Characterization of Symbolic Rules
Embedded in Deep Dimlp Networks: a challenge to Transparency of Deep
Learning. J. Artif. Intelligence Soft Comput. Res. 7, 265–286. doi:10.1515/jaiscr-
2017-0019

Bride, H., Dong, J., Dong, J. S., and Hóu, Z. (2018). “Towards Dependable and
Explainable Machine Learning Using Automated Reasoning,” in International
Conference on Formal Engineering Methods (Gold Coast, Australia: Springer),
412–416. doi:10.1007/978-3-030-02450-5_25

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote:
Synthetic Minority Over-sampling Technique. jair 16, 321–357. doi:10.1613/
jair.953

Craven, M., and Shavlik, J. W. (1996). “Extracting Tree-Structured Representations
of Trained Networks,” in Advances in neural information processing systems
(Denver, Colorado, USA: MIT Press), 24–30.

Craven, M. W., and Shavlik, J. W. (1994). “Using Sampling and Queries to Extract
Rules from Trained Neural Networks,” in Machine Learning Proceedings (New
Brunswick, New Jersey, USA: Elsevier), 37–45. doi:10.1016/b978-1-55860-335-
6.50013-1

Cui, X., Lee, J. M., and Hsieh, J. (2019). “An Integrative 3c Evaluation Framework for
Explainable Artificial Intelligence,” in AI and semantic technologies for intelligent
information systems (SIGODIS) (Cancún, Mexico: AIS eLibrary), 1–10.

Došilović, F. K., Brčić, M., and Hlupić, N. (2018). “Explainable Artificial
Intelligence: A Survey,” in 41st Int. Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO)
(Opatija, Croatia: IEEE), 0210–0215. doi:10.23919/mipro.2018.8400040

Doukim, C. A., Dargham, J. A., and Chekima, A. (2010). “Finding the Number of
Hidden Neurons for an Mlp Neural Network Using Coarse to fine Search
Technique,” in 10th International Conference on Information Science, Signal
Processing and their Applications (ISSPA 2010) (Kuala Lumpur, Malaysia:
IEEE), 606–609. doi:10.1109/isspa.2010.5605430

Ferri, C., Hernández-Orallo, J., and Ramírez-Quintana, M. J. (2002). “From
Ensemble Methods to Comprehensible Models,” in International Conference
on Discovery Science (Lübeck, Germany: Springer), 165–177. doi:10.1007/3-
540-36182-0_16

Freitas, A. A. (2006). AreWe Really Discovering Interesting Knowledge from Data.
Expert Update (the BCS-SGAI magazine) 9, 41–47.

Freitas, A. A. (1999). “On Rule Interestingness Measures,” in Research and
Development in Expert Systems XV (United Kingdom: Springer), 147158.
doi:10.1007/978-1-4471-0835-1_10

Fung, G., Sandilya, S., and Rao, R. B. (2005). “Rule Extraction from Linear Support
Vector Machines,” in Proceedings of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data mining (Chicago, Illinois, USA:
ACM), 32–40. doi:10.1145/1081870.1081878

Garcez, A. d., Besold, T. R., De Raedt, L., Földiak, P., Hitzler, P., Icard, T., et al.
(2015). “Neural-symbolic Learning and Reasoning: Contributions and
Challenges,” in AAAI Spring Symposium Series (Palo Alto, California, USA:
AAAI Press), 20–23.

García, S., Fernández, A., Luengo, J., and Herrera, F. (2009). A Study of Statistical
Techniques and Performance Measures for Genetics-Based Machine Learning:
Accuracy and Interpretability. Soft Comput. 13, 959–977. doi:10.1007/s00500-
008-0392-y

Guidotti, R., Monreale, A., Giannotti, F., Pedreschi, D., Ruggieri, S., and Turini, F.
(2019). Factual and Counterfactual Explanations for Black Box Decision
Making. IEEE Intell. Syst. 34, 14–23. doi:10.1109/MIS.2019.2957223

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., and Pedreschi, D.
(2018). A Survey of Methods for Explaining Black Box Models. ACM Comput.
Surv. (Csur) 51, 93:1–93:42. doi:10.1145/3236009

Guillaume, S. (2001). Designing Fuzzy Inference Systems from Data: An
Interpretability-Oriented Review. IEEE Trans. Fuzzy Syst. 9, 426–443.
doi:10.1109/91.928739

Hendricks, L. A., Hu, R., Darrell, T., and Akata, Z. (2018). “Grounding Visual
Explanations,” in Computer Vision - ECCV 2018 - 15th European Conference,
Proceedings, Part II (Munich, Germany: Springer), 269–286. doi:10.1007/978-
3-030-01216-8_17

Hocking, R. R., and Leslie, R. N. (1967). Selection of the Best Subset in
Regression Analysis. Technometrics 9, 531–540. doi:10.1080/
00401706.1967.10490502

Ignatiev, A. (2020). “Towards Trustable Explainable Ai,” in Proceedings of the 29th
Int. Joint Conference on Artificial Intelligence (Yokohama, Japan: Early
Career), 5154–5158. doi:10.24963/ijcai.2020/726

Johansson, U., König, R., and Niklasson, L. (2004a). “The Truth Is in There-Rule
Extraction from Opaque Models Using Genetic Programming,” in FLAIRS
Conference (Miami Beach, Florida, USA: AAAI Press), 658–663.

Johansson, U., Niklasson, L., and König, R. (2004b). “Accuracy vs.
Comprehensibility in Data Mining Models,” in Proceedings of the Seventh
International Conference on Information Fusion (Stockholm, Sweden: Elsevier),
Vol. 1, 295–300.

Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas, F., et al. (2018).
“Interpretability beyond Feature Attribution: Quantitative Testing with
Concept Activation Vectors (Tcav),” in International Conference on
Machine Learning (Stockholm, Sweden: ICML), 2673–2682.

Kline, D. M., and Berardi, V. L. (2005). Revisiting Squared-Error and Cross-
Entropy Functions for Training Neural Network Classifiers. Neural Comput.
Applic 14, 310–318. doi:10.1007/s00521-005-0467-y

Krishnan, S., and Wu, E. (2017). “Palm,” in Proceedings of the 2nd Workshop on
Human-In-the-Loop Data Analytics (Chicago, Illinois, USA: ACM), 4.
doi:10.1145/3077257.3077271

Lakkaraju, H., Bach, S. H., and Leskovec, J. (2016). “Interpretable Decision Sets: A
Joint Framework for Description and Prediction,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data
mining (San Francisco, CA: ACM), 1675–1684.

Lakkaraju, H., Kamar, E., Caruana, R., and Leskovec, J. (2017). “Interpretable &
Explorable Approximations of Black Box Models,” in 4th Workshop on
Fairness, Accountability, and Transparency in Machine Learning, Special
Interest Group on Knowledge Discovery and Data Mining (SIGKDD), San
Francisco, CA, August 13–17, 2016 (ACM). Poster session.

Letham, B., Rudin, C., McCormick, T. H., and Madigan, D. (2015). Interpretable
Classifiers Using Rules and Bayesian Analysis: Building a Better Stroke
Prediction Model. Ann. Appl. Stat. 9, 1350–1371. doi:10.1214/15-aoas848

Liu, S., Wang, X., Liu, M., and Zhu, J. (2017). Towards Better Analysis of Machine
Learning Models: A Visual Analytics Perspective. Vis. Inform. 1, 48–56.
doi:10.1016/j.visinf.2017.01.006

Longo, L., Goebel, R., Lecue, F., Kieseberg, P., and Holzinger, A. (2020).
“Explainable Artificial Intelligence: Concepts, Applications, Research
Challenges and Visions,” in International Cross-Domain Conference for
Machine Learning and Knowledge Extraction (Dublin, Ireland: Springer),
1–16. doi:10.1007/978-3-030-57321-8_1

Miller, T. (2019). Explanation in Artificial Intelligence: Insights from the Social
Sciences. Artif. Intelligence 267, 1–38. doi:10.1016/j.artint.2018.07.007

Palade, V., Neagu, D.-C., and Patton, R. J. (2001). “Interpretation of Trained
Neural Networks by Rule Extraction,” in International Conference on
Computational Intelligence (Dortmund, Germany: Springer), 152–161.
doi:10.1007/3-540-45493-4_20

Ribeiro, M. T., Singh, S., and Guestrin, C. (2018). “Anchors: High-PrecisionModel-
Agnostic Explanations,” in Thirty-Second AAAI Conference on Artificial
Intelligence (New Orleans, Louisiana, USA: AAAI Press), 1527–1535.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). “Why Should I Trust You?” in
Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining (San Francisco, CA, USA: ACM), 1135–1144.
doi:10.1145/2939672.2939778

Rizzo, L., and Longo, L. (2018b). “A Qualitative Investigation of the Explainability of
DefeasibleArgumentation andNon-monotonic FuzzyReasoning,” in Proceedings for
the 26th AIAI Irish Conference on Artificial Intelligence and Cognitive Science
Trinity College Dublin (Dublin, Ireland: CEUR-WS.org), 138–149.

Frontiers in Artificial Intelligence | www.frontiersin.org November 2021 | Volume 4 | Article 71789919

Vilone and Longo Quantitative Evaluation of Rule Extractors

https://doi.org/10.1016/j.bica.2015.09.003
https://doi.org/10.1016/j.bica.2015.09.003
https://doi.org/10.1142/s0218213017500063
https://doi.org/10.1155/2018/4084850
https://doi.org/10.1515/jaiscr-2017-0019
https://doi.org/10.1515/jaiscr-2017-0019
https://doi.org/10.1007/978-3-030-02450-5_25
https://doi.org/10.1613/jair.953
https://doi.org/10.1613/jair.953
https://doi.org/10.1016/b978-1-55860-335-6.50013-1
https://doi.org/10.1016/b978-1-55860-335-6.50013-1
https://doi.org/10.23919/mipro.2018.8400040
https://doi.org/10.1109/isspa.2010.5605430
https://doi.org/10.1007/3-540-36182-0_16
https://doi.org/10.1007/3-540-36182-0_16
https://doi.org/10.1007/978-1-4471-0835-1_10
https://doi.org/10.1145/1081870.1081878
https://doi.org/10.1007/s00500-008-0392-y
https://doi.org/10.1007/s00500-008-0392-y
https://doi.org/10.1109/MIS.2019.2957223
https://doi.org/10.1145/3236009
https://doi.org/10.1109/91.928739
https://doi.org/10.1007/978-3-030-01216-8_17
https://doi.org/10.1007/978-3-030-01216-8_17
https://doi.org/10.1080/00401706.1967.10490502
https://doi.org/10.1080/00401706.1967.10490502
https://doi.org/10.24963/ijcai.2020/726
https://doi.org/10.1007/s00521-005-0467-y
https://doi.org/10.1145/3077257.3077271
https://doi.org/10.1214/15-aoas848
https://doi.org/10.1016/j.visinf.2017.01.006
https://doi.org/10.1007/978-3-030-57321-8_1
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1007/3-540-45493-4_20
https://doi.org/10.1145/2939672.2939778
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Rizzo, L., and Longo, L. (2018a). “Inferential Models of Mental Workload with
Defeasible Argumentation and Non-monotonic Fuzzy Reasoning: a
Comparative Study,” in 2nd Workshop on Advances In Argumentation In
Artificial Intelligence (Trento, Italy: CEUR-WS.org), 11–26.

Saad, E. W., and Wunsch, D. C., II (2007). Neural Network Explanation Using
Inversion. Neural networks 20, 78–93. doi:10.1016/j.neunet.2006.07.005

Setzu, M., Guidotti, R., Monreale, A., Turini, F., Pedreschi, D., and Giannotti, F.
(2021). GLocalX - from Local to Global Explanations of Black Box AI Models.
Artif. Intelligence 294, 103457. doi:10.1016/j.artint.2021.103457

Stone, M. (1974). Cross-validatory Choice and Assessment of Statistical
Predictions. J. R. Stat. Soc. Ser. B (Methodological) 36, 111–133. doi:10.1111/
j.2517-6161.1974.tb00994.x

Strobelt, H., Gehrmann, S., Pfister, H., and Rush, A. M. (2018). Lstmvis: A Tool for
Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks. IEEE
Trans. Vis. Comput. Graphics 24, 667–676. doi:10.1109/tvcg.2017.2744158

Theodoridis, S., and Koutroumbas, K. (2009). Pattern Recognition. Fourth Edition.
Cambridge, Massachusetts: Academic Press.

Veerappa, M., Anneken, M., and Burkart, N. (2021). “Evaluation of Interpretable
Association Rule Mining Methods on Time-Series in the Maritime Domain,” in
Pattern Recognition. ICPR International Workshops and Challenges: Virtual
Event, January 10–15, 2021, Proceedings, Part III (New York: Springer
International Publishing), 204–218. doi:10.1007/978-3-030-68796-0_15

Vilone, G., and Longo, L. (2021a). Classification of Explainable Artificial Intelligence
Methods throughTheirOutput Formats.Make 3, 615–661. doi:10.3390/make3030032

Vilone, G., and Long, L. (2021b). Notions of Explainability and Evaluation
Approaches for Explainable Artificial Intelligence. Inf. Fusion. 76, 89–106.
doi:10.1016/j.inffus.2021.05.009

Wongsuphasawat, K., Smilkov, D., Wexler, J., Wilson, J., Mané, D., Fritz, D., et al.
(2018). Visualizing Dataflow Graphs of Deep Learning Models in Tensorflow.
IEEE Trans. Vis. Comput. Graphics 24, 1–12. doi:10.1109/tvcg.2017.2744878

Wu, M., Hughes, M. C., Parbhoo, S., Zazzi, M., Roth, V., and Doshi-Velez, F.
(2018). “Beyond Sparsity: Tree Regularization of Deep Models for
Interpretability,” in Thirty-Second AAAI Conference on Artificial
Intelligence (New Orleans, Louisiana, USA: AAAI Press), 1670–1678.

Xu, K., Ba, J., Kiros, R., Courville, A., Salakhutdinov, R., Zemel, R., et al. (2015).
Show, Attend and Tell: Neural Image Caption Generation with Visual
Attention. Proc. Int. Conf. Machine Learn. 2048, 2057–2088.

Yeh, C.-K., Kim, J., Yen, I. E.-H., and Ravikumar, P. K. (2018). “Representer point
Selection for Explaining Deep Neural Networks,” in Advances in Neural
Information Processing Systems, Montréal, Canada, 9291–9301.

Zeng, Z., Miao, C., Leung, C., and Chin, J. J. (2018). “Building More Explainable
Artificial Intelligence with Argumentation,” in Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th
innovative Applications of Artificial Intelligence (IAAI-18), and the 8th
Symposium on Educational Advances in Artificial Intelligence (EAAI-18)
(New Orleans, Louisiana, USA: AAAI Press), 8044–8046.

Zhi-Hua Zhou, Z.-H., and Yuan Jiang, Y. (2003). Medical Diagnosis with c4.5 Rule
Preceded by Artificial Neural Network Ensemble. IEEE Trans. Inform. Technol.
Biomed. 7, 37–42. doi:10.1109/titb.2003.808498

Zhou, Z.-H., Jiang, Y., and Chen, S.-F. (2003). Extracting Symbolic Rules from
Trained Neural Network Ensembles. AI Commun. 16, 3–15.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Vilone and Longo. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org November 2021 | Volume 4 | Article 71789920

Vilone and Longo Quantitative Evaluation of Rule Extractors

https://doi.org/10.1016/j.neunet.2006.07.005
https://doi.org/10.1016/j.artint.2021.103457
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
https://doi.org/10.1109/tvcg.2017.2744158
https://doi.org/10.1007/978-3-030-68796-0_15
https://doi.org/10.3390/make3030032
https://doi.org/10.1016/j.inffus.2021.05.009
https://doi.org/10.1109/tvcg.2017.2744878
https://doi.org/10.1109/titb.2003.808498
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	A Quantitative Evaluation of Global, Rule-Based Explanations of Post-Hoc, Model Agnostic Methods
	1 Introduction
	2 Related Work
	3 Design and Research Methods
	3.1 The Experiment Design
	3.2 Rule Extraction Methods
	3.3 Dataset
	3.4 Models
	3.5 Metrics

	4 Results and Discussion
	5 Final Remarks and Recommendations
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


