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Abstract
There are some commonly-used optimization techniques for the analysis of measured data in
spectroscopic Mueller matrix ellipsometry (MME) used, for example, to calculate the layer
thicknesses of samples under test. Concentrating on the metrological aspects of MME, we
identified a non-optimal treatment of depolarization in all these techniques. We therefore
recently developed an improved optimization method to adequately take depolarization in MME
into account. In a further step, we also included statistical measurement noise and derived a
likelihood function, which enabled us to apply both the maximum likelihood method and
Bayesian statistics as well as the Bayesian information criterion for data evaluation. In this
paper we concentrate on the application of this new method to measurements of SiO2-layer
thicknesses on silicon. With a state-of-the-art SENTECH SENresearch 4.0Mueller
ellipsometer, we measured standard samples of different SiO2-layer thicknesses, whose
calibrated thicknesses were between about 6 nm and 1000 nm. The MME results were
compared to the calibration data. For all samples, an SiO2-SiO double-layer model turned out to
be optimal. The measured total oxide layer thicknesses matched excellently with the calibration
values, within the estimated range of uncertainties. All the results are presented here. This is the
first comparison with traceable reference measurements demonstrating the validity of our novel
MME analysis method.

Keywords: layer thickness standards, optimization, depolarization, Mueller matrix,
spectroscopic ellipsometry

(Some figures may appear in colour only in the online journal)

1. Introduction

Spectroscopic ellipsometry (SE) is an indirect measuring tech-
nique widely used to measure the dimensional or optical

Original content from this workmay be used under the terms
of the Creative Commons Attribution 4.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

parameters of surface structures and surface layers. Our goal
is a traceable and reliable SE for dimensional metrology
of material parameters, layer systems and nanostructures on
surfaces. To achieve this, a full uncertainty consideration is
required, which must address uncertainty contributions arising
from hardware, measurement and analysis.

A schematic for SE is shown in figure 1. To derive the para-
meters of the surface being measured, an inverse problem has
to be solved, which is achieved by a fitting procedure. Within
this procedure, all the spectral measurements for each angle of
incidence (AOI) are combined into one merit function, which
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Figure 1. Schematic of a Mueller ellipsometer measuring by
reflection.

is optimized by comparing simulated and measured data. For
the simulation of the optical response of unstructured surfaces,
the Fresnel equations can be used. However, in the case of
structured surfaces, Maxwell’s equations have to be solved
using a so-called Maxwell solver.

If there is no depolarization, i.e. for fully deterministic
cases, the well-known Jones formalism can be used and sim-
ulated by the above-mentioned Fresnel or Maxwell solvers.
However, if depolarization occurs in ellipsometric measure-
ments, the Mueller–Stokes formalism is required to describe
the depolarization, i.e. MME has to be used. The incoming and
outgoing light is described by the Stokes vectors Sin and Sout
and the polarizing action of the sample (including depolariza-
tion) is described by a 4× 4 Mueller matrix M. This leads to
the following equation:

Sout =M ·Sin.

The full rigorous simulation of depolarizing cases would
offer the best possible accuracy, but it incurs a very high com-
putational cost. In practice, this usually requires too much
effort or is even impossible. So, there is an important ques-
tion: How to treat depolarization in the optimization process?
To answer this question, we have recently developed a new
analysis method forMME, which for the first time realistically
takes into account the uncertainty contributions introduced by
stochastic influences, such as (sample-induced) depolarization
and measurement noise [1, 2]. We present here the first applic-
ation of our novel analysis method on MME layer thickness
measurements. For this purpose, we measured a set of unstruc-
tured layer thickness standards with nominal layer thicknesses
of 6 nm, 70 nm, 160 nm, 380 nm and 1000 nm, which have
been calibrated by PTB using SE. However, the SE was itself
calibrated using another identically-manufactured set of layer
thickness standards with the same design, which were calib-
rated by PTB using traceable x-ray reflectometry (XRR)meas-
urements [3–5]. Thus, the SE used for the calibration process
is merely used as a comparator and the traceability of the cal-
ibration is essentially provided by XRR. The XRR calibra-
tion measurements were performed at the synchrotron radi-
ation source BESSY II in Berlin.

In contrast, the analysis of our MME measurement
data provides reference-free physical results and, at the
least a reasonable estimation of the stochastic uncertainty

contributions. Therefore, the comparison with the calibration
values provides an excellent test of the validity of our new ana-
lysis method.

In the next chapter, we concisely discuss a major challenge
of common merit functions and briefly describe our new merit
function. The third chapter presents and discusses the applica-
tion of our newmethod to the measured data of the layer thick-
ness standards. Finally, we end with a short conclusion and
outlook.

2. New merit function in a nutshell

It has been shown using simulated data of an SiO2 layer on
an Si substrate, in the ideal case of no experimental errors
and rawdata noise (and hence with an uncertainty resulting
from thickness variations within the spot size alone), that
even for small amounts of depolarization, commonmerit func-
tions lead to incorrect measurement uncertainty estimations
that are obviously much too small [1]. Therefore, from our
point of view, a merit function was needed that is able to
return the preset uncertainties and hence, for the first time,
also reliable uncertainty estimations in the case of real meas-
ured data. For this, we started with the well-known defini-
tion of a multivariate likelihood function (see equation (15) in
[1]), which reaches its maximum for the best-fitting paramet-
ers. The related χ2-function reaches its minimum for the same
parameters andwas our starting point for further developments
towards application in ellipsometry. Firstly, we integrated
measured depolarization as a systematic part of the measure-
ment process. To do so, we used Cloude’s covariance matrix
H [6]. After some computation, and benefitting from previous
work in [7], where Cloude’s covariance matrix H was already
pointed out to be interpretable as a statistical quantity describ-
ing depolarization, we derived a merit function, which impli-
citly uses depolarization as a weighting for each residual con-
tribution and also takes measurement noise into account [1]:

χ2 =
∑
λ

j†sim,λH
+
CF,λ jsim,λ.

Here jsim is a simulated Jones-element vector. HCF is the
filtered H matrix using the so-called Cloude filter [6]. This
merit function is used in the next chapter to analyse real data
from the layer thickness standards.

A first test using the above-mentioned simulated measure-
ment data again confirmed the performance of that function.
In a further simulation step the measurement noise was addi-
tionally considered, which results in increasing uncertainties
in the case of increasing noise levels and therefore again sug-
gests plausible results. It is clear that, in reality, many more
factors influence the measured data. However, from our point
of view it is an appropriate method to make a first plausibility
check of the new merit function, to establish whether it recov-
ers preset uncertainties. If the new method fails even in such
an ideal case, it will also fail in more complicated cases. For
further details, please refer to [1].

Beside the quantities already discussed, i.e. (sample-
induced) depolarization and measurement noise, for a full
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Figure 2. SENTECH SENresearch 4.0 spectroscopic Mueller
ellipsometer for measuring the full Mueller matrix.

uncertainty budget the determination of further quantities such
as device-related contributions would be required. Moreover,
for an even more precise description, the role of the degree
of coherence during measurements (e.g. [8–11]) must be
addressed as well. The implementation of a formalism rep-
resenting the theoretically modeled values by M or H in our
rigorous calculations, is a topic of current research.

3. Application to measurement data from layer
thickness standards

3.1. Data analysis

We performed measurements on layer thickness standards
with a Sentech SENresearch 4.0 Mueller ellipsometer (see
figure 2), measuring in the spectral range of 190 nm to
1000 nm at N = 940 discrete wavelengths at an AOI of 70◦

using a beam diameter of 2 mm.
For the data analysis we tested both a single (model 1:

height hSiO2) and a double layer model (model 2: heights hSiO2

and hSiO) via a maximum likelihood analysis. The dielectric
parameters for Si and SiO2 are taken from Herzinger et al
[12] and for SiO from Palik [13]. The main results are shown
in table 1. We used both the normalized χ2/N as well as
a reduced Bayesian information criterion BICred [1] derived
from the Bayesian information criterion BIC, to select the
best-fit model. For nearly all of the measured samples, we
obtained the result that the double-layer model SiO2-SiO on
Si is the optimal choice (bold values). This was confirmed in
this example from applying both χ2/N as well as the BICred
criterion. Only for the nominal 6 nm thick layer did both mod-
els fit equally well. For the double layer model (model 2),
very high normalized anticorrelations of the two fit parameters
hSiO2 and hSiO were observed (see the last column of table 1)
and hence this confirms our results in [1] and from the exist-
ing literature [14, 15]. This is exemplarily shown in the cor-
relation diagrams for the measurements of the nominal 6 nm
and 380 nm layers, respectively (figure 3). The correlation dia-
grams for the measurements of the other samples provide quite
similar results, consequently the derived uncertainties for the
individual layers become large.

Table 1. Analysis results of measurements of the layer thickness
standards (nominal heights: 6 nm, 70 nm, 160 nm, 380 nm and
1000 nm) analyzed via the maximum likelihood method. A
Bayesian information criterion BICred is applied to derive the
optimal model (indicated by bold values); The obtained χ2/N
values are shown for comparison.

Model hSiO2/nm hSiO/nm χ2/N BICred Corr.

1 6.9 — 1.20 1135 —
2 6.8 0.1 1.19 1128 −0.98
1 67.1 — 1.30 1228 —
2 66.0 1.2 1.15 1093 −0.96
1 162.0 — 1.47 1390 —
2 160.7 1.3 1.33 1268 −0.97
1 383.2 — 1.35 1273 —
2 381.1 1.9 1.22 1163 −0.97
1 995.2 — 1.25 1186 —
2 992.0 3.0 1.22 1156 −0.96

Figure 3. Normalized correlation diagrams for hSiO2 and hSiO;
examples shown for nominal thicknesses of 6 nm (top) and 380 nm
(bottom).

The obtained total heights hSiO2 + hSiO compare quite well
with the height values obtained for hSiO2 with the single layer
model. Particularly for the thin SiO layers used in model 2,
the statistical uncertainty of the layer thickness exceeds the
expected value of the layer height, so we obviously cannot
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Figure 4. Posterior distributions for the SiO2 (top) and SiO
(bottom) layer; examples are shown for the measurement data
obtained for the nominal 6 nm thick layer and layer model 2; note,
that these distributions differ significantly from a Gaussian
distribution.

expect a Gaussian statistical distribution of the obtained height
values.

It is therefore necessary to use Bayesian statistics. With
this, we calculated the posterior distributions: since no external
a priori information is available, we use a uniform height
distribution as the prior distribution. The posterior distri-
bution was sampled numerically with the Markov chain
Monte Carlo (MCMC) technique using the random walk
Metropolis algorithm [16, 17]. For more details, see [18]
and [19].

For the analysis of our MME measurements by apply-
ing the two-layer model, we get posterior distributions for
each best-fit SiO2 and SiO layer, each of which gives the
statistical probability density function for the height values.
As expected, all of the obtained posterior distributions are
asymmetric and not Gaussian-distributed. An example is illus-
trated in figure 4, for the measurement of the 6 nm nominal
layer thickness sample. This asymmetry is particularly intro-
duced by the natural lower limit at a height of 0 nm. As
already discussed in [1], such distributions are relatively dif-
ficult to interpret and the whole of the posteriors should be
regarded as the result, because the uncertainties are only barely
derivable.

Further on we have calculated the posterior distributions of
the complete oxide heights hSiO2 +SiO. The results are shown
in figures 5–9. For each posterior we have calculated 30 000
sample points.

Figure 5. Posterior distribution of the total oxide height
obtained for the measurement of the nominal 6 nm thick layer and a
Gaussian fit.

Figure 6. Posterior distribution of the total oxide height
obtained for the measurement of the nominal 70 nm thick layer and
a Gaussian fit.

Figure 7. Posterior distribution of the total oxide height obtained for
the measurement of the nom. 160 nm thick layer and a Gaussian fit.

3.2. Comparison with calibration data

All posteriors obtained for the complete oxide heights
hSiO2 +SiO are a particularly good approximation to a Gaus-
sian distribution. Thus, we can interpret the width of the
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Figure 8. Posterior distribution of the total oxide height
obtained for the measurement of the nominal 380 nm thick layer
and a Gaussian fit.

Figure 9. Posterior distribution of the total oxide height
obtained for the measurement of the nominal 1000 nm thick layer
and a Gaussian fit.

obtained distributions as the statistical uncertainty contribu-
tion Ustat of the MME measurements. The resulting mean val-
ues hMME = hSiO2+SiO and expanded uncertaintiesUstat (k= 2,
for a confidence level of 95% [20]) are given in table 2. Please
note that all the deterministic measurement errors are still
missing, so that, for example, the influence of dispersion data-
set uncertainties are yet to be included. However, the specific-
ation of uncertainty estimations for (n, k)-datasets are still not
established, therefore the corresponding databases contain no
uncertainties. Since the layer thicknesses and optical constants
are correlated, the inaccuracy of the constants results in sys-
tematic errors in the determined thicknesses. Therefore, Ustat

is not yet a completely expanded uncertainty.
In table 2 we have listed the corresponding MMEmeasure-

ment results and statistical uncertainty estimations obtained
for the complete oxide layer thicknesses and compared them
with the certified calibration data hcalib and Ucalib [21]. The
uncertainties of the calibration data, as specified in the calib-
ration certificates, comprise both the uncertainty of the XRR
calibration and the uncertainty of the transfer using SE, as
described above.

Table 2. Comparison of the MME measurement results for the
complete oxide layer thickness applying model 2, with the
calibration values and uncertainties.

hcalib/nm Ucalib/nm hMME/nm Ustat/nm En

7.0 1.4 7.1 1.1 0.06
67.3 1.4 67.3 0.8 0.03
162.2 1.5 162.0 0.9 0.1
383.1 1.5 383.0 1.7 0.04
998.6 5.2 994.6 3.6 0.63

The En-value provides a very good comparative indicator
of the agreement of the measurement results:

En =
|hcalib− hMME|√
U2
calib+U2

stat

. [18]

Although the obtained Ustat are not yet providing the full
measurement uncertainties of our MME measurements, we
have used them to calculate the En-values for this compar-
ison. This already gives us a reasonable idea of the degree
of conformity between the calibration values and our MME
measurements, since the complete uncertainty UMME will
always be larger than or equal to the statistical contributions:
UMME ⩾ Ustat. In any case, the observed En-values that are
well below one evidence an excellent and highly significant
agreement. Only for the nominal 1000 nm layer the En-value
is a bit higher (0.63), but it still indicates a good agreement
within the stated expanded uncertainties.

3.3. Analysis of depolarization behaviour

We further started to investigate the influence of depolarization
on Mueller matrices especially in the short-wavelength range
using as examples the (4,3)-M-elements of 6 nm, 160 nm and
1000 nm nominal layer thicknesses. The spectral behaviour
of the polarization index PD [1, 23–25] for M1,1-normalized
Mueller matrices with λk being the eigenvalues of the corres-
ponding Cloude covariance matrix H is shown below:

PD =

√∑4
k=1λ

2
k − 1

3
,

as well as the probably more meaningful entropy S resulting
from information theory [1, 26] (Pk: normalized eigenvalues):

S=−
∑4

k=1
Pk · log4Pk.

Also the associated χ2 -distributions are illustrated.
The selected (4,3)-M-elements (see figure 10) of the meas-

ured data for the stated layer thicknesses are now com-
pared to the cases with (MCF the Cloude-filtered M [1]) and
without depolarization information (MCF,nd). To get MCF,nd,
theMCF matrix is first transformed to its correspondingCloude
covariance matrix H, which has four eigenvectors and four
eigenvalues in the interval (0,2). To get the nearest H without
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Figure 10. Cloude-filtered (4,3)-elements of Mueller matrices for
nominal thicknesses of 6 nm, 160 nm and 1000 nm (from top to
bottom) at AOI = 70◦ with (MCF) and without (MCF,nd)
depolarization.

depolarization, the greatest eigenvalue is set to 2 and all the
others are set to 0. With these new eigenvalues and the ori-
ginal eigenvectors we compute H now containing no depolar-
ization (see [1]), which is then further transformed to MCF,nd

[1]. One can see a significant deviation from MCF to MCF,nd

especially in the short-wavelength range, which increases
with increasing layer thickness. Therefore, the depolariz-
ation also increases with thickness and with reciprocal
wavelength.

As a more quantitative investigation, both PD [23–25] and
S [26], as plotted in figure 11, confirm that the depolarization
increases with thickness and reciprocal wavelength. Further-
more, some characteristic depolarization peaks (already men-
tioned in e.g. [11, 27]) are observable for the nominal 1000 nm
standard in slightly decreasing energetic distances (from
0.55 eV to 0.40 eV), which would be equidistant without dis-
persion. For thinner layers (e.g. 6 nm and 160 nm) such peaks
also occur, but shift to shorter wavelengths. This characteristic

Figure 11. Polarization index PD and entropy S for nominal
thicknesses of 6 nm, 160 nm and 1000 nm (from top to bottom) at
AOI = 70◦.

behaviour occurs due to the finite spectral resolution of the
instrument, divergence of the ellipsometric light beam and
non-uniformity of the oxide film thickness within the spot size
[8, 28, 29], which mainly originates from the non-planarity of
the air-SiO2 and the SiO2-Si boundaries. Since the light beam
therefore crosses slightly different oxide heights many times,
this leads to thickness-dependent multiple interference (e.g.
[30]). From this incoherent superposition the resulting beam
yields an averaged measured Mueller matrix M (or equival-
ently a Cloude covariance matrixH) of local Mueller matrices
over the area of the light spot of the ellipsometer.

A qualitative estimation confirmed that the characteristic
peaks are introduced by interference effects.

Looking at the χ2-distributions of our merit function (see
figure 12), which should optimally have a value of one over
the whole spectral latitude, for the selected 6 nm, 160 nm and
1000 nm layer thicknesses one can see values very close to
one for the 6 nm layer except in the UV range. Despite lots
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Figure 12. χ2 (for the new optimization) for nominal thicknesses of
6 nm, 160 nm and 1000 nm (from top to bottom) at AOI = 70◦.

of depolarization peaks, in the case of the 1000 nm layer (see
figure 11), please note the greatly weakened peaks occuring in
the χ2-distribution.

For comparison with the standardM-optimization method,
figure 13 illustrates the corresponding χ2-distributions for the
same selection of layer thicknesses, which should optimally
have a value of zero for the whole spectrum. For all layer thick-
nesses a stronger spectral dependence is observable, which
increases from a relatively slight dependence at 6 nm with
increasing values mainly in the UV range, again, to a strong
dependence at 1000 nm. The depolarization peaks are still
much more present in the case of the last thickness and there-
fore have a more significant perturbing influence on the data
analysis than in our case.

The new merit function therefore overcomes the variations
of the spectral contributions much better. This indicates once
more, that with our merit function, the calculated uncertainties
are more reliable than those computed by the current merit
functions.

Other possible questions arising are: Can the depolarization
due to the above-mentioned effects be neglected for model-
ing theoretical values in the case of 6 and 160 nm thicknesses,
since it is relatively weak there? And: Does the depolarization
in the case of the nominal 1000 nm thickness not have to be
considered, to calculate the theoretical values for resilient res-
ults, owing to its characteristics visible in figure 11?

Regarding these questions, separate contributions to the
discussion of different film thicknesses are presented below:

Figure 13. χ2 (for M-optimization) for nominal thicknesses of
6 nm, 160 nm and 1000 nm (from top to bottom) at AOI = 70◦.

3.3.1. To 6 and 160 nm. Looking at PD and S (figure 11),
again, there are usually only small deviations from one and
zero, except in the UV range. The depolarization due to, inter
alia, non-uniformity of the layer thickness, is therefore only
rather weak. This could lead to the assumption that depolariz-
ation can be neglected in this case. In [1], however, we have
already seen due to uncertainty simulations, that for the spe-
cification of a reliable measurement uncertainty estimation it
is crucial to also take weak depolarization contributions into
account, even for an oxide layer thickness of 2 nm. Hence,
from our point of view, depolarization must additonally be
considered in the simulated quantity of our merit function for
such thinner layers as well. As soon as this is implemented it
will confirmwhether our current result for χ2 and the excellent
En-values can be improved further.

3.3.2. To 1000 nm. The behaviour of PD and S visible in
figure 11 due to the finite spectral resolution of the instru-
ment, etc, usually has a systematic deviation from one and
zero. Of course, in this case, depolarization must certainly be
considered for the calculation of theoretical values using suit-
able models realized by a formalism working with M or H
[8, 9, 11]. This is part of the current research in our group
but not covered in this manuscript. However, comparing the
respectiveχ2-distributions in figures 12 and 13 again, we could
already show evidence that our result is more reliable than
that calculated by the established M-method. Furthermore,
although the associated En-value admittedly deviates about
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one order of magnitude from the others, it is nevertheless
clearly smaller than one and therefore already indicates the
presence of a significant overlap between our value and the
calibrated value within the expanded uncertainties. Hence, the
presented result for the 1000 nm oxide film is already resilient
and shows that we are on the right track.

4. Summary and outlook

On our route to reliable uncertainty estimations and trace-
ability in Mueller elipsometry, we concentrated first on
stochastical uncertainty contributions induced by the measure-
ment and analysis processes, namely measurement noise and
depolarization.

We presented the first application of our improved analysis
technique on MME measurements for the determination of
the layer thicknesses of layer thickness standards with nom-
inal values in the range of 6 nm to 1000 nm. We showed by
a maximum likelihood analysis, that for all thickness stand-
ards an SiO2-SiO on Si model is a more adequate choice than
a single SiO2 layer model, as indicated by appling a modi-
fied BIC. We performed a Bayesian analysis via MCMC. The
obtained height posterior distributions of the individual SiO2

and SiO layers turned out to be non-Gaussian and strong anti-
correlations between SiO2 and SiO were observed. We also
calculated the distribution of the total oxide layer thickness
hSiO2 +SiO and obtained Gaussian distributions for all samples.
We determined the mean values, standard deviations and also
the statistical contribution to the expanded uncertainties Ustat,
respectively. These results of our MME measurements com-
pare very well with the calibration values, so that all En-values
are significantly smaller than one. The inclusion of system-
atic uncertainty contributions might further increase the total
uncertainty to a slight degree, thus decreasing the En-values
even further.

While the data analysis significantly favoured the two layer
model (model 2) and it was notably possible to derive the com-
bined oxide heights hSiO2 +SiO, due to the observed strong anti-
correlation we could not derive the thicknesses of the indi-
vidual SiO2 and SiO-layers very meaningfully from the MME
measurements. Further steps will be systematic investigations
of the influence of dispersion dataset uncertainties and of
further device-related uncertainty contributions (e.g. related
to the retarder or spectrometer calibrations) on the MME
measurement results to obtain a full uncertainty budget, as
an important step towards self-traceable MME metrology. In
addition, a more precisely mathematical description of coher-
ence and incoherence during the measuring process, address-
ing the previously-mentioned finite spectral resolution, light
beam divergence and non-uniformity of the layer thickness
under test, will be of interest as an advancement of our cur-
rent merit function. Since an averaged Mueller matrix M (or
equivalently an averaged CloudecovariancematrixH) is meas-
ured, an averaged M (or H) must also be calculated for the
simulatable quantity in the modeling process. The local M
can be calculated using the assumption that the thickness is
constant within sufficiently small areas of spot size. However,

they depend on the position of the point within the spot size
for which the local M is calculated. A general formalism for
this is presented, for example, in [8, 9, 11], but this is still not
addressed in our merit function and hence it is currently a work
in progress in our group.
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