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Abstract
Measurements of technical objects can be done with contact and non-contact approaches.
Contact methods are accurate but slow. On the other hand, non-contact methods deliver rapid
point acquisition and are increasingly being used as their precision mounts. However, multiple
scanning parameters such as the incident angle, object colour and scanning distance influence
the measurement error and uncertainty when capturing the geometry of the object. With the aim
of creating a generalised model that considers the influence of the aforementioned scanning
parameters with satisfactory accuracy, a model for predicting the random measurement error
based on machine learning (ML) is proposed in this study. Data acquired from measurements
with varying scanning distances, incident angles and surface colours were used to train ML
models. The tested ML methods included linear regression, support vector machine, neural
network, k-nearest neighbour, AdaBoost and random forest. The best-performing trained model
was the random forest, with a standard deviation of relative differences of 1.46% for the case of
red surfaces, and 5.2% for the case of an arbitrarily coloured surface, which is comparable to
results achieved with model-based methods. The trained models and the data are available
online.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The field of optical inspection methods and specifically laser
triangulation measurements has developed immensely as it
enables fast data acquisition times [1, 2]; however, problems
remain concerning the accuracy and the reliability of themeas-
urements [3]. The main advantages over tactile measurements
[4] include their contactless measurement and high sampling
rate [5–7].

Original content from this workmay be used under the terms
of the Creative Commons Attribution 4.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

It is important to identify the random measurement error
(RME) of scanning results. The RME is a component of the
measurement error that in replicate measurements varies in
an unpredictable manner [8]. It can also be referred to as the
measurement noise. The RME quantifies the scatter (displace-
ment) of the measured point from the expected position and
forms a distribution when measuring a set of repeated meas-
urements. It depends on a few factors, the most important of
these being the angle of inclination and distance of the sensor
from the surface [9]. Other factors also influence the RME,
e.g. the colour [10], the texture of the surface [11, 12] and the
reflectiveness. A study by Gerbino et al [1] pointed out that
the object-to-scanner angular position has a statistically sig-
nificant effect on the measurement accuracy, while both the
lighting and the filter factors are not (statistically) significant.
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In a study by Vukašinović et al [13] those parameters were
gathered into an equation model to predict and evaluate the
quality of themeasurement results. Reflectivity is, in general, a
function of more parameters, like surface roughness and ambi-
ent light, but the most important parameter that was observed
was the colour of the surface for the matte Lambertian reflec-
tion in the research objects [13].

The RME expresses the quality of the measurement. Scan-
ning parameters that provide the least point deviations can be
found using the least-squares method as described by Isa et al
[14]. By exploring the principles of laser triangulation, the col-
our error can be obtained via the Phong model, whereas the
relationship between the measurement error and colour can
be achieved through experiments as studied by Li et al [15].
Based on the results of their study, a colour error compens-
ation method was proposed, which produces a colour-error
library according to the error of the different colours. The
experimental results showed that the system would reduce the
error to 10% and retain the colour measurement error to within
90 µm.

Measurement uncertainty can be expressed based on
repeated measurements (type A) [16], or using the available
information to propagate the uncertainties through the meas-
urement (type B). Type B evaluation can include informa-
tion from previous measurements, manufacturer’s specifica-
tions and data attained from the calibration process [8]. When
only the random error is included in the estimation of themeas-
urement uncertainty, it expresses the precision of the meas-
urement. The measurement precision can be used to define the
measurement repeatability [17]. In a study byMohammadikaji
et al [18], the authors developed a mathematical framework
for statistical modelling and propagation of the uncertainties
in 3D inspection using laser scanners. The authors split the
sources of uncertainties into three main groups: laser detection
uncertainty, positioning uncertainty and camera intrinsic cal-
ibration uncertainty. By evaluating the adeptness of the meas-
urement in several different sensor configurations, they were
able to apply the proposed approach (based on analytic meth-
ods linearly approximated by Taylor series) to rapid prototyp-
ing of demanding laser triangulation setups, where the preci-
sionmust meet certain tolerances. The standard deviation (SD)
of a group of points is a good indicator of a random error in
the measurement. A study by Gestel et al [5] proves the great
influence of scan depth on the SD. A study by Li et al [19]
presents a scanner posture optimisation method for reducing
the measurement uncertainty of laser scanning data for com-
plex surfaces. The method optimises the pitch and deflection
angle and finds an optimal scanning posture within the posture
adjustment interval so that the measurement uncertainty in the
scanning area is minimised. It can effectively reduce the meas-
urement uncertainty represented by the SD by 15%, depending
on the complexity of the scanning surface.

Machine learning (ML) methods can likewise be used
for determining the RME. Moreover, ML methods are more
commonly being used to improve the processes related to
non-contact 3D scanning. One of the applications presented
in [20] is the simplification of information about geometry

achieved from point clouds. The authors tested several clus-
tering methods (tree decomposition, binary partition, k means
and hierarchical clustering) to create clusters based on the
SD of points in order to recognise which points are on the
same surface. With this method, it is possible to find dis-
tinct geometrical features of the object from the point cloud.
In the paper, a method for feature-sensitive simplification of
3D point clouds that is based on ε-insensitive support vector
regression (ε-SVR) is presented.

ML algorithms can also be used for clustering to detect
cracks on the scanned surface of steel slabs [21], where the
support vector machine (SVM) was used as a classifier. In
a study by Tootooni et al [22] the researchers used a novel
method to invoke a spectral graph of Laplacian eigenvalues
as a function derived from the laser-scanned 3D point cloud
data in combination with various ML techniques. The result
was a new approach that categorised the dimensional vari-
ance of an additive manufactured component by sampling less
than 5% of the (per part) acquired 2 million 3D point cloud
data. SixML approaches were tested: sparse representation, k-
nearest neighbour (kNN), neural network, naïve Bayes, SVM
and decision tree. Of these, the highest classification accur-
acy (F-score > 97%) was achieved using the sparse repres-
entation technique. In a study by Wissel et al [23] artificial
neural networks (ANNs) were used for calibration purposes
of a galvanometric triangulation device based on two mirrors.
Other supervised data-driven methods such as ridge regres-
sion, SVR and a Gaussian method were compared with the
ANNs. The authors demonstrated that the data-driven mod-
els outperformed the model-based methods available (based
on ten-fold cross-validation) and delivered comparable effi-
ciency relative to a calibration memorisation lookup table
(physical model/manual setup). The findings indicate that gen-
eralisation problems can emerge from the off-the-shelf use of
ANNs. It has proved beneficial to limit the space of functions
using kernel-based learning. ML methods have proven to be
beneficial when used for calibration purposes, as they avoid
constructing mathematical models, which are tied to specific
applications. In comparison, the model-based techniques work
with the noise-free data assumption and, therefore, struggle
with measurement noise and imperfect data [24], which is also
valid for ML methods. Due to the flexibility and the possib-
ility of creating a model without a precise knowledge of the
process, the approach of using data-driven techniques is more
widespread [25]. However, they present different challenges,
which include small or incomplete datasets, high dimensional
data, process non-linearities and process delays and dynam-
ics. The authors in [9] proposed a new model for defining
the optimal settings of morphological parameters in contact-
less laser scanning, which was intended to improve the meas-
urement accuracy. The scanning distance and scanning incid-
ence angle were identified as two of the most influencing
factors based on surface morphology. A mathematical pre-
diction model for estimating the SD of the final surface was
developed in terms of the above scanning parameters using
response surface methodology (RSM). To improve the accur-
acy, themodel was further optimiwed using amodified particle
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swarm optimisation (MPSO) algorithm. The proposed meth-
odology reduced the SD by 21.6% and 11.77%, respectively.
The model was created and tested only on white surfaces. The
developed MPSO algorithm shows significant improvement
over PSO results as well as the RSM method by 6.7% and
27.6%, respectively. The mean absolute percentage error was
used as a metric to evaluate the performance of the model. The
higher value of the determination coefficient (R2 = 98.02%)
indicated that less than 1.98% of the total variations in SD are
not clarified by the model. If a model is created that returns
the measurement error depending on the measurement con-
ditions, that can be used for path planning for 3D scanning
devices [26].

Our study aims to use ML methods for predicting the RME
given the scanning parameters. The intent is to develop a more
accurate model for determining the RME than was developed
in the study by Vukašinovič et al [13]. The usefulness of the
approach has previously been proven in a study by Korošec
et al [27], where a methodology developed on a flat surface
was further used on a curved surface to reduce the random
error by changing the measurement parameters. ML methods
can be used for classification or regression tasks, depending
on the output variable. In this case, the RME is a numerical
value and the attributes are all numerical; therefore, regres-
sion methods will be used. This presents a novel approach for
creating a data-driven model using ML, capable of determ-
ining RME by considering the scanner position and surface
properties.

1.1. Data acquisition

The measurement data of the study [13] were the basis for cre-
ating several prediction models of the RME. The prediction
models were built with ML methods and their results were
later compared with measured values.

The data were acquired with a system based on the prin-
ciple of laser optical triangulation. The measurement system
was a Zephyr KZ-50 laser triangulationmeasuring sensor from
Kreon mounted on a numerically controlled machine. The
measurements were done in a controlled environment with
constant temperature, humidity and dimmed lights with no dir-
ect light impact on the measurement surface or the sensor. The
system is described in detail in article [13].

The RME is a value that presents information about the
expected spread of the measured points from the ideal posi-
tion, and is usually presented as an SD of the displacements of
measured points from a reference surface. In this study, this is
a scatter of the measured point cloud from the ideal surface.

According to Gestel et al [5], the SD of the residual dis-
tances of the measurement points to the plane is a good indic-
ation of the random error.

Themeasurements were carried out on three differently col-
oured flat stone gauges. The surfaces typically reflect a wider
spectrum of light and do not have narrow, monochromatic
properties of reflection. A narrow-band filter was used for the
sensor and the laser-light intensity and exposure time of the
sensor is set according to each surface to obtain a CCD sensor
light intensity that is as close as possible for all the samples.

The area of interest in the analysis was the reflectance level
around the wavelength of 675 nm.

Surfaces of different colours were found to have different
reflectivities of that laser wavelength. Red surface reflectivity
is 87%, blue 7% and green 23% compared to the white surface.
This value shows the intensity of the reflected light from a sur-
face with diffuse matte reflection, compared with the intensity
of the light that is reflected from a white surface with Lamber-
tian diffuse reflection [13]. Roughness also plays a role in the
reflectivity of the surface. The measured roughness Ra of the
red, green and blue stone gauges was 3.34, 3.14 and 1.08 µm,
respectively. The roughness of the surfaces was in the same
size range, and should not cause an additional source of error.

1.2. Data structure

The RME was evaluated as an SD of the point cloud scatter.
The SD was calculated using the distances of the individual
points in a perpendicular direction to the virtual ideally flat
surface, which was aligned to the point cloud with the least-
squares method. Therefore, the RME was determined with
equation (1) for the standard deviation σ of the population:

σ =

√∑N
i=1 (xi− x̄)2

N− 1
(1)

where xi is the individual distance of the point to the flat sur-
face and x̄ is the average of the distances of the N number of
points in a measurement.

Seven different measurement distances ranging from
130 mm to 190 mm, and 14 different measurement angles ran-
ging from 0◦ to 65◦ with a 5◦ increment weremade. Therefore,
each surface was measured with 98 different combinations of
measuring distance and incident angle. The combinationswere
tested in a random order to minimise any possible systematic
error.

The RME for the individual surfaces is illustrated in figure 1
for the red, figure 2 for the green, and figure 3 for the blue
surface. The figures display how the RME is dependent on
the angle of inclination and the distance of scanning, while
also considering the reflectivity of the surfaces. From these
figures, it is already possible to determine the area where the
minimum RME would occur. For the red surface, this would
be at an angle of inclination of 50◦–55◦ and a distance of
130–140 mm.

The number of acquired points during the scanning proced-
ure is also an indicator of the quality of the measurement [28].
The red surface had the best results and its data were firstly
used in theML process. For a furthermodel that can predict the
RME also taking into account the surface colour, the datasets
for the green and blue surface were first trimmed so that they
only included measurements where the point cloud had at least
1000 points and could therefore represent a trustworthy meas-
urement. The minimum amount of 1000 points was also selec-
ted as this is the estimated minimum amount of needed points
for reliable surface reconstruction from the point cloud. After
the trimming process, the red surface was left with all of the 98
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Figure 1. Random measurement error on the red surface.

Figure 2. Random measurement error on the green surface.

measurements, the green surface with 87, and the blue with 60.
These data were used in the ML process. Therefore, the attrib-
utes in the data were the scanning distance, scanning incident
angle and surface reflectivity rate. The target variable is the
RME. The attributes and the target variable all have numerical
values.

1.3. Research goals

From figures 1–3 it is possible to see where the best scanning
conditions are for each of the surface colours. The red surface
also has the smallest RME. However, the goal of the study is
to create a model that is able to predict the RME for a given
random set of input data for the red colour, and then for all the
colours combined. This was previously done in the article [13]
with the ANOVAmethod, which shows the factorial response.

Figure 3. Random measurement error on the blue surface.

However, this study aims to create a more accurate model with
the use of ML methods.

2. Methodology

The used ML methods were linear regression, SVM, ANN,
kNN, AdaBoost and random forest.

The parameters, when training on the red surface data, were
set to the values described below.

Linear regression, which learns a linear function from the
input data and can identify the relationship between the input
and output variable, used no regularisation.

SVM was used next, which is an ML technique that per-
forms linear regression in a high-dimension feature space. Its
estimation accuracy depends on the proper setting of the para-
meters [29]. The regression cost in the SVMwas set to 0.9 and
the complexity bound to 0.15. A radial basis function (RBF)
kernel was used.

The ANN is a multi-layer perceptron algorithm that is cap-
able of learning non-linear models. The ANN was set up to
use 130 neurons in the hidden layers, a logistic sigmoid activ-
ation function and an L-BFGS-B solver for weight optimisa-
tion. The maximal number of iterations was set to 150.

The setting for the kNN algorithm, which searches for the
closest training examples in the feature space and uses their
average as prediction, were set to four neighbours. It used
the Euclidean (straight-line) distance, and weights were set
according to the distance, which gives closer neighbours of
a query point a greater influence than the neighbours further
away.

The random forest algorithm creates and uses a collection
of decision trees. Each of the trees is constructed from a certain
subset of random attributes, from which the best attribute for
the split is calculated. The final model performance is based
on the majority vote of the developed trees. The number of
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Figure 4. Workflow of training, validating and using the models in the study.

Table 1. Results of the evaluation for the red-coloured surface.

Distance (mm) Angle (◦) Actual value (µm) ANOVA prediction (µm) Random forest (µm) kNN (µm)

160 5 16.01 16.84 16.46 16.32
170 15 16.74 17.56 16.64 16.73
140 30 10.43 11.25 10.33 10.60
160 40 13.96 13.27 14.20 13.96
130 55 8.46 8.38 8.62 8.89
Standard deviation of relative differences (%) 4.7 1.46 1.86

 

 

Figure 5. Trained random forest model results on the red surface
with test data from table 1. The surface represents the prediction
model, while the crosses represent the results of the
measurement.

trees in the random forest was set to 65 and two attributes were
considered at each split.

The AdaBoost model also used 65 estimators (randomly
generated trees) with a square regression loss function. The
AdaBoost algorithm is an ensemble method. It uses other
algorithms and boosts their performance. It uses decision trees
with only one node and two leaves. The previous decision
tree influences how the next one is constructed. The algorithm
focuses on the instances with higher errors with increasing
their weights. Moreover, the final result is determined by
weighting the results from the individual trees.

Some of the data were excluded from the learning process
and used for validating the model. The ML parameters for
the algorithms were firstly set to achieve the best result dur-
ing cross-validation according to the evaluation criteria. The

Table 2. Results of the N-fold cross-validation including the
reflectivity.

Model MSE RMSE MAE R2

kNN 2.013 1.419 0.962 0.973
Random forest 2.194 1.481 0.976 0.971
Neural network 2.365 1.538 1.086 0.969
AdaBoost 2.621 1.619 1.165 0.965
Linear regression 11.583 3.403 2.732 0.847
SVM 21.094 4.593 3.890 0.721

cross-validation splits the training data into a determined num-
ber of folds; in this case ten. Each of the folds is then excluded
from the learning process and used for testing. This is repeated
for all the folds and the result is the average value achieved
from all the folds.

The workflow of how the methods were trained and evalu-
ated is presented in figure 4.

To train the methods to determine the RME taking into
account the surface colour, ten new measurements on a white
surface were also included. Thirteen data instances were
excluded from the training set to be used for testing and val-
idation: three for the blue, four for the green and red, and
two for the white surface. The white surface has a reflectiv-
ity of 100%. The ML methods used were the same as for
training on the red-coloured surfaces. No regularisation was
used for the linear regression method. The SVM used the
RBF kernel, a regression cost of ε = 0.95 and a complex-
ity bound of C = 0.15. The neural network used 100 neur-
ons in the hidden layers, an identity activation function and
an L-BFGS-B solver. The maximal number of iterations was
set to 50. The kNN used four neighbours, Euclidean distance
and distance weighting. AdaBoost used 50 trees with a square
regression loss function and a learning rate of 0.995. Likewise,
the random forest used 50 trees and it used two attributes at
each split.
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Table 3. Results for predictions with the trained random forest model.

Distance (mm) Angle (◦) Surface reflectivity (%) Actual value (µm) Random forest (µm) Relative deviation (%)

160 25 7 31.40 28.90 −7.94
170 15 7 30.47 32.38 6.26
140 0 7 19.79 20.19 2.01
160 55 23 23.77 25.00 5.19
150 30 23 18.48 19.11 3.40
160 15 23 23.79 23.83 0.17
130 10 23 15.01 15.54 3.54
190 0 87 20.43 20.95 2.53
160 10 87 15.87 15.91 0.27
150 60 87 11.29 11.25 −0.35
130 10 87 10.15 10.53 3.71
137 47 100 24.30 21.75 −10.48
188 51 100 22.80 20.98 −7.98
Standard deviation of relative differences (%) 5.2

The performances of the presented methods are dependent
on the choice of ε-SVR parameters (ε, C and kernel). C and ε
have a high influence on the reduction, and higher values of ε
and C will lead to a higher reduction ratio [20].

2.1. Criteria for evaluating the results

The performance estimators used were the mean square error
(MSE), root mean square error (RMSE), mean absolute error
(MAE) and the correlation coefficient (R2). These parameters
are regularly used for assessing the feasibility of the models
used in numerical prediction. They all have a positive value.
Themean square error gives a higher weight to predictions that
have a higher absolute error.

3. Results and discussion

The results from the red-coloured surface are presented in
table 1. The two best-performing ML methods were kNN and
random forest. These two methods are compared in detail with
the results acquired with the derived equation from the study
[13]. Both of the ML methods had an R2 = 0.994.

According to the SD of the relative differences, the trained
random forest model is capable of predicting the RMEwith an
SD of 1.46% and performed best. Its predictions were far more
accurate than the predictions with the equation derived from
article [13], which was also outperformed by the second-best
model, kNN. Figure 5 displays the predictions of the trained
random forest model for increments of one degree and a dis-
tance of one millimetre. The crosses represent the true meas-
ured values, also presented in table 1. The darker crosses rep-
resent the data which have higher RME values than the model
predicts while the lighter crosses have a lower than predicted
value. The lines near the crosses present the difference to the
predicted value.

The next training was done on data from multiple surfaces.
The training of the models and the N-fold cross-validation
for all the surface colours showed that the kNN and the ran-
dom forest models performed best and achieved the highest
R2. They also achieved a smallMSE, which disproportionately

punishes the outlying data, and that indicates that all the data
are predicted near the true values. The results are shown in
table 2.

The trained models were then used to predict the values for
the 13 instances that were excluded from the training process.
The random forest model performed best and achieved an
MSE of 1.724 (µm) and a correlation coefficient of 0.956. In
this case, it performed far better than the other trained models.
Table 3 presents the results for the prediction with the trained
random forest model.

The trained model is capable of predicting the RME with
an overall SD of 5.2%. The prediction performs worse at a
surface reflectivity of 7%, which represents the blue colour, as
there were fewer training data available due to the pruning and
pre-processing of the data. It had the worst performance at the
surface reflectivity of 100%, as there were only eight training
data for that value. However, it achieved satisfactory values in
the surface reflectivity range of 87%–23%.

4. Conclusion and outlook

In the paper, a previously developed method was improved
with the principles of ML. The method is able to determ-
ine the RME more accurately in relation to the measure-
ment distance, incident angle and surface reflectivity, in com-
parison to the previously developed method. This presents
a novel approach for creating a data-driven model for pre-
dicting the RME of laser triangulation scanners using ML.
The model is capable of determining the RME in the envir-
onmental conditions that were used during the study. To
be generally useful in all conditions, parameters such as
lighting should be included in the training of the model.
However, it was indicated in the study how this could be
achieved.

The procedure of determining the RME in the study is
straightforward and can be easily implemented for other types
of laser triangulation scanners.

Multiple ML methods were tested for each case and
the random forest gave the best results for both instances.
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The performance of all the methods depends greatly on
the setting of the parameters. Moreover, testing multiple
methods can cause overfitting of the model to the data,
as the best performing model is possibly only best on the
selected data. If there were more training data available it
is plausible that other methods would perform better, as,
for instance, neural networks perform better with bigger
databases.

Given that the models predict the quality of the meas-
urements, they can be used for optimally setting the scan-
ning parameters in an automated setting. This can easily be
achieved by calculating the normal of the surface and setting
the camera to consider the model’s output.

More measurement instances with varying surface colours
should be included in the training process in further work, to
increase the accuracy of the model.

Data availability statement

The trained models and training and test data are available on
Zenodo under open access, where they can be downloaded:
https://doi.org/10.5281/zenodo.4009138.
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