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Abstract
The main purpose of this paper is to establish the sufficient condition for the restricted isometry
constant δs in compressed sensing by using T. Cai and A. Zhang idea. Let h ≡ x? − x and
h = (h1, h2, · · · , hn), where x is an unknown signal and x? is the CS-solution. For simplicity, we
assume that the index of h is sorted by |h1| ≥ |h2| ≥ · · · ≥ |hn|. Let s be a fixed positive integer,
T0 = {1, 2, · · · , s} and T1 ⊂ T0. In this paper, we focus the quality of hT0 and research good
conditions for the recovery of sparse signals by investigating the difference between ‖hT1‖1 and
‖hTc

1
‖1. We shall show that if δs < 0.5 under an assumption for ‖hT1‖1, and similarly if δ 3

4
s < 0.414

or δ 24
25

s < 0.436, then we have stable recovery of approximately sparse signals.

Keywords: Compressed sensing, Restricted isometry constants, Restricted isometry property, Sparse
approximation, Sparse signal recovery.

1 Introduction
This paper introduces the theory of compressed sensing(CS). For a signal x ∈ Rn, let ‖x‖1 be l1
norm of x and ‖x‖2 be l2 norm of x. Let x be a sparse or nearly sparse vector. Compressed sensing
aims to recover high-dimensional signal (for example: images signal, voice signal, code signal...etc.)
from only a few samples or linear measurements. Efficient recovery of sparse signals has been a
very active field in applied mathematics, statistics, machine learning and signal processing. Formally,
one considers the following model:

y = Ax+ z, (1.1)

where A is a m× n matrix(m < n) and z is an unknown noise term.
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Our goal is to reconstruct an unknown signal x based on A and y are given. Then we consider
reconstructing x as the solution x? to the optimization problem

min
x
‖x‖1, subject to ‖y −Ax‖2 ≤ ε, (1.2)

where ε is an upper bound on the the size of the noisy contribution.
In fact, a crucial issue is to research good conditions under which the inequality

‖x− x?‖2 ≤ C0‖x− xT0‖1 + C1ε, (1.3)

for some suitable constants C0 and C1, where T0 is any location of {1, 2, · · · , n} with number |T0| = s
of elements of T0 and xT0 is the restriction of x to indices in T0. One of the most generally known
condition for CS theory is the restricted isometry property(RIP) introduced by [1]. When we discuss
our proposed results, it is an important notion. The RIP needs that the subsets of columns of A for all
locations in {1, 2, · · · , n} behave nearly orthonormal system. In detail, a matrix A satisfies the RIP of
order s if there exists a constant δ with 0 < δ < 1 such that

(1− δ)‖a‖22 ≤ ‖Aa‖22 ≤ (1 + δ)‖a‖22 (1.4)

for all s-sparse vectors a. A vector is said to be an s-sparse vector if it has at most s nonzero entries.
The minimum δ satisfying the above restrictions is said to be the restricted isometry constant and is
denoted by δs.
Many researchers has been shown that l1 optimization can recover an unknown signal in noiseless
case and noisy case under various sufficient conditions on δs or δ2s when A obeys the RIP. For
example, E.J. Candès and T. Tao have proved that if δ2s <

√
2 − 1, then an unknown signal can be

recovered [1]. Later, S. Foucart and M. Lai have improved the bound to δ2s < 0.4531 [2]. Others,
δ2s < 0.4652 is used by [3], δ2s < 0.4721 for cases such that s is a multiple of 4 or s is very large by [4],
δ2s < 0.4734 for the case such that s is very large by [3] and δs < 0.307 by [4]. In a resent paper, Q.
Mo and S. Li have improved the sufficient condition to δ2s < 0.4931 for general case and δ2s < 0.6569
for the special case such that n ≤ 4s [5]. T. Cai and A. Zhang have improved the sufficient condition
to δs < 0.333 for general case [6]. T. Cai and A. Zhang have improved the sufficient condition to δk
in case of k ≥ 4

3
s in particular δ2s < 0.707 [7]. H. Inoue has obtained the sufficient conditions of

δ̃s < 0.5 and δ̃2s < 0.828 by using rescaling method [8].
Let h ≡ x? − x and h = (h1, h2, · · · , hn), where x is an unknown signal and x? is the CS-solution.
For simplicity, we assume that the index of h is sorted by |h1| ≥ |h2| ≥ · · · ≥ |hn|. Let s be a
fixed positive integer, T0 = {1, 2, · · · , s} and T1 ⊂ T0. As stated above, the present best sufficient
condition for the restricted isometry constant of order s is δs < 0.333. In this paper, we shall improve
the sufficient condition for δs by investigating the difference of the l1-norm ‖hT1‖1 and the l1-norm
‖hTc

1
‖1, where T1 = {1, 2, · · · , s

2
}. In more details, in Theorem 2.1 it is shown under the assumption

that A obeys the RIP of order s and δs < 1
2

that if

min{|hi|; i ∈ T1} ≥
‖hTc

1
‖1

s/2
, (1.5)

then

‖x− x?‖2 ≤ C1ε, (1.6)

if otherwise, then

‖x− x?‖2 ≤ C0‖x− x s
2
‖1 + C1ε. (1.7)

This means that in case of noiseless, if (1.5) holds, then x is completely recovered as x? and if
(1.5) does not hold, then every s

2
-sparse vector x is completely recovered as x?. This result shows
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that the sufficient condition for δs can be substantially improved, but the condition for the sparsity
becomes worse. On the other hand, any sufficient conditions for δs′ (s′ < s) have never been given.
By changing a subset T1 of T0 or the condition (1.5), we shall similarly give sufficient conditions for
δs′ (s′ < s) in Theorem 2.2 and Theorem 2.3.

Our analysis is very simple and elementary. We introduce the proposed results using the T. Cai
and A. Zhang idea and H. Inoue idea. We regard Theorem 2.1, Theorem 2.2 and Theorem 2.3 as the
main results in this paper. Otherwise, in Section 2, we prepare some notions and lemmas to prove
the main theorems, and we introduce new bounds of δs and δs′ (s′ < s).

2 Main Theorem

2.1 Preliminaries and Some Lemmas
We first prepare three lemmas needed for the proof of Theorem 2.1, Theorem 2.2 and Theorem 2.3.

The following result plays an important role in this paper.
Lemma 2.1. For a positive number α and a positive integer k, define the polytope T (α, k) ⊂ Rp by

T (α, k) = {v ∈ Rp; ‖v‖∞ ≤ α, ‖v‖1 ≤ kα} . (2.1)

For any v ∈ Rp, define the set of sparse vectors U(α, k,v) ⊂ Rp by

U(α, k,v) = {u ∈ Rp; supp(u) ⊆ supp(v),

‖u‖0 ≤ k, ‖u‖1 = ‖v‖1, ‖u‖∞ ≤ α} . (2.2)

Then v ∈ T (α, k) if and only if v is in the convex hull of U(α, k,v). In particular, any v ∈ T (α, k) can
be expressed as

v =

N∑
i=1

λiui, 0 ≤ λi ≤ 1,

N∑
i=1

λi = 1, ui ∈ U(α, k,v). (2.3)

Proof. The proof of this lemma can be obtained by [[7], Lemma 1.1].

Suppose that A obeys the RIP of order s. Then the following is easily shown.

Lemma 2.2. Let s′ and s′′ be positive integers with s′ + s′′ ≤ s. Then∣∣〈Aa′, Aa′′〉∣∣ ≤ δs‖a′‖2‖a′′‖2
for any s′-sparse vector a′ and s′′-sparse vector a′′ in Rn with disjoint supports.

Suppose that x is an original signal we need to recover and x? is the solution of CS optimization
problem (1.2). Let h ≡ x? − x and h = (h1, h2, · · · , hn). For simplicity, we may assume that the
index of h is sorted by |h1| ≥ |h2| ≥ · · · ≥ |hn|. By (1.2) we have

‖Ah‖2 ≤ 2ε. (2.4)

By the definitin of CS optimization (1.2), we have the following result. For the proof refer to [2].

Lemma 2.3. Let s′ be positive integer and T ′ = {1, 2, · · · , s′}. Then

‖hT ′c‖1 ≤ ‖hT ′‖1 + 2‖x− xs′‖1, (2.5)
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where xs′ is the vector consisting of the s′ largest entries of x in magnitude.

Throughout this paper let s be a fixed positive integer and let T0 = {1, 2, · · · , s}.

2.2 Bound for δs
Let T1 = {1, 2, · · · , s

2
}. Then we have the following:

Theorem 2.1. Assume that A obeys the RIP of order s and δs < 1
2
. Then if

min{|hi|; i ∈ T1} ≥
‖hTc

1
‖1

s/2
, (2.6)

then

‖x− x?‖2 ≤
4
√

1 + δ s
2

1− 2δs
ε. (2.7)

If otherwise, then

‖x− x?‖2 ≤
2
√
2(3− 2δs)√
s(1− 2δs)

‖x− x s
2
‖1 +

4
√

1 + δ s
2

1− 2δs
ε. (2.8)

Proof. Suppose that (2.6) holds. We put α =
‖hTc

1
‖1

s/2
and consider a decomposition {T2, T3} of T c

1

as follows:

T2 = {i ∈ T c
1 ; |h

Tc
1

i | > α},

T3 = {i ∈ T c
1 ; |h

Tc
1

i | ≤ α},

where hT
i denotes the i-component of h for a location T of {1, 2, · · · , n}. Then we have

α|T2| < ‖hT2‖1 ≤ ‖hTc
1
‖1 =

1

2
sα, (2.9)

and so

r ≡ |T2| ≤
1

2
s. (2.10)

Furthermore, we have

‖hT3‖∞ ≤ α

and by (2.9)

‖hT3‖1 = ‖hTc
1
‖1 − ‖hT2‖1

≤ 1

2
sα− αr

= α

(
1

2
s− r

)
.

Using Lemma 2.1 for k = 1
2
s− r, there exist {λi}1≤i≤N and {ui}1≤i≤N such that

hT3 =
N∑
i=1

λiui, (2.11)
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where

0 ≤ λi ≤ 1 ,

N∑
i=1

λi = 1

supp ui ⊂ T3, (2.12)

|supp ui| ≤
1

2
s− r, (2.13)

‖ui‖∞ ≤ α,

and so

‖ui‖2 ≤ ‖ui‖∞
√
|supp ui|

≤ α

√
1

2
s− r

=
1√
2
α
√
s. (2.14)

By (2.12) and (2.13), we have

|T2|+ |supp ui| ≤
1

2
s,

|T1|+ |T2|+ |supp ui| ≤ s (2.15)

and by the assumption (2.6) and (2.12),

|hT1
j | ≥ α ≥ ‖ui‖∞ ≥ |usupp ui

k |

for each j ∈ T1 and k ∈ supp ui, which implies that

‖hT2 + ui‖2 ≤ ‖hT1‖2. (2.16)

Hence, it follows from (2.11), (2.15), (2.16) and Lemma 2.2 that

|〈AhT1 , A(hT2 + hT3)〉| ≤
N∑
i=1

λi |〈AhT1 , A(hT2 + ui)〉|

≤ δs

N∑
i=1

λi‖hT1‖2‖hT2 + ui‖2

≤ δs‖hT1‖
2
2. (2.17)

Since A obeys the RIP of order s, it follows from (2.4) and (2.17) that

(1− δs)‖hT1‖
2
2 = ‖AhT1‖

2
2

= 〈AhT1 , Ah〉 − 〈AhT1 , A(hT2 + hT3)〉

≤
√

1 + δ s
2
‖hT1‖2‖Ah‖2 + |〈AhT1 , A(hT2 + hT3)〉|

≤ 2
√

1 + δ s
2
‖hT1‖2ε+ δs‖hT1‖

2
2,

which implies by the assumption: δs < 1
2

that

‖hT1‖2 ≤
2
√

1 + δ s
2

1− 2δs
ε. (2.18)
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Using (2.16) and (2.18), we can show that

‖x− x?‖2 ≤ ‖hT1‖2 + ‖hT2 + hT3‖2
≤ 2‖hT1‖2

≤
4
√

1 + δ 1
2
s

1− 2δs
ε. (2.19)

Suppose that (2.6) does not hold. Then T2 = ∅ and T3 = T c
1 , and so we have

‖hT3‖∞ ≤ α,

‖hT3‖1 =
1

2
αs = α

(
1

2
s

)
.

By Lemma 2.1, we have

hT3 =

N∑
i=1

λiui,

where

supp ui ⊂ T3,

|supp ui| ≤
1

2
s,

‖ui‖∞ ≤ α.

Hence, it follows that

|T1|+ |supp ui| ≤ s,

‖ui‖2 ≤
1√
2
α
√
s,

which implies

|〈AhT1 , AhT3〉| ≤
N∑
i=1

λi |〈AhT1 , Aui〉|

≤ δs‖hT1‖2
N∑
i=1

λi‖ui‖2

≤ 1√
2
δs‖hT1‖2α

√
s. (2.20)

By Lemma 2.2, we have

α
√
s =

2√
s
‖hTc

1
‖1

≤ 2√
s

(
‖hT1‖1 + 2‖x− x s

2
‖1
)

≤
√
2‖hT1‖2 +

4√
s
‖x− x s

2
‖1, (2.21)

which implies by (2.20) that

|〈AhT1 , AhT3〉| ≤ δs‖hT1‖
2
2 +

2
√
2√
s
‖hT1‖2‖x− x s

2
‖1. (2.22)
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Since A obeys the RIP of order s, it follows from (2.4) and (2.22) that

(1− δs)‖hT1‖
2
2 ≤ ‖AhT1‖

2
2

= 〈AhT1 , Ah〉 − 〈AhT1 , AhT3〉

≤ 2
√

1 + δ s
2
‖hT1‖2ε

+δs‖hT1‖
2
2 +

2
√
2√
s
‖hT1‖2‖x− x s

2
‖1, (2.23)

which implies by the assumption: δs < 1
2

that

‖hT1‖2 ≤
2
√

1 + δ s
2

1− 2δs
ε+

2
√
2

(1− 2δs)
√
s
‖x− x s

2
‖1. (2.24)

By (2.21), we have

‖hT3‖2 ≤
N∑
i=1

λi‖ui‖2

≤ 1√
2
α
√
s

≤ ‖hT1‖2 +
2
√
2√
s
‖x− x s

2
‖1,

which implies by (2.23) that

‖x− x?‖2 ≤ ‖hT1‖2 + ‖hT3‖2

≤ 2‖hT1‖2 +
2
√
2√
s
‖x− x s

2
‖1

≤
4
√

1 + δ s
2

1− 2δs
ε+

2
√
2(3− 2δs)√
s(1− 2δs)

‖x− x s
2
‖1. (2.25)

This complete the proof.

2.3 Bound for δs′ (s′ < s)

Considering other decompositions {T1, T2, T3} of {1, 2, · · · , n}, we have the following results:

Theorem 2.2. Assume that A obeys the RIP of order 3
4
s. Then the following (i) and (ii) hold:

(i) If

s

2
min{|hi|; i ∈ T1} ≥ 2‖hTc

1
‖1, (2.26)

where T1 = {1, 2, · · · , 1
2
s} and if δ 3

4
s < 2−

√
2 ≈ 0.586, then

‖x− x?‖2 ≤
2(2 +

√
2)
√

1 + δ s
2

2− (2 +
√
2)δ 3

4
s

ε. (2.27)
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(ii) If (2.26) does not hold and δ 3
4
s <
√
2− 1 ≈ 0.414, then

‖x− x?‖2 ≤ 4
√
s(1− (

√
2 + 1)δ 3

4
s)
‖x− x s

2
‖1

+
2(
√
2 + 1)

√
1 + δ s

2

1− (
√
2 + 1)δ 3

4
s

ε. (2.28)

Proof. We consider a decomposition {T2, T3} of T c
1 as follows:

T2 = {i ∈ T c
1 ; |hi| > 2α},

T3 = {i ∈ T c
1 ; |hi| ≤ 2α},

where α =
‖hTc

1
‖1

s/2
. Then, Theorem 2.2 is shown similarly to the proof of Theorem 2.1. We have omit

the detailed proof.

We put

α =
‖hTc

1
‖1

3s/5
,

and

T1 = {1, 2, · · · , 3
5
s},

T2 = {i ∈ T c
1 ; |hi| >

5

3
α},

T3 = {i ∈ T c
1 ; |hi| ≤

5

3
α}.

Then we can similarly show the following

Theorem 2.3. Assume that A obeys the RIP of order 24
25
s. Then we have the following (i) and

(ii):
(i) If

3s

5
min{|hi|; i ∈ T1} ≥

5

3
‖hTc

1
‖1 (2.29)

and if δ 24
25

s <
5−
√
15

2
≈ 0.564, then

‖x− x?‖2 ≤
2(5 +

√
15)
√

1 + δ 3
5
s

5− (5 +
√
15)δ 24

25
s

ε. (2.30)

(ii) If (2.29) does not hold and δ 24
25

s <
√
15−3
2
≈ 0.436, then

‖x− x?‖2 ≤ 10
√
s(3− (3 +

√
15)δ 24

25
s)
‖x− x 3

5
s‖1

+
2(3 +

√
15)
√

1 + δ 3
5
s

3− (3 +
√
15)δ 24

25
s

ε. (2.31)
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3 Conclusion

In this paper, we propose the theorem 2.1, 2.2, 2.3 by using the T. Cai and A. Zhang idea and H.
Inoue idea, and prepare some notions and lemmas to prove our main theorems, and introduce new
bounds of δs and δs′ (s′ < s). In more details, in Theorem 2.1 it is shown under the assumption that
A obeys the RIP of order s and δs < 1

2
, and if (1.5) holds, then in case of noiseless x is completely

recovered as x? and if (1.5) does not hold, then every s
2
-sparse vector x is completely recovered

as x?. This result shows that the sufficient condition for δs can be substantially improved, but the
condition for the sparsity becomes worse. On the other hand, any sufficient conditions for δs′ (s′ < s)
have never been given. By changing a subset T1 of T0 or the condition (1.5), we shall similarly give
sufficient conditions for δs′ (s′ < s) in Theorem 2.2 and Theorem 2.3.

I believe that there are some applications of our theorems in other field. However, the RIP
requires a bounded condition number for all submatrices built by selecting s arbitrary columns and
the spectral norm of a matrix is generally difficult to calculate. Therefore, it seems useful to weaken
the condition of RIP. In [9], E.J. Candès and Y. Plan have introduced the notion of weak RIP which is a
generalization of RIP. In a recent paper [10], [11], H. Inoue has focused on this notion and evaluate the
solution of CS under the assumption of only the weak RIP without the probability, and obtain almost
the same results as for the case of the RIP. Thus it seems that the notion of weak RIP is useful in case
that we have some information about the data and it seems better to analyze data using the weak
RIP because it is much easier to construct matrices obeying the weak RIP than matrices obeying
the RIP. Furthermore, H. Inoue has proposed the RIPless theory and the method of an unknown
signal recovery in CS [12]. There are main benefits for considering the RIPless theory. First, we do
not suppose that a matrix satisfies the condition of RIP. Moreover, we do not suppose the condition
of sparsity. Practically, it is very difficult to know the condition of RIP and the sufficient condition of
isometry constants. Likewise, we can not know the sparsity of x. Second, the assessments of various
cases lead to developments for signal analysis or other analysis.

We suggest that if we can apply the main results in this paper to the weak RIP and RIPless theory,
it is possible to apply our theorem to other field. By using our results, the application in practical is
the research task from now on.
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