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Abstract 
 
The aim of this paper is to study the superstability for the mixed trigonometric functional 
equation: 

                                  ,,),()(2))(()( Gyxygxfyxfxyf ∈=− σ                         )( ,gfE  

and the stability of the Pexider type functional equation: 

                         ,,),()(2))(()( Gyxyhxgyxfxyf ∈=− σ                                 )( ,, hgfE  

where  G  is any group, not necessarily abelian, gf ,  and h  are unknown complex valued 

functions and σ  is an involution of G .   As a consequence we prove that if f  satisfies   the 

inequality δσ ≤−− )()(2))(()( yfxfyxfxyf  for all Gyx ∈,  then f  is bounded. 

 
 
Keywords: Superstability; d'Alembert's equation; Trigonometric functional equation;2000 
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1 Introduction 
 
J. Baker, J. Lawrence and F. Zorzitto in ]1[  introduced that if f  satisfies the stability inequality 

ε≤− )()( 21 fEfE , 

then either f  is bounded or )()( 21 fEfE = . The stability of this type is called the 
superstability. 
 
In ]4,3,2[  D. Zeglami, A. Roukbi and S. Kabbaj proved the superstability of the Wilson's 
functional equation 
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                               ,,),()(2))(()( Gyxygxfyxfxyf ∈=+ σ                                   )(W  
 
and the d’Alembert’s functional equation  

,,),()(2))(()( Gyxyfxfyxfxyf ∈=+ σ  

where G  is any group and σ  is an involution of G . Namely, the following theorem holds true. 
 
Theorem 1. Let 0>δ  be given.  Assume that functions CGgf →:,  satisfy the inequality 

 

δσ ≤−+ )()(2))(()( ygxfyxfxyf    for all Gyx ∈, . 

Then  
i) gf ,  are bounded      or 

ii) f is unbounded and g satisfies the d'Alembert's long functional equation  
)()(4))(()())(()( ygxgxygyxgyxgxyg =+++ σσ    or 

iii) g is unbounded and the pair ),( gf  satisfies the equation  )(W . 

 
The superstability of the trigonometric functional equation concerned with the sine and the cosine 
equations 

  ,,),()(2)()( Gyxyfxfyxfyxf ∈=−−+                         

  ,,),()(2)()( Gyxygxfyxfyxf ∈=−−+                         

  ,,),()(2)()( Gyxyfxgyxfyxf ∈=−−+                         

  ,,),()(2)()( Gyxyhxgyxfyxf ∈=−−+                        

where ),( +G is an abelian group, was investigated by Kim ]6,5[  and Kim and Lee .]7[  
 
The hyperbolic cosine function, hyperbolic sine function, hyperbolic trigonometric function, and 
some exponential functions also satisfy the above mentioned equations, thus they can be called by 
the hyperbolic cosine sine, trigonometric, exponential functional equations, respectively. 
 
For example, 

,)sinh()sinh(2)cosh()cosh( yxyxyx =−−+  
,)sinh()cosh(2)sinh()sinh( yxyxyx =−−+  

,)2sinh()2sinh()(sinh)(sinh 22 yxyxyx =−−+   

,)sinh(2 yeee xyxyx =− −+  

.
2

2
yy

xyxyx aa
cacaca

−
−+ −=−   

The aim of this paper is to investigate the superstability problem for the mixed trigonometric 
functional equations 
 

                  ,,),()(2))(()( Gyxyfxfyxfxyf ∈=− σ                                       )(T  

                       ,,),()(2))(()( Gyxygxfyxfxyf ∈=− σ                                        )( ,gfT  
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                      ,,),()(2))(()( Gyxyfxgyxfxyf ∈=− σ                                        )( , fgT  

                 ,,),()(2))(()( Gyxyhxgyxfxyf ∈=− σ                                      )( ,, hgfT  

 
where G  is any group, not necessarily abelian, the unknown functions hgf ,,  are to be 

determined and σ  is an involution of G , i. e. xx =))((σσ  and )()()( xyxy σσσ =  for all 

Gyx ∈, . The interested reader should refer to ]201[ −  for a thorough account on the subject of 

stability of functional equations and to ]21[  for solutions of the functional equation )( ,, hgfT  in 

the case that G  is an abelian group. 
 
In this paper, let G  be any group, σ  is an involution of G , C  the field of complex numbers 

and δ  is a nonnegative real constant. We may assume that f  and g  are complex valued 

functions on G  and we denote by f
(

 the function defined by  )(:)( 1−= xfxf
(

, for all Gx∈ . 
 

2. Superstability of the Equation )( ,gfT  
 
We start with solutions of the functional equation )(T . 
 
Lemma 1. The solution of the functional equation  
 

,,),()(2))(()( Gyxyfxfyxfxyf ∈=− σ                                        )(T  
 

on any group G  is the zero function .0≡f  
 
Proof. Putting ey =  in )(T  we get 0)( =ef . Setting ex =  in )(T  we have 

)())(( yfyf =σ  for all Gy∈ . From )(T  and the equality 

 
,,)),(()(2)())(( Gyxyfxfxyfyxf ∈=− σσ  

we obtain that  
,,,0))()(()(( Gyxallforyfyfxf ∈=+σ  

 
from which we conclude that )())(( yfyf −=σ  for all Gy∈ . Consequently we have 

)()())(( yfyfyf =−=σ i.e. 0≡f is the only solution of )(T . 
 
Lemma 2.  Let 0>δ  be given.  Assume that functions CGgf →:,  satisfy the inequality 

             δσ ≤−− )()(2))(()( ygxfyxfxyf , for all Gyx ∈,                               )1.2(  

such that 0≠f . If g  is unbounded then so isf . 
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Proof.  Assume that g  is unbounded function satisfying the inequality (2.1). If 0≠f  is 

bounded, let fM sup=  and choose Ga∈  such that 0)( ≠af  then we get from the 

inequality )1.2(   that )2(
)(2

1
)( δ+≤ M

af
xg  for all Gx∈ , i.e. g   is bounded too which 

contradicts our assumption. 
 

In Theorem 2, the superstability of the equation )( ,gfT  will be investigated. 

 
Theorem 2. Let 0>δ  be given.  Assume that functions CGgf →:,  satisfy the inequality 

              δσ ≤−− )()(2))(()( ygxfyxfxyf ,                       )2.2(  
for all Gyx ∈,  . Then  

i) gf ,  are bounded  or 

ii) f is unbounded and g satisfies the functional equation  

           0))(()())(()( =+−− xygyxgyxgxyg σσ ,                           )3.2(  
or 

iii) g is unbounded and the pair ),( gf  satisfies the equation  )( ,gfT . if 0≠f , then g  

satisfies the equation (2.3). 
 
Proof.  Assume that gf , satisfy inequality (2.2). First we consider the case of f  unbounded. 

For all Gzyx ∈,,  we have 

))(()())(()()(2 xygyxgyxgxygzf σσ +−−  

                          ))(()(2)()(2))(()(2)()(2 xygzfyxgzfyxgzfxygzf σσ −−+=  

                          )()(2))()(()( xygzfxyzfzxyf ++−≤ σσ  

                          ))(()(2))(())(( yxgzfxzyfyzxf σσσ −−+  

                          )()(2))()(()( yxgzfyxzfzyxf −−+ σσ  

                          ))(()(2))(())(( xygzfyxzfxyzf σσσ ++−+  

                          )()(2))(()( ygzxfyzxfzxyf −−+ σ  

                          )()(2))(()( xgzyfxzyfzyxf ++−+ σ  

                          )())((2))()(())(( xgyzfxyzfxyzf σσσσ −−+  

                          )())((2))()(())(( ygxzfyxzfyxzf σσσσ ++−+  

                          )()(2))(()()(2 xgzfxzfzxfyg −−+ σ  

                          )()(2))(()()(2 ygzfyzfzyfxg ++−+ σ . 
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By virtue of inequality (2.2), we have 

 
.))()((28))(()())(()()(2 δδσσ ygxgxygyxgyxgxygzf ++≤+−−       )4.2(  

If we fix yx, , the right hand side of the above inequality is bounded function of z . Since f  is 

unbounded, from )4.2( , we conclude that  

0))(()())(()( =+−− xygyxgyxgxyg σσ  , 
which ends the proof in this case.  

If g  is unbounded, then for 0=f  the pair ),( gf  is a trivial solution of the equation )( ,gfT . 

Now assume that 0≠f . For all Gzyx ∈,,  we have 

)()(2))(()()(2 ygxfyxfxyfzg −− σ    

                            )()()(4))(()(2)()(2 ygxfzgyxfzgxyfzg −−= σ  

                            )()(2))(()( zgxyfzxyfxyzf ++−≤ σ  

                            )())((2))()(())(( zgyxfzyxfzyxf σσσσ −−+  

                            )()(2))()(()( yzgxfyzxfxyzf −−+ σσ  

                            ))(()(2))(())(( zygxfyxzfzxyf σσσ ++−+  

                            ))(()(2))(())(( yzgxfzyxfyzxf σσσ −−+  

                            )()(2))()(()( zygxfzyxfxzyf ++−+ σσ  

                            )())((2))()(())(( ygzxfyzxfyzxf σσσσ ++−+  

                            )()(2))(()( ygxzfyxzfxzyf −−+ σ  

                            { }))(()())(()()(2 yzgzygzygyzgxf σσ +−−+  

                             )()(2))(()()(2 zgxfzxfxzfyg −−+ σ . 

In virtue of inequalities )2.2(  we obtain 

         
)()(2))(()()(2 ygxfyxfxyfzg −− σ  

))(()())(()()(2)(28 yzgzygzygyzgxfyg σσδδ +−−++≤ . 

By using Lemma 2 we see that g  is unbounded implies necessarily that f  is unbounded hence 

according to theorem 2 ii) g  is a solution of the equation (2.3). So we conclude that 
 

                    )(28)()(2))(()()(2 ygygxfyxfxyfzg δδσ +≤−− .                  )5.2(     

           
Again the right hand side of )5.2(  as a function of z  is bounded for all fixed yx, . Since g  is 

unbounded, from )5.2( , we see that the pair ),( gf   satisfies the equation )( ,gfT  and it is easy 

to get that if 0≠f , then g  satisfies )3.2(  which finished the proof of the theorem 2. 
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As an immediate consequence of Theorem 2, we have the following result which has been the 
subject of ]7[  in the case where G  is an abelian group. 

 
Corollary 1.  Let 0>δ  be given.  Assume that the function CGf →:  satisfies the inequality 

                             
δσ ≤−− )()(2))(()( yfxfyxfxyf ,                                      )6.2(   

 for all Gyx ∈, . Then f  is bounded. 

 
Proof.   Define gf =  in the case (iii) of Theorem 2 we get that either f  is bounded or 
 

.,),()(2))(()( Gyxyfxfyxfxyf ∈=− σ  
The rest of the proof follows from Lemma 1. 
 

3. Application: Stability of the Equation )( ,, hgfT  
 
Lemma 3. Let 0>δ  be given.  Assume that functions gf ,  and CGh →:  satisfy the 

inequality 

                              
δσ ≤−− )()(2))(()( yhxgyxfxyf ,                                           )1.3(  

 for all Gyx ∈, . Then 

 i) If g  is unbounded then hh −=
(

. 

ii) If  1)( =eh  then 

δσδσ ≤−+≤−− )(
~

)(2))(()()(
~

)(2))(()( yhxgyxgxygandyhxgyxgxyg  

where  Gx
xhxh

xh ∈+= ,
2

))(()(
)(

~ σ
 . 

 
Proof. Assume that g  is an unbounded function satisfying (3.1). From the inequalities 
 

δσ ≤−− )()(2))(()( yhxgyxfxyf
          

and 

δσσ ≤−− ))(()(2)())(( yhxgxyfyxf  

we get that 

δσ 2)())(()(2 ≤+ yhyhxg  

for all Gyx ∈, . Hence we obtain that )()( yhyh −=
(

 for all Gy∈  because g  is unbounded. 

(ii) Assume that 1)( =eh . Putting ey =  in the inequality (3.1). It is easy to show that 

                            ,,
2

)( Gxxg ∈≤ δ
                                                )2.3(    

i.e. g  is bounded. For all Gyx ∈,  we have 
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.)(()(

))(()(2)())((
2
1

)()(2)(()(
2
1

))(()()()())(()(
2

))(()(
)(2))(()(

yxgxyg

yhxgxyfyxf

yhxgyxfxyf

yhxgyhxgyxgxyg
yhyh

xgyxgxyg

σ

σσ

σ

σσσσ

++

−−+

−−≤

−−−=+−−

 

 In virtue of inequalities )1.3( and )2.3( , we obtain 

.2
22222

))(()(
)(2))(()( δδδδδσσ =+++≤+−− yhyh

xgyxgxyg  

And similarly we have  

,2

)(()(

))(()(2)())((
2

1

)()(2)(()(
2

1

2

))(()(
)(2))(()(

δ
σ

σσ

σσσ

≤
++

−−+

−−≤+−+

yxgxyg

yhxgxyfyxf

yhxgyxfxyf
yhyh

xgyxgxyg

 

for all Gyx ∈,  .  
 

In Theorem 3, the stability of the equation )( ,, hgfT , under the condition 0)( ≠eh , will be 

investigated on an arbitrary group. 
 
Theorem 3. Let 0>δ  be given.  Assume that functions gf ,  and CGh →:  with 0)( ≠eh  

satisfy the inequality 

δσ ≤−− )()(2))(()( yhxgyxfxyf ,                 

 for all Gyx ∈, . Then either the function 
2

hh
(

+
 is bounded or the pair ),( hg  satisfies the 

equation 

                  ,
)(

))(()(
)()(

eh

yhyh
xgxyg

σ+=                                  )3.3(  

for all Gyx ∈, . Consequently, if  0≠g  then the functions g  and  
2

hh
(

+
  are bounded. 

 
Proof. Assume that gf ,  and h  satisfy the inequality (3.1) with 0)( ≠eh  then g  is bounded. 

Dividing the two sides of the inequality (3.1) by )(eh=α  we find that 
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,,,)(
~

)(2))((
~

)(
~

Gyxallforyhxgyxfxyf ∈≤−−
α
δσ  

where 
α
f

f =~
 and 

α
h

h =~
 . We see that 1)(

~ =eh . By using Lemma 3 (ii) we obtain that 

Gyx
yhyh

xgyxgxyg ∈≤+−− ,,2
2

))((
~

)(
~

)(2))(()(
α
δσσ  

and  

Gyx
yhyh

xgyxgxyg ∈≤+−+ ,,2
2

))((
~

)(
~

)(2))(()(
α
δσσ . 

Using, respectively Theorem 2 and Theorem 1, we conclude that if  
2

hh
(

+
  is unbounded then 

the pair ),( hg  satisfies the equations 

                             )(

))(()(
)())(()(

eh

yhyh
xgyxgxyg

σσ +=−                           )4.3(  

and 

                            )(

))(()(
)())(()(

eh

yhyh
xgyxgxyg

σσ +=+                           )5.3(  

 
by adding (3.4) and (3.5) we get that the pair ),( hg  satisfies (3.3). 

Now, assume that  0≠g . Putting ey =  in the inequality (3.1). It is easy to show that 

                                                        ,,
2

)()( Gxehxg ∈≤ δ
                                           

i.e. g  is bounded because 0)( ≠eh . The equality (3.3) implies that the function 
2

hh
(

+
 is also 

bounded. 
 
The following corollary is a particular case of Theorem 3. 
 
Corollary 2. Let 0>δ  be given.  Assume that functions gf , CG →:  with 0)( ≠ef  satisfy 

the inequality 

δσ ≤−− )()(2))(()( yfxgyxfxyf ,                 

 for all Gyx ∈, . Then either the function 
2

~ ff
f

(
+=   is bounded or the pair ),( gf  satisfies 

the equation 

,
)(

))(()(
)()(

ef

yfyf
xgxyg

σ+=  
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for all Gyx ∈, . Consequently, if  0≠g  then the functions g  and  
2

ff
(

+
  are bounded. 

 

4. Remark 
 
 The results of this paper also can be extended to the stability of the considered equations 
controlled even by variable bounds. 
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