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Abstract

For i = 1, 2, if Xi is a synchronized system generated by Vi = {viαi : αiv
iαi ∈ B(Xi), αi 6⊆

vi} where αi is a synchronizing word for Xi, then a natural generalization of an asymmetric-
RLL(d1, k1, d0, k0) systems is a coded system Z generated by {v1α1v

2α2 : viαi ∈ Vi, i = 1, 2}.
We investigate the dynamical properties of Z. We show that Z is sofic or has specification with
variable gap length (SVGL) if and only if X1 and X2 are so. Also, if Z is SFT or AFT, then X and Y
are SFT or AFT respectively and sufficient conditions for the converse will be given.
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1 Introduction
Recall that the Run-length-limited (RLL) (cf. (1)) and the Maximum Transition Run (MTR) constrained
systems (cf. (2)) are used to improve timing and detection performance in storage channels. In
particular, the MTR code, introduced by Moon and Brickner (cf. (2)), are to provide coding gain for
extended partial response channels. The RLL code denoted by X(d, k) limits the run of 0 to be at
least d and at most k whereas the MTR(j, k) code limits the run of 0 to be at most k and the run
of 1 at most j. When there is no restriction on the runs of 0, we say that k = ∞ and it is common
then to denote such a constraint by MTR(j). For generalizing MTR codes, consider the asymmetric-
RLL(d1, k1, d0, k0) constraint which is the set of binary sequences whose runs of 1’s have length
between d1 and k1 and the runs of 0’s between d0 and k0. In the case that d1 = d0 = 1, k1 = j and
k0 = k, this constraint coincides with MTR(j, k).

One may define an asymmetric-RLL(d1, k1, d0, k0) as follows. Let S = {d0 − 1, d0, . . . , k0 − 1} ⊆
N0 and let X = X(d0−1, k0−1) be the RLL system associated to S. Then X is the space generated
by V = {0s1 : s ∈ S}, that is, the space constructed by concatenating the words in V . Now
consider S′ = {d1 − 1, d1, . . . , k1 − 1} ⊆ N0 and the space Y = X(d1 − 1, k1 − 1) generated by
W = {1s

′
0 : s′ ∈ S′}. The word α = 1 (resp. β = 0) is a synchronizing word in X (resp. Y )

and our asymmetric-RLL(d1, k1, d0, k0) is the space generated by {vw : v ∈ V, w ∈ W}. On the
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other hand, any synchronized system X with a synchronizing word α is generated by {vα : αvα
is a word in X and α 6⊆ v}. If Y is another synchronized system with a synchronized word β and
a set of generators Wβ = {wβ : βwβ a word in Y and β 6⊆ w}, then a natural generalization for
an asymmetric-RLL(d1, k1, d0, k0) constraint is a coded system Z denoted by X&Y and generated
by {vαwβ : vα ∈ Vα, wβ ∈ Wβ}. Dynamical properties of this generalized system depend on α
and β; however, here, we are interested in those dynamical properties which are independent of the
synchronized words.

In Theorem 3.3 (resp. Theorem 3.5), it is shown that X and Y are sofic (resp. SVGL) if and only
if Z = X&Y is sofic (resp. SVGL). Also, If Z = X&Y is SFT, near Markov or AFT, then both X and Y
are SFT, near Markov or AFT respectively (Theorem 3.6). But the converse does not hold necessarily.
Then we give sufficient conditions such that the converse of Theorem 3.6 holds (Theorem 3.10).

2 Background and Notations
In this section, we will bring the basic definitions in symbolic dynamics on finite alphabet A. For
justification of our claims see (1).

Equip A with discrete topology and AZ with product topology. Then AZ is a Cantor set and
σ : AZ → AZ defined by (σ(x))i = xi+1 is called the shift map. A block (or word) over A is a finite
sequence of symbols from A. It is convenient to include ε, the sequence of no symbols which is
called the empty word. If x is a point in AZ and i ≤ j, then we will denote a word of length j − i by
x[i, j] = xixi+1...xj . If n ≥ 1, then un denotes the concatenation of n copies of u, and put u0 = ε.
Let w = w0w1 · · ·wp−1 be a word of length p. The least period of w is the smallest integer q such that
w = (w0w1 · · ·wq−1)m where m = p

q
must be an integer. The word w is primitive if its least period

equals its length p.
Let F be a collection of some words over A. Let XF be a non-empty closed subset of AZ and

so that XF does not contain any word in F . This set F is called the set of forbidden blocks over A.
Then any subshift X ⊆ AZ is a XF for some collection of forbidden blocks. If F is finite, then XF is
called shift of finite type (SFT).

Let Bn(X) denote the set of all admissible n words. The language of X is the collection B(X) =⋃∞
n=0 Bn(X). A shift space X is irreducible if for every ordered pair of words u, v ∈ B(X) there is

a word w ∈ B(X) so that uwv ∈ B(X). We say v ∈ B(X) is synchronizing if whenever uv and vw
are in B(X), then uvw ∈ B(X). An irreducible shift space X is a synchronized system if it has a
synchronizing word (3).

Fix integers m and n with m ≤ n and let A and D be alphabets and X a shift space over A.
Define the (m+ n+ 1)-block map Φ : Bm+n+1(X)→ D by

yi = Φ(xi−mxi−m+1...xi+n) = Φ(x[i−m,i+n]) (2.1)

where yi ∈ D. This Φ induces a map Φ∞ = Φ
[−m,n]
∞ : X → DZ called the sliding block code with

memory m and anticipation n defined by y = Φ∞(x) with yi given by (1.1). An onto sliding block
code Φ∞ : X → Y is called a factor code. In this case, we say that Y is a factor of X. The map Φ∞
is a conjugacy, if it is invertible.

An edge shift, denoted by XG, is a shift space consisting of all bi-infinite walks in a directed graph
G. Any path π ∈ G initiates at a vertex denoted by i(π) and terminates at a vertex t(π).

A labeled graph G is a pair (G,L) where G is a graph with edge set E and the labeling L : E → A.
Then a subshift XG is induced by L∞ which it is the set of sequences obtained by reading the labels
of walks on G,

XG = {L∞(ξ) : ξ ∈ XG} = L∞(XG). (2.2)

We say G is a presentation or a cover of XG . If G is finite, then XG is called sofic and XG = L∞(XG).
Let G = (G, L) be a labeled graph. A word v ∈ B(XG) is a magic word for G if all paths in G

labeled v terminate at the same vertex.
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A labeled graph G = (G,L) is right-resolving if for each vertex I of G the edges starting at I carry
different labels. Let I ∈ V be a vertex of G. The follower set F (I) of I in G is the collection of labels of
paths starting at I. The labeled graph G is follower-separated if distinct vertices have distinct follower
sets.

A minimal right-resolving presentation of a sofic shift X is a right-resolving presentation of X
having the fewest vertices among all right-resolving presentations of X. A minimal right-resolving
presentations of an irreducible sofic shift is unique up to conjugacy and called the Fischer cover of
X. A right-resolving graph G is the Fischer cover of X if and only if it is irreducible and follower-
separated.

Let X be a shift space and w ∈ B(X). The follower set F (w) = FX(w) of w is defined by
F (w) = {v ∈ B(X) : wv ∈ B(X)}. A shift space X is sofic if and only if it has a finite number of
follower sets (1, Theorem 3.2.10) .

A labeled graph is right-closing with delay D if whenever two paths of length D + 1 start at the
same vertex and have the same label, then they must have the same initial edge. Similarly, left-closing
will be defined. A labeled graph is bi-closing, if it is simultaneously right-closing and left-closing.

An irreducible sofic shift is called almost-finite-type (AFT) if it has a bi-closing presentation (1).
Nasu in (4) showed that an irreducible sofic shift is AFT if and only if its Fischer cover is left-closing.

Now we review the concept of the Fischer cover for a not necessarily sofic system (cf. (5)). Let
x ∈ B(X). Then x+ = (xi)i∈Z+ (resp. x− = (xi)i<0) is called right (resp. left) infinite X-ray. For a
left infinite X-ray, say x−, its follower set is ω+(x−) = {x+ ∈ X+ : x−x+ is a point in X}. Consider
the collection of all follower sets ω+(x−) as the set of vertices of a graph X+. There is an edge from
I1 to I2 labeled a if and only if there is an X-ray x− such that x−a is an X-ray and I1 = ω+(x−),
I2 = ω+(x−a). This labeled graph is called the Krieger graph for X. If X is a synchronized system
with synchronizing word α, the irreducible component of the Krieger graph containing the vertex
ω+(α) is called the right Fischer cover of X. We are working only with coded synchronized systems
which are irreducible. In this situation, alike irreducible sofics, the right Fischer cover is just called the
Fischer cover.

The entropy of a shift space X is defined by h(X) = limn→∞(1/n) log |Bn(X)|.

3 Intertwined Synchronized Systems
A shift space that can be presented by an irreducible countable labeled graph is called a coded
system. Equivalently, a coded system X is the closure of the set of sequences obtained by freely
concatenating the words in a list of words, called the set of generators, over a finite alphabet (1).
A coded system is irreducible and has a dense set of periodic points (5). Coded systems were
introduced by Blanchard and Hansel in (3) who also showed that the class of the coded systems is
the smallest class of subshifts which contains the synchronized systems and is closed under factors
(3, Proposition 4.1). A brief introduction to coded systems can be found in (1, Section 13.5).

Our objective is to study the synchronized systems. Recall that in a synchronized system X, for
any synchronizing word α = α1 · · ·αp, X is generated by

V = Vα = {vα ∈ B(X) : αvα ∈ B(X), α 6⊆ v}. (3.1)

Now we state our main definition.

Definition 3.1. For 1 ≤ i ≤ `, let Xi = XVi be a coded system with a synchronizing word αi and
generated by

Vi = Vαi = {v(i)αi : αiv
(i)αi ∈ B(Xi), αi 6⊆ v(i)}.

The coded system Z = Z(V1, . . . , V`) generated by

{v(1)α1v
(2)α2 · · · v`α` : v(i)αi ∈ V(i)}
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is called the intertwined system of X1, . . . , X` and is denoted by

Z = X1&X2& · · ·&X`.

Since the problems arising from intertwining of some finitely many systems are basically the
same as intertwining of two systems, we will concentrate on intertwining of two systems X = XV and
Y = YW generated by

V = Vα = {vα : αvα ∈ B(X), α 6⊆ v} and W = Wβ = {wβ : βwβ ∈ B(Y ), β 6⊆ w} (3.2)

respectively. Note that for wβ ∈Wβ , αwβ is a synchronizing word for Z. So our first observation is

Lemma 3.1. Suppose X and Y are synchronized and V and W as in (3.2). Then Z, the intertwined
of X and Y , is synchronized.

One of the best tools to study the dynamics of a synchronized system is through one of its covers,
in particular, its Fischer cover. So we construct a cover for Z = X&Y from GX and GY the Fischer
covers of X and Y respectively.

Let α = α1α2 · · ·αp (resp. β = β1β2 · · ·βq) be the synchronizing word for X (resp. Y ) and πu any
path labeled u. Then there is a unique vertex Iα ∈ V(GX) (resp. Iβ ∈ V(GY )) such that t(πuα) = Iα
(resp. t(πuβ) = Iβ ) for u ∈ B(X) (resp. u ∈ B(Y )). If all vertices t(πvα1···αi), 1 ≤ i ≤ p and
t(πwβ1···βj ), 1 ≤ j ≤ q have just one inner edge, then to construct a cover GZ for Z, cut off all inner
edges of Iα (resp. Iβ) which are the last edge of some πα (resp. πβ) from Iα (resp. Iβ) and paste
them to Iβ (resp. Iα) as its inner edges. By this construction, for any word vαwβ, we will have a path
πvαwβ and in fact any other path in this cover is labeled by a subword of some v1αw1β · · · vkαwkβ,
viα ∈ V , wiβ ∈W .

The above cut and paste process at Iα and Iβ may not give a cover for Z when one of the
vertices along a path labeled by the synchronizing word α in GX or β in GY has more than one inner
edges. Suppose for instance there are two inner edges eαi and ea, αi 6= a ∈ A at t(πα1···αi) along
the path πα. Then the above cut and paste process at Iα and Iβ gives a cover with a path labeled
ζ = aαi+1 · · ·αpwβ. But it could well happen that ζ 6∈ B(Z). To overcome this problem, by using the
in-splitting technique (1, Section 2.4), we replace GX (resp. GY ) by a cover GαX (resp. GβY ) so that
the inner edges of t(πα1···αi) (resp. t(πβ1···βj ) ) are all lebeled αi (resp. βj).

Now we give a detailed explanation of how our in-splitting takes place. Set GX = G and denote
by Iα the unique vertex in V(G) where any path labeled α terminates. Any other vertex is denoted by
Iαu by applying the following convention. If there are several paths παui all terminating at Iαu, then u
is amongst the ones with shortest length and then the least lexicographic order.

Fix I = Iαu1 ∈ V(G) and assume that EI , the set of inner edges of I, has more than one element.
Note that this means that there are at least two paths παu1 and παu2 such that I = t(παu1) = t(παu1).
Suppose ui = ci1 · · · cikiα1 · · ·αli ∈ B(X), i = 1 or 2. If one of the following holds, then we do not
do the splitting.

1. both α1 · · ·αl1 and α1 · · ·αl2 are empty words;

2. α1 · · ·αl1 (resp. α1 · · ·αl2 ) is not empty word and ci1 · · · cik1α1 · · ·αl1 · · ·αp = ci1 · · · cik1α
(resp. ci1 · · · cik2α) is not admissible;

3. cases (1) and (2) do not hold and l1 = l2.

(1) and (2) say that if J is not a vertex on a path πα, then in-splitting will not be done.
Now we set up to see which vertices on πα requires in-splitting and how this happens. Note that

case (3) above excludes some cases. Set G1 = G and let

VG1(α1) = {I ∈ V(G1) : I = t(eα1), eα1 is the first edge labeled α1on a path labeled α}. (3.3)

For I ∈ VG1(α1), partition EI to P 1
I (α1) = {e1 : L(e1) = α1} and P 2

I (α1) for the remaining edges.
Do an in-split for I with respect to this partition and call the new cover G2 = (G2, L2).
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Let VG2(α1α2) = {I ∈ V(G2) : I = t(eα1eα2), eα1eα2 be the first 2 edges with label α1α2

of a path labeled α}. Partition EI , I ∈ VG2(α1α2) to P 1
I (α1α2) = {e2 : t(e1e2) = I for some

e1, L2(e1e2) = α1α2} and P 2
I (α1α2) = EI\P 1

I (α1α2). By the same procedure, Gk+1, P 1
I (α1α2 · · ·αk),

and P 2
I (α1α2 · · ·αk), 1 ≤ k ≤ p will be constructed. Set Gα = Gp = (Gp, Lp).

Suppose in-splitting occurs at I ∈ V(Gk) and let EI be the set of outer edges of I. Then
corresponding to I, there are two vertices I1 and I2 in V(Gk+1) with EI = EI1 = EI2 . For e ∈ E , let
e(i) be the corresponding edge in EIi with the same label as e. We collect some properties of Gα in
the following theorem.

Theorem 3.2. Let X be a synchronized system with a synchronized word α = α1 · · ·αp, a generator
V as (3.1) and the Fischer cover G = (G, L). Then

1. Gα and G are conjugate.

2. Let eα1 · · · eαk , 1 ≤ k < p be a subpath of a path labeled α, Lp(eα1 · · · eαk ) = α1 · · ·αk and let
I = t(eα1 · · · eαk ). Then all the inner edges of I have the same label αk.

3. Let u = u1 · · ·uk ∈ B(X) and suppose π = eu1 · · · eukeαi · · · eαp is a path so that Lp(π) =
u1 · · ·ukαi · · ·αp and eαi · · · eαp is a subpath of a path labeled α, then either uαi · · ·αp ⊆ α or
uαi · · ·αp = vα1 · · ·αp for some v ∈ B(X).

4. If X is sofic, then Gα is a finite labeled graph. Also, if G is left-closing with delay D, then Gα
will be left-closing with delay D + p− 1.

So corresponding to (X, α) (resp. (Y, β)) a cover GαX (resp. GβY ) arises whose any vertex along
a path πα (resp. πβ) has just one unique inner edge. Applying the above cut and paste process at
Iα ∈ V(GαX) and Iβ ∈ V(GβY ) gives rise to a cover GZ called the intertwined cover for Z = X&Y .

Definition 3.2. Let GZX be the subgraph of GZ corresponding to GX , that is, consisting of all the
paths in GZ labeled vα, v ∈ V and starting from Iα and terminating at Iβ .

Remark 3.1. (1). Note that GZX is not irreducible and GZX and GZY have only vertices Iα and Iβ
in common. However, unlike GαX , GZX is follower separated. In fact, the only vertices in GαX which
have the same follower sets are those vertices in the path labeled α. So if an in-splitting is required
at t(eαi), then instead of t(eαi), two vertices emerges; one is not preceded by α1 . . . αi and for this
vertex, a path labeled αi+1 . . . αpa follows for some a ∈ A and the other no such path exists, for
t(eα1 . . . eαp) ∈ V(GZX ) has no outer edges. Therefore, all the vertices in GZX represent different
states in the Fischer cover of Z.

(2). By giving an example, we show that XV &XW depends on V and W and so on α and β. We
construct our example from X = X(S) an S-gap shift for S = {1, 2} and Y a β-shift for 1β = 1101.
First we recall the definitions of an S-gap and a β-shift.

An S-gap shift X(S) is a coded system generated by {10si : si ∈ S} where S ⊆ N ∪ {0}. To
define a β-shift, let β be a real number greater than 1 and set

1β = a1a2a3 · · · ∈ {0, 1, . . . , bβc}N,

where a1 = bβc = max{n ∈ N : n ≤ β} and

ai = bβi(1− a1β−1 − a2β−2 − · · · − ai−1β
−i+1)c

for i ≥ 2. The sequence 1β is the expansion of 1 in the base β, that is, 1 =
∑∞
i=1 aiβ

−i. Let ≤ be the
lexiographic ordering of (N ∪ {0})N. The sequence 1β has the property that

σk1β ≤ 1β , k ∈ N, (3.4)

where σ denotes the shift on (N ∪ {0})N. It follows from (3.4) that

Xβ = {x ∈ {0, 1, . . . , bβc}Z : x[i,∞) ≤ 1β , i ∈ Z}
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Figure 1: Fischer cover spaces of (a) S-gap shift for S = {1, 2}, (b) β-shift for
1β = 1101 and the cover for their intertwined systems (c) Z1 and (d) Z2.

is a shift space of {0, 1, . . . , bβc}Z, called the β-shift (6). Their Fischer covers GX and GY for S =
{1, 2} and β = 1011 is given in Figure 1. When |S| < ∞, then the S-gap shift is SFT (7, Theorem
3.3), and a β-shift is SFT if and only if the expansion of 1 in the base β is finite (8).

Therefore, our systems are SFT and it is obvious that 1 is a synchronizing word for X and 00, 100
are synchronizing words for Y . Let V = {01, 001}, W1 = {u100 : 100u100 ∈ B(Y ), 100 6⊆ u} and
W2 = {u11 : 11u11 ∈ B(Y ), 11 6⊆ u}. Then X = XV and Y = YW1 = YW2 . Let Zi = X&YWi and
Ai be the adjacency matrix of GZi for i = 1, 2. Then

A1 =



0 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0



, A2 =



0 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 1 1

1 0 0 0 0 1 0


,

with eigenfunctions p1 and p2 as,

p1(x) = x8 − x7 − x6 + x5 − x3 − 2x2 − x, p2(x) = x7 − x6 − x5 − x− 1

and the largest positive eigenvalues 1.6180 and 1.7 respectively. Hence, h(Z1) = log 1.6180 while
h(Z2) = log 1.7. So Z1 and Z2 are not conjugate and in particular, the intertwined system of conjugate
systems are not necessarily conjugate.
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Theorem 3.3. Let X and Y be two synchronized systems generated by V = Vα and W = Wβ as in
(3.2). Then X and Y are sofic if and only if Z = X&Y = XV &YW is sofic.

Proof. Let X = XV and Y = XW be two sofic systems and GX (resp. GY ) be the Fischer covers of
X (resp. Y ). Then GαX and GβY and their intertwined cover GZ have finite vertices. But any symbolic
system with a finite labeled graph is sofic and we are done.

For the converse suppose Z is sofic. Thus CZ , the set of follower sets of Z is finite. To prove the
theorem, we will show that if |CX | =∞, then |CZ | =∞ which is a contradiction.

Fix α 6⊆ u1 ∈ B(X) and let u2 be any word in B(X) such that FX(u1) 6= FX(u2). So let
v ∈ FX(u1)\FX(u2) and first assume α ⊆ u2. Since α is a synchronizing word, FX(x′αx) = FX(αx)
for x, x′ ∈ B(X). Hence, we may assume u2 = αu′2. On the other hand for a w0β ∈ Wβ , z0 = αw0β
is a synchronizing word for Z. Thus if v is a word in X and v 6∈ FX(αu′2) then v 6∈ FZ(z0u

′
2);

because, any path in GZ labeled z0 is magic and t(z0u
′
2) ∈ GZX . This in turn means that if there

are infinitely many u2 = αu′2 such that FX(u1) 6= FX(u2), then there are infinitely many u′2 such that
FZ(u1) 6= FZ(z0u

′
2).

If α 6⊆ u2, then
FX(u2) = ∪αu′2u2∈B(X)

α 6⊆u′2u2

FX(αu′2u2).

But if α 6⊆ w2 and FX(u2) 6= FX(w2), then for some u′2, w′2, FX(αu′2u2) 6= FX(αw′2w2). So again an
argument as above will show that the follower sets of Z is not finite.

If α ⊆ u1, then again we may assume u1 = αu′1 and since FX(u1) ⊆ FX(u′1), then we replace
u′1 with u1 and will repeat the above argument.

Next example will illustrate the intertwining of two sofic systems X and Y .

Example 3.4. Consider Figure 2 and two sofic shiftsX and Y with α = α1α2 = 00 and β = β1β2β3 =
000 as their synchronizing words respectively. The Fischer covers of X and Y are presented in that
figure.

First we will construct GαX . We have VGX (α1) = {FX(α1)} and only I = FX(α1) needs in-
splitting. We do this and we obtain GαX = GX2 .

For GβY , the first in-splitting occurs in I = FY (β11). Do this in-splitting and call the new cover GY2 .
We have VGY2 (β1β2) = {FY (β1)} and FY (β1) needs also in-splitting. Doing this GβY (= GY3) will be
constructed.

Definition 3.3 ((9)). A shift space X has specification with variable gap length (SVGL) if there exists
N ∈ N such that for all u, v ∈ B(X), there exists w ∈ B(X) with uwv ∈ B(X) and |w| ≤ N .

Note that a SVGL was called almost specified in (9).

Theorem 3.5. Suppose X and Y are two synchronized systems generated by V = Vα and W = Wβ

as in (3.2). Then Z = X&Y = XV &YW has SVGL if and only if X = XV and Y = YW have SVGL.

Proof. If V = W , then Z = X and we are done. So suppose W 6= V and pick w0β ∈W \ V .
First suppose Z has SVGL with the transition length M and suppose that one of X or Y , say X,

does not have SVGL. Then for all n, there are un, vn ∈ B(X) such that if w ∈ B(X) and unwvnB(X),
then |w| ≥ n. Without loss of generality, assume that αun, vnα ∈ B(X) for all n. Now let zn =
αw0βun and z′n = vnαw0β be the words in B(Z). Since Z has SVGL, there is z′′n ∈ B(Z) such that
znz
′′
nz
′
n ∈ B(Z) and |z′′n| ≤ M for all n ∈ N. Note that this z′′n is a word such as u′nαwi1β · · ·wikβv

′
n

for some u′n, v′n ∈ B(X). Let n > M and set w = u′nαv
′
n. Then by the fact that α is a synchronizing

word, unwvn ∈ X and |w| ≤M which is absurd.
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Figure 2: From above, the Fischer covers of X, Y and Z = X&Y .

Now suppose both of X and Y have SVGL with the transition lengths MX and MY . Let

m1 = min{|vα| : vα ∈ V } = |v1α|, m2 = min{|wβ| : wβ ∈W} = |w1β|,
k = max{n ∈ N : |nα| < MX}, l = max{n ∈ N : |nβ| < MY },

and M = MX + km2 + MY + lm1. We claim that M is a transition length for Z. Let z1, z2 ∈ B(Z).
Different cases occur. We just prove two cases, other cases will be proved similarly. First case is
when z1 = γviαwjβz

′ and z2 = z′′αwpβλ where γ, λ ∈ B(Z) and z′, z′′ ∈ B(X) so that α 6⊆ z′, z′′.
Since X has SVGL, there is x = x1αvi1α · · · vinαx2 such that z′xz′′ ∈ B(X) and |x| ≤ MX . Then
z = x1αw1βvi1αw1β · · · vinαw1βx2 ∈ B(Z) and z1zz2 ∈ B(Z) . Furthermore, |z| ≤MX +km2 ≤M .

The other case is when z1 is as above and z2 = z′′βvqαλ with β 6⊆ z′′ ∈ B(Y ). Since X
and Y have SVGL, there are x ∈ B(X) and y ∈ B(Y ) such that z′xα ∈ B(X), βyz′′ ∈ B(Y ) and
|x| ≤ MX , |y| ≤ MY . We can assume that x (resp. y) does not contain α (resp. β) as a subword.
Then z1xαyz2 ∈ B(Z). Note that |xαy| ≤MX +m1 +MY ≤M and we are done.

Recall that when X is a sofic shift space with non-wandering part R(X), we can consider the
shift space

∂X = {x ∈ R(X) : x contains no words that are synchronizing for R(X)}

which is called the derived shift space of X. An irreducible sofic shift space X is near Markov when
it is AFT and its derived shift space ∂X is a finite set (10).

Theorem 3.6. Let X and Y be two synchronized systems with V = Vα and W = Wβ generators for
X and Y as in (3.2). If Z = X&Y = XV &YW is SFT, near Markov or AFT, then both X and Y are
SFT, near Markov or AFT respectively.

Proof. Suppose Z is SFT but X is not SFT. By Theorem 3.3, X is sofic and so ∂X is also sofic
(10, Theorem 6.6). Thus there is a periodic point p∞ ∈ ∂X and let p be primitive. By the definition,
α is not a subword of p∞. Also by Lemma 3.8, either there are two cycles in GX labeled p or one
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Figure 3: The Fischer cover of a non-AFT intertwined system, constructed from two
AFT systems: two different paths labeled (01)∞111 terminate at vertex a.

cycle consisting of concatenations of at least two paths labeled p. By Remark 3.1(1), GZX is follower-
separated, and this means the word p is not a synchronizing word which implies that p∞ ∈ ∂Z and
so ∂X ⊆ ∂Z. By the same reasoning, ∂Y ⊆ ∂Z and so

∂X ∪ ∂Y ⊆ ∂Z. (3.5)

First suppose Z is SFT and one of X or Y , say X, is not SFT. Then ∂X 6= ∅ however ∂Z = ∅. So X
is SFT.

Now suppose X is not AFT. So there are two different infinite paths x = · · · e−1e0 and x′ =
· · · e′−1e

′
0 with the same label and t(e0) = t(e′0). If α 6⊆ LX∞(x) = LX∞(x′), then x and x′ will be

two paths in GZ where LZ∞(x) = LZ∞(x′) and terminating at the same vertex of V(GZ). So Z is
not AFT which is absurd. Otherwise, since α is a synchronizing word and so magic for GX , we may
assume LX(e−(|α|−1) · · · e−1e0) = α and by the proof of Theorem 3.3, both of these paths terminate
at the same vertex. By technique of merging (1, Section 3.3), one can obtain the Fischer cover of
Z from GZ . However, two vertices of GZ merge only if one in V(GZX ) and the other is in V(GZY ).
Hence after merging, x and x′ will be yet two different paths with the same label and terminating at
the same vertex. This means Z is not AFT which is absurd.

If Z is near Markov, then it is AFT and |∂Z| < ∞. So X and Y are near Markov if ∂X and ∂Y
are finite which is a consequence of (3.5).

The converse in Theorem 3.6 does not hold necessarily. We will give an example of X and Y ,
both AFT, in fact SFT, such that XV &YW is not AFT for some set of generators V and W .

Example 3.7. Let S = S′ = {0, 1, 2}, X = X(S) and take Y to be the set of binary sequences
whose runs of 1’s is restricted to S′. Choose α = 00 and β = 11 to be the synchronized words for
defining the generating sets V and W respectively. The Fischer cover of X&Y = XV &YW is as
in Figure 3. Observe that there are two different infinite paths terminating at the same vertex a and
having the same label (01)∞111. Therefore, X&Y is not AFT.

Now we give sufficient conditions such that the converse of Theorem 3.6 holds. Suppose X is a
sofic shift with the Fischer cover G = (G,L). Let G# be a new graph whose vertex set is the set 2V

of subsets of the vertex set V of G. Let A be the alphabet of X. We draw an arrow labeled a ∈ A
from a subset F ∈ 2V to another subset F ′ ∈ 2V , when

F ′ = {x ∈ V : there is an edge labeled a from an element of F to x}.
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We denote this new labeled graph by (G#,L#). By (10, Proposition 6.5), ∂X = L#
∞(X

G
#
2

) where

G#
2 denotes the subgraph of G# obtained by erasing all vertices F ∈ 2V for which #F 6= 2, together

with all arrows to or from such a vertex.

Lemma 3.8. Let X be a sofic shift with the Fischer cover G = (G,L). Also let x = p∞ ∈ ∂X where
p is primitive and let p = L(π0) for some path π0 in G. If there is only one cycle γ in G such that
x = L∞(γ∞), then γ consists of concatenations of at least two paths labeled p.

Proof. Let p = p0p1 · · · pn−1. Then there is a cycle λ = e0e1 · · · en−1 in G#
2 such that L#(λ) =

p. Also suppose the edge ei, 0 ≤ i ≤ n − 1 starts from the vertex {Ii, Ji} and terminates at
{I(i+1) mod n, J(i+1) mod n}. Note that if e ∈ E(G#

2 ) starts from {K1, L1} and terminates at {K2, L2},
since Ki 6= Li for i = 1, 2, e represents two different edges e1 and e2 in G such that i(ei) ∈ {K1, L1}
and t(ei) ∈ {K2, L2}. So there are two paths π1 and π2 in G such that L(πi) = L(π0) = p and

i(πi), t(πi) ∈ {I0, J0}, i = 1, 2. (3.6)

Suppose there is only one cycle γ in G such that x = L∞(γ∞). Since I0 6= J0, I0 and J0 are different
vertices along γ and by (3.6), they are initial and terminating points for two different paths in G labeled
p and we are done.

An immediate consequence of the above lemma is that if x = p∞ ∈ ∂X, then there are two
different paths π1 and π2 with L(πi) = p for i = 1, 2 and either both are in a cycle γ or in the different
cycles γ and γ′ such that

p∞ = L∞(γ∞) = L∞(γ′∞). (3.7)

Lemma 3.9. Suppose G is a finite right-resolving labeled graph with two different paths ξ = · · · e−1e0,
ξ′ = · · · e′−1e

′
0 and L(ei) = L(e′i). Then there are two different cycles Cξ = e−m · · · e−n and C′ξ =

e′−m · · · e′−n in G.

Proof. Without loss of generality assume that t(e0) 6= t(e′0). Otherwise, there must be e` such that
t(e`) 6= t(e′`) and we will do our argument for paths η = · · · e−`−1e` and η′ = · · · e′−`−1e

′
`.

There is at least one vertex v in G such that ξ meets it infinitely many often. Let v = t(e−ij )
for j ∈ N and choose jm > |VG|. Also let v′j be the terminating vertex for e′−ij . We follow ξ and ξ′

(backward) and simultaneously. Thus by pigeon principle, at least two vertices v′j1 and v′j2 amongst
the jm vertices v′1, · · · , v′jm are equal and let v′ = v′j1 = v′j2 . This means that when v′ returns to
itself along ξ′, v returns to itself along ξ and so ξ and ξ′ have met at least a cycle simultaneously on
their ways. Call the cycles Cξ = e−m · · · e−n and Cξ′ = e′−m · · · e′−n respectively. Note that Cξ 6= Cξ′ .
Otherwise, since t(e0) 6= t(e′0), there is a vertex w = t(ek) for some −n ≤ k ≤ −1 with two different
outer edges labeling the same which violates the fact that G is right-resolving.

Theorem 3.10. Let X and Y be two synchronized systems generated by V = Vα and W = Wβ as
in (3.2) and Pn(X) ∩ Pn(Y ) = ∅ for all n ∈ N where Pn(X) denotes the set of periodic points in X of
period n. If X = XV and Y = YW are SFT, AFT or near Markov, then Z = X&Y = XV &YW is SFT,
AFT or near Markov, respectively.

Proof. Suppose X and Y are SFT but Z is not so. Then ∂X = ∂Y = ∅ while ∂Z 6= ∅. Since ∂Z is a
sofic subsystem of Z, there is a periodic point p∞ ∈ ∂Z.

First suppose βvα 6⊆ p∞, for any vα ∈ V . By the hypothesis, this means that either p∞ ∈ GZX
or p∞ ∈ GZY . Suppose the former happens. Thus α 6⊆ p∞. Now choose m sufficiently large so
that pm is a synchronized word in X and pm 6∈ B(Y ). The existence of such m is guaranteed by the
fact that X is SFT and p∞ 6∈ Y . To have a contradiction, we show that pm is a synchronized word
for Z. So let upm and pmw be arbitrary words for Z. Since pm 6∈ B(Y ), u = u1u

′ and w = w′w1

where u′, w′ ∈ B(X) and they do not have α as a subword. We are trivially done if u1 or w1 is an
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empty word. Otherwise, without loss of generality assume u1 = β and w1 = α. Therefore, βu′pm and
pmw′α are in X and this implies βu′pmw′α ∈ B(X) and we are done.

Now suppose βvα ⊆ p. Then p = vi1αwj1β · · · vikαwjkβ where virα ∈ V and wirβ ∈ W ,
1 ≤ r ≤ k. Without loss of generality assume that p = vαwβ and let V ′ = {v : vα ∈ V }, W ′ =
{w : wβ ∈ W}. If v 6∈ W ′ (resp. w 6∈ V ′), then βvα (resp. αwβ) is a synchronized word for Z and
p∞ 6∈ ∂Z. So v, w ∈ V ′ ∩W ′ and by the definition of our generators

α, β 6⊆ v, α, β 6⊆ w. (3.8)

By Lemma 3.8, there are two different paths π1 and π2 in GZ with LZ(πi) = p for i = 1, 2 and either
both are in a cycle γ or in different cycles γ and γ′ such that 3.7 holds. Consider the following cases.

1. There are more than one cycle. Then (3.7) implies that (vαwβ)∞ = (vβwα)∞. By (3.8), either
v = w or α = β. Considering the fact that any path labeled vα ∈ V (resp. wβ ∈W ) terminates
to the same vertex, the former will not allow GZ being right-resolving and the latter contradicts
our hypothesis Pn(X) ∩ Pn(Y ) = ∅ for all n.

2. There is only one cycle γ with p∞ = LZ∞(γ∞). Then the label of this unique cycle γ must
be vαwβ. But by Lemma 3.8, this cycle must be formed from the concatenation of at least
two paths with the same label and (3.8) implies that in our situation vα = wβ and this in turn
implies Pn(X) ∩ Pn(Y ) 6= ∅ for some n.

As a result, ∂Z = ∅ and Z is SFT.
Suppose X and Y are AFT but Z is not AFT. So there are two different paths ξ = · · · e−1e0 and

ξ′ = · · · e′−1e
′
0 in GZ with the same label and terminating at the same vertex. Also we may assume

e0 6= e′0 and let Cξ = e−m · · · e−n and Cξ′ = e′−m · · · e′−n be two different cycles provided by Lemma
3.9.

1. If Cξ (resp. Cξ′ ) is a cycle in GZX (resp. GZY ), then

(L(e−m · · · e−n))∞ = (L(e′−m · · · e′−n))∞ ∈ Pn+m(X) ∩ Pn+m(Y )

violating our hypothesis.

2. If Cξ and Cξ′ are both cycles in GZX , then we may assume that t(e0) = t(e′0) = Iβ ; otherwise,
we may continue ξ and ξ′ on a common path to get to Iβ . But then we will have two different
infinite paths labeled the same and terminating at the same vertex in GX violating the fact that
GαX is left closing by Theorem 3.2.

3. Note that in (1) and (2), L(Cξ) = L(Cξ′) does not have α or β as its subword. So the remaining
case is that when α, β ⊆ L(Cξ). This implies L(Cξ) = L(Cξ′) = wi1βvj1α · · ·α. Let πi1 and
π′i1 be the subpaths of Cξ and C′ξ such that L(πi1) = L(π′i1) = wi1 . The fact that GZ is right-
resolving and paths labeled α terminate at the same vertex, implies that πi1 = π′i1 . By the
same reasoning, paths in Cξ and Cξ′ labeled vj1 are identical and carrying out this reasoning
for all the subpaths of Cξ and Cξ′ we will have Cξ = Cξ′ which is absurd.

Now let X and Y be near Markov. So they are AFT and |∂X|, |∂Y | < ∞. Moreover, Z is AFT.
If |∂Z| = ∞, then since ∂Z is sofic there will be infinitely many periodic points in ∂Z. Apply the
same reasoning as in the SFT – for the second part where βvα ⊆ p – to see that for any p∞ ∈
∂Z \ (∂X ∪ ∂Y ), we will have a contradiction. Thus ∂Z ⊆ (∂X ∪ ∂Y ) and we are done.
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