

SCIENCEDOMAIN *international* <www.sciencedomain.org>

Generalizing the Asymmetric Run-length-limited Systems

D. Ahmadi Dastjerdi^{∗[1](#page-0-0)} and S. Jangjooye Shaldehi¹

¹*Faculty of Mathematics, University of Guilan, Iran*

Original Research Article

> *Received: 11 October 2013 Accepted: 13 January 2014 Published: 19 February 2014*

Abstract

For $i = 1, 2$, if X_i is a synchronized system generated by $V_i = \{v^i \alpha_i : \alpha_i v^i \alpha_i \in \mathcal{B}(X_i), \alpha_i \nsubseteq$ $v^i\}$ where α_i is a synchronizing word for X_i , then a natural generalization of an asymmetric- $\mathsf{RLL}(d_1,\,k_1,\,d_0,\,k_0)$ systems is a coded system Z generated by $\{v^1\alpha_1v^2\alpha_2:\,v^i\alpha_i\in V_i, i=1,\,2\}.$ We investigate the dynamical properties of Z . We show that Z is sofic or has specification with variable gap length (SVGL) if and only if X_1 and X_2 are so. Also, if Z is SFT or AFT, then X and Y are SFT or AFT respectively and sufficient conditions for the converse will be given.

Keywords: shift of finite type; sofic; almost-finite-type; synchronized; coded system. 2010 Mathematics Subject Classification: 37B10

1 Introduction

Recall that the Run-length-limited (RLL) (cf. [\(1\)](#page-11-0)) and the Maximum Transition Run (MTR) constrained systems (cf. [\(2\)](#page-11-1)) are used to improve timing and detection performance in storage channels. In particular, the MTR code, introduced by Moon and Brickner (cf. [\(2\)](#page-11-1)), are to provide coding gain for extended partial response channels. The RLL code denoted by $X(d, k)$ limits the run of 0 to be at least d and at most k whereas the MTR(j , k) code limits the run of 0 to be at most k and the run of 1 at most j. When there is no restriction on the runs of 0, we say that $k = \infty$ and it is common then to denote such a constraint by $MTR(j)$. For generalizing MTR codes, consider the asymmetric- $RLL(d_1, k_1, d_0, k_0)$ constraint which is the set of binary sequences whose runs of 1's have length between d_1 and k_1 and the runs of 0's between d_0 and k_0 . In the case that $d_1 = d_0 = 1$, $k_1 = j$ and $k_0 = k$, this constraint coincides with MTR(j, k).

One may define an asymmetric-RLL (d_1, k_1, d_0, k_0) as follows. Let $S = \{d_0 - 1, d_0, \ldots, k_0 - 1\} \subseteq$ \mathbb{N}_0 and let $X = X(d_0 - 1, k_0 - 1)$ be the RLL system associated to S. Then X is the space generated by $V = \{0^s1 : s \in S\}$, that is, the space constructed by concatenating the words in V. Now consider $S' = \{d_1 - 1, d_1, \ldots, k_1 - 1\} \subseteq \mathbb{N}_0$ and the space $Y = X(d_1 - 1, k_1 - 1)$ generated by $W = \{1^{s'}0 : s' \in S'\}$. The word $\alpha = 1$ (resp. $\beta = 0$) is a synchronizing word in X (resp. Y) and our asymmetric-RLL (d_1, k_1, d_0, k_0) is the space generated by $\{vw : v \in V, w \in W\}$. On the

^{}Corresponding author: E-mail: dahmadi1387@gmail.com*

other hand, any synchronized system X with a synchronizing word α is generated by $\{\alpha : \alpha \alpha \alpha\}$ is a word in X and $\alpha \not\subseteq v$. If Y is another synchronized system with a synchronized word β and a set of generators $W_{\beta} = \{w\beta : \beta w\beta \text{ a word in } Y \text{ and } \beta \not\subseteq w\}$, then a natural generalization for an asymmetric-RLL (d_1, k_1, d_0, k_0) constraint is a coded system Z denoted by $X \& Y$ and generated by $\{v\alpha w\beta : v\alpha \in V_\alpha, w\beta \in W_\beta\}$. Dynamical properties of this generalized system depend on α and β ; however, here, we are interested in those dynamical properties which are independent of the synchronized words.

In Theorem [3.3](#page-6-0) (resp. Theorem [3.5\)](#page-6-1), it is shown that X and Y are sofic (resp. SVGL) if and only if $Z = X \& Y$ is sofic (resp. SVGL). Also, If $Z = X \& Y$ is SFT, near Markov or AFT, then both X and Y are SFT, near Markov or AFT respectively (Theorem [3.6\)](#page-7-0). But the converse does not hold necessarily. Then we give sufficient conditions such that the converse of Theorem [3.6](#page-7-0) holds (Theorem [3.10\)](#page-9-0).

2 Background and Notations

In this section, we will bring the basic definitions in symbolic dynamics on finite alphabet A . For justification of our claims see [\(1\)](#page-11-0).

Equip $\mathcal A$ with discrete topology and $\mathcal A^{\mathbb Z}$ with product topology. Then $\mathcal A^{\mathbb Z}$ is a Cantor set and $\sigma: \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ defined by $(\sigma(x))_i = x_{i+1}$ is called the *shift map*. A *block* (or *word*) over A is a finite sequence of symbols from A. It is convenient to include ε , the sequence of no symbols which is called the *empty word*. If x is a point in $A^{\mathbb{Z}}$ and $i \leq j$, then we will denote a word of length $j - i$ by $x_{[i,\,j]}=x_ix_{i+1}...x_j.$ If $n\geq 1,$ then u^n denotes the concatenation of n copies of $u,$ and put $u^0=\varepsilon.$ Let $w = w_0w_1 \cdots w_{p-1}$ be a word of length p. The least period of w is the smallest integer q such that $w = (w_0w_1 \cdots w_{q-1})^m$ where $m = \frac{p}{q}$ must be an integer. The word w is primitive if its least period equals its length p.

Let $\mathcal F$ be a collection of some words over $\mathcal A$. Let $X_{\mathcal F}$ be a non-empty closed subset of $\mathcal A^{\mathbb Z}$ and so that $X_{\mathcal{F}}$ does not contain any word in \mathcal{F} . This set \mathcal{F} is called the set of *forbidden blocks* over \mathcal{A} . Then any subshift $X\subseteq\mathcal{A}^\mathbb{Z}$ is a $X_\mathcal{F}$ for some collection of forbidden blocks. If $\mathcal F$ is finite, then $X_\mathcal{F}$ is called *shift of finite type* (SFT).

Let $\mathcal{B}_n(X)$ denote the set of all admissible n words. The *language* of X is the collection $\mathcal{B}(X)$ = $\bigcup_{n=0}^\infty \mathcal{B}_n(X)$. A shift space X is *irreducible* if for every ordered pair of words $u, v \in \mathcal{B}(X)$ there is a word $w \in \mathcal{B}(X)$ so that $uvw \in \mathcal{B}(X)$. We say $v \in \mathcal{B}(X)$ is *synchronizing* if whenever uv and vw are in $\mathcal{B}(X)$, then $uvw \in \mathcal{B}(X)$. An irreducible shift space X is a *synchronized system* if it has a synchronizing word [\(3\)](#page-11-2).

Fix integers m and n with $m \leq n$ and let A and D be alphabets and X a shift space over A. Define the $(m + n + 1)$ *-block map* $\Phi : \mathcal{B}_{m+n+1}(X) \to \mathcal{D}$ by

$$
y_i = \Phi(x_{i-m}x_{i-m+1}...x_{i+n}) = \Phi(x_{[i-m,i+n]})
$$
\n(2.1)

where $y_i\in\mathcal{D}.$ This Φ induces a map $\Phi_\infty=\Phi_\infty^{[-m,n]}:X\to\mathcal{D}^\mathbb{Z}$ called the *sliding block code* with *memory* m and *anticipation* n defined by $y = \Phi_{\infty}(x)$ with y_i given by (1.1). An onto sliding block code $\Phi_\infty: X \to Y$ is called a *factor code*. In this case, we say that Y is a factor of X. The map Φ_∞ is a *conjugacy*, if it is invertible.

An *edge shift*, denoted by X_G , is a shift space consisting of all bi-infinite walks in a directed graph G. Any path $\pi \in G$ initiates at a vertex denoted by $i(\pi)$ and terminates at a vertex $t(\pi)$.

A *labeled graph* G is a pair (G, \mathcal{L}) where G is a graph with edge set E and the labeling $\mathcal{L}: \mathcal{E} \to \mathcal{A}$. Then a subshift X_G is induced by \mathcal{L}_{∞} which it is the set of sequences obtained by reading the labels of walks on G .

$$
X_{\mathcal{G}} = \overline{\{\mathcal{L}_{\infty}(\xi) : \xi \in X_G\}} = \overline{\mathcal{L}_{\infty}(X_G)}.
$$
\n(2.2)

We say G is a *presentation* or a *cover* of X_g . If G is finite, then X_g is called *sofic* and $X_g = \mathcal{L}_{\infty}(X_G)$. Let $\mathcal{G} = (G, \mathcal{L})$ be a labeled graph. A word $v \in \mathcal{B}(X_G)$ is a *magic word* for G if all paths in G labeled v terminate at the same vertex.

A labeled graph $\mathcal{G} = (G, \mathcal{L})$ is *right-resolving* if for each vertex I of G the edges starting at I carry different labels. Let $I \in V$ be a vertex of G. The *follower set* $F(I)$ of I in G is the collection of labels of paths starting at I. The labeled graph G is *follower-separated* if distinct vertices have distinct follower sets.

A *minimal right-resolving presentation* of a sofic shift X is a right-resolving presentation of X having the fewest vertices among all right-resolving presentations of X. A minimal right-resolving presentations of an irreducible sofic shift is unique up to conjugacy and called the *Fischer cover* of X. A right-resolving graph G is the Fischer cover of X if and only if it is irreducible and followerseparated.

Let X be a shift space and $w \in \mathcal{B}(X)$. The *follower set* $F(w) = F_X(w)$ of w is defined by $F(w) = \{v \in \mathcal{B}(X) : wv \in \mathcal{B}(X)\}\$. A shift space X is sofic if and only if it has a finite number of follower sets [\(1,](#page-11-0) Theorem 3.2.10) .

A labeled graph is *right-closing* with delay D if whenever two paths of length $D + 1$ start at the same vertex and have the same label, then they must have the same initial edge. Similarly, left-closing will be defined. A labeled graph is bi-closing, if it is simultaneously right-closing and left-closing.

An irreducible sofic shift is called *almost-finite-type* (AFT) if it has a bi-closing presentation [\(1\)](#page-11-0). Nasu in [\(4\)](#page-11-3) showed that an irreducible sofic shift is AFT if and only if its Fischer cover is left-closing.

Now we review the concept of the Fischer cover for a not necessarily sofic system (cf. [\(5\)](#page-11-4)). Let $x \in \mathcal{B}(X)$. Then $x_+ = (x_i)_{i \in \mathbb{Z}^+}$ (resp. $x_- = (x_i)_{i \le 0}$) is called *right (resp. left) infinite* X-ray. For a left infinite X-ray, say $x-$, its follower set is $\omega_+(x-) = \{x_+ \in X^+ : x_-x_+$ is a point in $X\}$. Consider the collection of all follower sets $\omega_+(x_-)$ as the set of vertices of a graph $X^+.$ There is an edge from I₁ to I₂ labeled a if and only if there is an X-ray $x_$ such that $x_$ _{-a} is an X-ray and $I_1 = \omega_+(x_-)$, $I_2 = \omega_+(x-a)$. This labeled graph is called the *Krieger graph* for X. If X is a synchronized system with synchronizing word α , the irreducible component of the Krieger graph containing the vertex $\omega_+(\alpha)$ is called the *right Fischer cover* of X. We are working only with coded synchronized systems which are irreducible. In this situation, alike irreducible sofics, the right Fischer cover is just called the Fischer cover.

The *entropy* of a shift space X is defined by $h(X) = \lim_{n \to \infty} (1/n) \log |\mathcal{B}_n(X)|$.

3 Intertwined Synchronized Systems

A shift space that can be presented by an irreducible countable labeled graph is called a *coded system*. Equivalently, a coded system X is the closure of the set of sequences obtained by freely concatenating the words in a list of words, called the set of generators, over a finite alphabet [\(1\)](#page-11-0). A coded system is irreducible and has a dense set of periodic points [\(5\)](#page-11-4). Coded systems were introduced by Blanchard and Hansel in [\(3\)](#page-11-2) who also showed that the class of the coded systems is the smallest class of subshifts which contains the synchronized systems and is closed under factors [\(3,](#page-11-2) Proposition 4.1). A brief introduction to coded systems can be found in [\(1,](#page-11-0) Section 13.5).

Our objective is to study the synchronized systems. Recall that in a synchronized system X , for any synchronizing word $\alpha = \alpha_1 \cdots \alpha_p$, X is generated by

$$
V = V_{\alpha} = \{ v\alpha \in \mathcal{B}(X) : \alpha v\alpha \in \mathcal{B}(X), \alpha \nsubseteq v \}. \tag{3.1}
$$

Now we state our main definition.

Definition 3.1. For $1 \leq i \leq \ell$, let $X_i = X_{V_i}$ be a coded system with a synchronizing word α_i and generated by

$$
V_i = V_{\alpha_i} = \{v^{(i)}\alpha_i : \alpha_i v^{(i)}\alpha_i \in \mathcal{B}(X_i), \alpha_i \nsubseteq v^{(i)}\}.
$$

The coded system $Z = Z(V_1, \ldots, V_\ell)$ generated by

$$
\{v^{(1)}\alpha_1v^{(2)}\alpha_2\cdots v^{\ell}\alpha_{\ell}: v^{(i)}\alpha_i \in V_{(i)}\}\
$$

1136

is called the *intertwined system* of X_1, \ldots, X_ℓ and is denoted by

$$
Z=X_1\&X_2\&\cdots\&X_\ell.
$$

Since the problems arising from intertwining of some finitely many systems are basically the same as intertwining of two systems, we will concentrate on intertwining of two systems $X = X_V$ and $Y = Y_W$ generated by

 $V = V_{\alpha} = \{v\alpha : \alpha v\alpha \in \mathcal{B}(X), \alpha \not\subseteq v\}$ and $W = W_{\beta} = \{w\beta : \beta w\beta \in \mathcal{B}(Y), \beta \not\subseteq w\}$ (3.2)

respectively. Note that for $w\beta \in W_\beta$, $\alpha w\beta$ is a synchronizing word for Z. So our first observation is

Lemma 3.1. *Suppose* X *and* Y *are synchronized and* V *and* W *as in* [\(3.2\)](#page-3-0)*. Then* Z*, the intertwined of* X *and* Y *, is synchronized.*

One of the best tools to study the dynamics of a synchronized system is through one of its covers, in particular, its Fischer cover. So we construct a cover for $Z = X \& Y$ from \mathcal{G}_X and \mathcal{G}_Y the Fischer covers of X and Y respectively.

Let $\alpha = \alpha_1 \alpha_2 \cdots \alpha_p$ (resp. $\beta = \beta_1 \beta_2 \cdots \beta_q$) be the synchronizing word for X (resp. Y) and π_u any path labeled u. Then there is a unique vertex $I_\alpha \in V(G_X)$ (resp. $I_\beta \in V(G_Y)$) such that $t(\pi_{u\alpha}) = I_\alpha$ (resp. $t(\pi_{u\beta})=I_{\beta}$) for $u\in\mathcal{B}(X)$ (resp. $u\in\mathcal{B}(Y)$). If all vertices $t(\pi_{v\alpha_1\cdots\alpha_i}, 1\leq i\leq p$ and $t(\pi_{w\beta_1\cdots\beta_j}),\,1\leq j\leq q$ have just one inner edge, then to construct a cover \mathcal{G}_Z for $Z,$ cut off all inner edges of I_α (resp. I_β) which are the last edge of some π_α (resp. π_β) from I_α (resp. I_β) and paste them to I_β (resp. I_α) as its inner edges. By this construction, for any word $v \alpha w \beta$, we will have a path $\pi_{v\alpha w\beta}$ and in fact any other path in this cover is labeled by a subword of some $v_1\alpha w_1\beta\cdots v_k\alpha w_k\beta$, $v_i \alpha \in V$, $w_i \beta \in W$.

The above cut and paste process at I_α and I_β may not give a cover for Z when one of the vertices along a path labeled by the synchronizing word α in G_X or β in G_Y has more than one inner edges. Suppose for instance there are two inner edges e_{α_i} and $e_a,$ $\alpha_i\neq a\in\mathcal{A}$ at $t(\pi_{\alpha_1\cdots\alpha_i})$ along the path π_{α} . Then the above cut and paste process at I_{α} and I_{β} gives a cover with a path labeled $\zeta = a\alpha_{i+1}\cdots\alpha_p w\beta$. But it could well happen that $\zeta \notin \mathcal{B}(Z)$. To overcome this problem, by using the in-splitting technique [\(1,](#page-11-0) Section 2.4), we replace \mathcal{G}_X (resp. \mathcal{G}_Y) by a cover \mathcal{G}_X^α (resp. \mathcal{G}_Y^β) so that the inner edges of $t(\pi_{\alpha_1\cdots\alpha_i})$ (resp. $t(\pi_{\beta_1\cdots\beta_j})$) are all lebeled α_i (resp. β_j).

Now we give a detailed explanation of how our in-splitting takes place. Set $G_X = G$ and denote by I_α the unique vertex in $V(G)$ where any path labeled α terminates. Any other vertex is denoted by $I_{\alpha u}$ by applying the following convention. If there are several paths $\pi_{\alpha u_i}$ all terminating at $I_{\alpha u}$, then u is amongst the ones with shortest length and then the least lexicographic order.

Fix $I = I_{\alpha u_1} \in \mathcal{V}(G)$ and assume that \mathcal{E}_I , the set of inner edges of I, has more than one element. Note that this means that there are at least two paths $\pi_{\alpha u_1}$ and $\pi_{\alpha u_2}$ such that $I=t(\pi_{\alpha u_1})=t(\pi_{\alpha u_1}).$ Suppose $u_i = c_{i_1} \cdots c_{i_{k_i}} \alpha_1 \cdots \alpha_{l_i} \in \mathcal{B}(X),$ $i = 1$ or 2. If one of the following holds, then we do not do the splitting.

- 1. both $\alpha_1 \cdots \alpha_{l_1}$ and $\alpha_1 \cdots \alpha_{l_2}$ are empty words;
- 2. $\alpha_1 \cdots \alpha_{l_1}$ (resp. $\alpha_1 \cdots \alpha_{l_2}$) is not empty word and $c_{i_1} \cdots c_{i_{k_1}} \alpha_1 \cdots \alpha_{l_1} \cdots \alpha_p = c_{i_1} \cdots c_{i_{k_1}} \alpha$ (resp. $c_{i_1}\cdots c_{i_{k_2}}\alpha$) is not admissible;
- 3. cases (1) and (2) do not hold and $l_1 = l_2$.

(1) and (2) say that if J is not a vertex on a path π_{α} , then in-splitting will not be done.

Now we set up to see which vertices on π_{α} requires in-splitting and how this happens. Note that case (3) above excludes some cases. Set $G_1 = G$ and let

$$
\mathcal{V}_{G_1}(\alpha_1) = \{ I \in \mathcal{V}(G_1) : I = t(e_{\alpha_1}), e_{\alpha_1} \text{ is the first edge labeled } \alpha_1 \text{ on a path labeled } \alpha \}.
$$
 (3.3)

For $I \in \mathcal{V}_{G_1}(\alpha_1)$, partition \mathcal{E}_I to $P_I^1(\alpha_1) = \{e_1 : \mathcal{L}(e_1) = \alpha_1\}$ and $P_I^2(\alpha_1)$ for the remaining edges. Do an in-split for I with respect to this partition and call the new cover $\mathcal{G}_2 = (G_2, \mathcal{L}_2)$.

Let $\mathcal{V}_{G_2}(\alpha_1\alpha_2) = \{I \in \mathcal{V}(G_2) : I = t(e_{\alpha_1}e_{\alpha_2}), e_{\alpha_1}e_{\alpha_2} \text{ be the first 2 edges with label } \alpha_1\alpha_2\}$ of a path labeled α }. Partition \mathcal{E}_I , $I \in \mathcal{V}_{G_2}(\alpha_1\alpha_2)$ to $P_I^1(\alpha_1\alpha_2) = \{e_2 : t(e_1e_2) = I$ for some $e_1, \, \mathcal{L}_2(e_1e_2)=\alpha_1\alpha_2\}$ and $P_I^2(\alpha_1\alpha_2)=\mathcal{E}_I\backslash P_I^1(\alpha_1\alpha_2).$ By the same procedure, $\mathcal{G}_{k+1}, P_I^1(\alpha_1\alpha_2\cdots\alpha_k),$ and $P^2_I(\alpha_1\alpha_2\cdots\alpha_k),\,1\leq k\leq p$ will be constructed. Set $\mathcal{G}^\alpha=\mathcal{G}_p=(G_p,\,\mathcal{L}_p).$

Suppose in-splitting occurs at $I \in \mathcal{V}(G_k)$ and let \mathcal{E}^I be the set of outer edges of I. Then corresponding to I, there are two vertices I_1 and I_2 in $\mathcal{V}(G_{k+1})$ with $\mathcal{E}^I=\mathcal{E}^{I_1}=\mathcal{E}^{I_2}.$ For $e\in\mathcal{E},$ let $e(i)$ be the corresponding edge in \mathcal{E}^{I_i} with the same label as e . We collect some properties of \mathcal{G}^{α} in the following theorem.

Theorem 3.2. *Let* X *be a synchronized system with a synchronized word* $\alpha = \alpha_1 \cdots \alpha_p$, a generator V as [\(3.1\)](#page-2-0) and the Fischer cover $\mathcal{G} = (G, \mathcal{L})$. Then

- 1. \mathcal{G}^{α} and \mathcal{G} are conjugate.
- 2. Let $e_{\alpha_1}\cdots e_{\alpha_k}$, $1\leq k< p$ be a subpath of a path labeled α , $\mathcal{L}_p(e_{\alpha_1}\cdots e_{\alpha_k})=\alpha_1\cdots\alpha_k$ and let $I=t(e_{\alpha_1}\cdots e_{\alpha_k}).$ Then all the inner edges of I have the same label $\alpha_k.$
- *3.* Let $u = u_1 \cdots u_k \in \mathcal{B}(X)$ and suppose $\pi = e_{u_1} \cdots e_{u_k} e_{\alpha_i} \cdots e_{\alpha_p}$ is a path so that $\mathcal{L}_p(\pi) =$ $u_1\cdots u_k\alpha_i\cdots\alpha_p$ and $e_{\alpha_i}\cdots e_{\alpha_p}$ is a subpath of a path labeled α , then either $u\alpha_i\cdots\alpha_p\subseteq\alpha$ or $u\alpha_i \cdots \alpha_p = v\alpha_1 \cdots \alpha_p$ for some $v \in \mathcal{B}(X)$.
- 4. If X is sofic, then G^{α} is a finite labeled graph. Also, if G is left-closing with delay D, then G^{α} *will be left-closing with delay* $D + p - 1$ *.*

So corresponding to $(X,\,\alpha)$ (resp. $(Y,\,\beta))$ a cover \mathcal{G}^α_X (resp. \mathcal{G}^β_Y) arises whose any vertex along a path π_{α} (resp. π_{β}) has just one unique inner edge. Applying the above cut and paste process at $I_\alpha\in\mathcal{V}(\mathcal{G}_X^\alpha)$ and $I_\beta\in\mathcal{V}(\mathcal{G}_Y^\beta)$ gives rise to a cover \mathcal{G}_Z called the *intertwined cover* for $Z=X\&Y.$

Definition 3.2. Let G_{Z_X} be the subgraph of G_Z corresponding to G_X , that is, consisting of all the paths in G_Z labeled $v\alpha$, $v \in V$ and starting from I_α and terminating at I_β .

Remark 3.1. (1). Note that \mathcal{G}_{Z_X} is not irreducible and \mathcal{G}_{Z_X} and \mathcal{G}_{Z_Y} have only vertices I_α and I_β in common. However, unlike $\mathcal{G}^\alpha_X,$ \mathcal{G}_{Z_X} is follower separated. In fact, the only vertices in \mathcal{G}^α_X which have the same follower sets are those vertices in the path labeled α . So if an in-splitting is required at $t(e_{\alpha_i})$, then instead of $t(e_{\alpha_i})$, two vertices emerges; one is not preceded by $\alpha_1\dots\alpha_i$ and for this vertex, a path labeled $\alpha_{i+1} \ldots \alpha_p a$ follows for some $a \in A$ and the other no such path exists, for $t(e_{\alpha_1}\dots e_{\alpha_p})\in\mathcal{V}(G_{Z_X})$ has no outer edges. Therefore, all the vertices in \mathcal{G}_{Z_X} represent different states in the Fischer cover of Z.

(2). By giving an example, we show that $X_V \& X_W$ depends on V and W and so on α and β . We construct our example from $X = X(S)$ an S-gap shift for $S = \{1, 2\}$ and Y a β -shift for $1_\beta = 1101$. First we recall the definitions of an S -gap and a β -shift.

An S-gap shift $X(S)$ is a coded system generated by $\{10^{s_i}: s_i \in S\}$ where $S \subseteq \mathbb{N} \cup \{0\}$. To define a β -shift, let β be a real number greater than 1 and set

$$
1_{\beta}=a_1a_2a_3\cdots\in\{0,\,1,\ldots,\,[\beta]\}^{\mathbb{N}},
$$

where $a_1 = |\beta| = \max\{n \in \mathbb{N} : n \leq \beta\}$ and

$$
a_i = \lfloor \beta^i (1 - a_1 \beta^{-1} - a_2 \beta^{-2} - \dots - a_{i-1} \beta^{-i+1}) \rfloor
$$

for $i\geq 2$. The sequence 1_β is the expansion of 1 in the base β , that is, $1=\sum_{i=1}^\infty a_i\beta^{-i}$. Let \leq be the lexiographic ordering of $(N \cup \{0\})^N$. The sequence 1_β has the property that

$$
\sigma^k 1_\beta \le 1_\beta, \qquad k \in \mathbb{N}, \tag{3.4}
$$

where σ denotes the shift on $(\mathbb{N} \cup \{0\})^{\mathbb{N}}$. It follows from [\(3.4\)](#page-4-0) that

$$
X_{\beta} = \{x \in \{0, 1, \ldots, \lfloor \beta \rfloor\}^{\mathbb{Z}} : x_{[i, \infty)} \leq 1_{\beta}, i \in \mathbb{Z}\}\
$$

Figure 1: Fischer cover spaces of (a) S-gap shift for $S = \{1, 2\}$, (b) β -shift for $1_{\beta} = 1101$ and the cover for their intertwined systems (c) $Z₁$ and (d) $Z₂$.

is a shift space of $\{0, 1, \ldots, \lfloor \beta \rfloor\}^{\mathbb{Z}}$, called the β -shift [\(6\)](#page-11-5). Their Fischer covers \mathcal{G}_X and \mathcal{G}_Y for $S =$ $\{1, 2\}$ and $\beta = 1011$ is given in Figure [1.](#page-5-0) When $|S| < \infty$, then the S-gap shift is SFT [\(7,](#page-11-6) Theorem 3.3), and a β -shift is SFT if and only if the expansion of 1 in the base β is finite [\(8\)](#page-11-7).

Therefore, our systems are SFT and it is obvious that 1 is a synchronizing word for X and $00, 100$ are synchronizing words for $Y.$ Let $V=\{01,\,001\},\,W_1=\{u100:\,\,100u100\in\mathcal{B}(Y),\,100\not\subseteq u\}$ and $W_2 = \{u11:~11u11 \in \mathcal{B}(Y),~11 \not\subseteq u\}.$ Then $X = X_V$ and $Y = Y_{W_1} = Y_{W_2}.$ Let $Z_i = X \& Y_{W_i}$ and A_i be the adjacency matrix of ${\cal G}_{Z_i}$ for $i=1,\,2.$ Then

with eigenfunctions p_1 and p_2 as,

$$
p_1(x) = x^8 - x^7 - x^6 + x^5 - x^3 - 2x^2 - x, \qquad p_2(x) = x^7 - x^6 - x^5 - x - 1
$$

and the largest positive eigenvalues 1.6180 and 1.7 respectively. Hence, $h(Z_1) = \log 1.6180$ while $h(Z_2) = \log 1.7$. So Z_1 and Z_2 are not conjugate and in particular, the intertwined system of conjugate systems are not necessarily conjugate.

Theorem 3.3. Let X and Y be two synchronized systems generated by $V = V_\alpha$ and $W = W_\beta$ as in [\(3.2\)](#page-3-0). Then X and Y are sofic if and only if $Z = X \& Y = X_V \& Y_W$ is sofic.

Proof. Let $X = X_V$ and $Y = X_W$ be two sofic systems and \mathcal{G}_X (resp. \mathcal{G}_Y) be the Fischer covers of X (resp. Y). Then \mathcal{G}_X^{α} and \mathcal{G}_Y^{β} and their intertwined cover \mathcal{G}_Z have finite vertices. But any symbolic system with a finite labeled graph is sofic and we are done.

For the converse suppose Z is sofic. Thus C_Z , the set of follower sets of Z is finite. To prove the theorem, we will show that if $|\mathcal{C}_X| = \infty$, then $|\mathcal{C}_Z| = \infty$ which is a contradiction.

Fix $\alpha \not\subseteq u_1 \in \mathcal{B}(X)$ and let u_2 be any word in $\mathcal{B}(X)$ such that $F_X(u_1) \neq F_X(u_2)$. So let $v \in F_X(u_1) \backslash F_X(u_2)$ and first assume $\alpha \subseteq u_2$. Since α is a synchronizing word, $F_X(x' \alpha x) = F_X(\alpha x)$ for $x, x' \in \mathcal{B}(X)$. Hence, we may assume $u_2 = \alpha u_2'$. On the other hand for a $w_0 \beta \in W_\beta$, $z_0 = \alpha w_0 \beta$ is a synchronizing word for Z. Thus if v is a word in X and $v \notin F_X(\alpha u_2')$ then $v \notin F_Z(z_0u_2')$; because, any path in \mathcal{G}_Z labeled z_0 is magic and $t(z_0u_2')\in \mathcal{G}_{Z_X}.$ This in turn means that if there are infinitely many $u_2=\alpha u_2'$ such that $F_X(u_1)\neq F_X(u_2),$ then there are infinitely many u_2' such that $F_Z(u_1) \neq F_Z(z_0u'_2).$

If $\alpha \nsubseteq u_2$, then

$$
F_X(u_2) = \bigcup_{\substack{\alpha u_2' u_2 \in \mathcal{B}(X) \\ \alpha \not\subseteq u_2' u_2}} F_X(\alpha u_2' u_2).
$$

But if $\alpha \not\subseteq w_2$ and $F_X(w_2) \neq F_X(w_2)$, then for some $u_2', w_2', F_X(\alpha u_2'u_2) \neq F_X(\alpha w_2'w_2)$. So again an argument as above will show that the follower sets of Z is not finite.

If $\alpha \subseteq u_1$, then again we may assume $u_1 = \alpha u_1'$ and since $F_X(u_1) \subseteq F_X(u_1')$, then we replace u'_1 with u_1 and will repeat the above argument. \Box

Next example will illustrate the intertwining of two sofic systems X and Y .

Example 3.4. *Consider Figure [2](#page-7-1) and two sofic shifts* X *and* Y *with* $\alpha = \alpha_1 \alpha_2 = 00$ *and* $\beta = \beta_1 \beta_2 \beta_3 = 0$ 000 *as their synchronizing words respectively. The Fischer covers of* X *and* Y *are presented in that figure.*

First we will construct \mathcal{G}_X^{α} . We have $\mathcal{V}_{G_X}(\alpha_1) = \{F_X(\alpha_1)\}$ and only $I = F_X(\alpha_1)$ needs insplitting. We do this and we obtain $\mathcal{G}_X^{\alpha} = \mathcal{G}_{X_2}$.

For \mathcal{G}_Y^{β} , the first in-splitting occurs in $I = F_Y(\beta 11)$. Do this in-splitting and call the new cover \mathcal{G}_{Y_2} . *We have* $\mathcal{V}_{G_{Y_2}}(\beta_1\beta_2)=\{F_Y(\beta 1)\}$ and $F_Y(\beta 1)$ needs also in-splitting. Doing this $\mathcal{G}_Y^{\beta}(=\mathcal{G}_{Y_3})$ will be *constructed.*

Definition 3.3 ([\(9\)](#page-11-8))**.** A shift space X has *specification with variable gap length* (SVGL) if there exists $N \in \mathbb{N}$ such that for all $u, v \in \mathcal{B}(X)$, there exists $w \in \mathcal{B}(X)$ with $uwv \in \mathcal{B}(X)$ and $|w| \leq N$.

Note that a SVGL was called almost specified in [\(9\)](#page-11-8).

Theorem 3.5. *Suppose* X and Y are two synchronized systems generated by $V = V_\alpha$ and $W = W_\beta$ *as in* [\(3.2\)](#page-3-0). Then $Z = X \& Y = X_V \& Y_W$ has SVGL if and only if $X = X_V$ and $Y = Y_W$ have SVGL.

Proof. If $V = W$, then $Z = X$ and we are done. So suppose $W \neq V$ and pick $w_0 \beta \in W \setminus V$.

First suppose Z has SVGL with the transition length M and suppose that one of X or Y, say X, does not have SVGL. Then for all n, there are $u_n, v_n \in \mathcal{B}(X)$ such that if $w \in \mathcal{B}(X)$ and $u_n w v_n \mathcal{B}(X)$, then $|w| \ge n$. Without loss of generality, assume that $\alpha u_n, v_n \alpha \in \mathcal{B}(X)$ for all n. Now let $z_n =$ $\alpha w_0\beta u_n$ and $z_n'=v_n\alpha w_0\beta$ be the words in $\mathcal{B}(Z).$ Since Z has SVGL, there is $z_n''\in\mathcal{B}(Z)$ such that $z_nz_n''z_n'\in\mathcal{B}(Z)$ and $|z_n''|\leq M$ for all $n\in\mathbb{N}.$ Note that this z_n'' is a word such as $u_n'\alpha w_{i_1}\beta\cdots w_{i_k}\beta v_n'$ for some $u'_n,\,v'_n\in\mathcal{B}(X).$ Let $n>M$ and set $w=u'_n\alpha v'_n.$ Then by the fact that α is a synchronizing word, $u_n w v_n \in X$ and $|w| \leq M$ which is absurd.

Figure 2: From above, the Fischer covers of X, Y and $Z = X \& Y$.

Now suppose both of X and Y have SVGL with the transition lengths M_X and M_Y . Let

 $m_1 = \min\{|v\alpha| : v\alpha \in V\} = |v_1\alpha|, \quad m_2 = \min\{|w\beta| : w\beta \in W\} = |w_1\beta|,$ $k = \max\{n \in \mathbb{N} : |n\alpha| < M_X\}, \qquad l = \max\{n \in \mathbb{N} : |n\beta| < M_Y\},$

and $M = M_X + km_2 + M_Y + lm_1$. We claim that M is a transition length for Z. Let $z_1, z_2 \in \mathcal{B}(Z)$. Different cases occur. We just prove two cases, other cases will be proved similarly. First case is when $z_1 = \gamma v_i \alpha w_j \beta z'$ and $z_2 = z'' \alpha w_p \beta \lambda$ where $\gamma, \lambda \in \mathcal{B}(Z)$ and $z', z'' \in \mathcal{B}(X)$ so that $\alpha \not\subseteq z', z''.$ Since X has SVGL, there is $x = x_1 \alpha v_{i_1} \alpha \cdots v_{i_n} \alpha x_2$ such that $z' x z'' \in \mathcal{B}(X)$ and $|x| \le M_X$. Then $z = x_1 \alpha w_1 \beta v_{i_1} \alpha w_1 \beta \cdots v_{i_n} \alpha w_1 \beta x_2 \in \mathcal{B}(Z)$ and $z_1 z z_2 \in \mathcal{B}(Z)$. Furthermore, $|z| \le M_X + km_2 \le M$.

The other case is when z_1 is as above and $z_2 = z'' \beta v_q \alpha \lambda$ with $\beta \nsubseteq z'' \in \mathcal{B}(Y)$. Since X and Y have SVGL, there are $x \in \mathcal{B}(X)$ and $y \in \mathcal{B}(Y)$ such that $z'x\alpha \in \mathcal{B}(X)$, $\beta yz'' \in \mathcal{B}(Y)$ and $|x| \le M_X$, $|y| \le M_Y$. We can assume that x (resp. y) does not contain α (resp. β) as a subword. Then $z_1x\alpha yz_2 \in \mathcal{B}(Z)$. Note that $|x\alpha y| \le M_X + m_1 + M_Y \le M$ and we are done. \Box

Recall that when X is a sofic shift space with non-wandering part $R(X)$, we can consider the shift space

 $\partial X = \{x \in R(X) : x \text{ contains no words that are synchronizing for } R(X) \}$

which is called the *derived shift space* of X. An irreducible sofic shift space X is *near Markov* when it is AFT and its derived shift space ∂X is a finite set [\(10\)](#page-11-9).

Theorem 3.6. *Let* X and Y *be two synchronized systems with* $V = V_\alpha$ and $W = W_\beta$ generators for X and Y as in [\(3.2\)](#page-3-0). If $Z = X \& Y = X_V \& Y_W$ is SFT, near Markov or AFT, then both X and Y are *SFT, near Markov or AFT respectively.*

Proof. Suppose Z is SFT but X is not SFT. By Theorem [3.3,](#page-6-0) X is sofic and so ∂X is also sofic [\(10,](#page-11-9) Theorem 6.6). Thus there is a periodic point $p^{\infty} \in \partial X$ and let p be primitive. By the definition, α is not a subword of $p^{\infty}.$ Also by Lemma [3.8,](#page-9-1) either there are two cycles in G_X labeled p or one

Figure 3: The Fischer cover of a non-AFT intertwined system, constructed from two AFT systems: two different paths labeled $(01)^\infty 111$ terminate at vertex a.

cycle consisting of concatenations of at least two paths labeled p. By Remark [3.1\(](#page-4-1)1), G_{Z_X} is followerseparated, and this means the word p is not a synchronizing word which implies that $p^{\infty} \in \partial Z$ and so $\partial X \subseteq \partial Z$. By the same reasoning, $\partial Y \subseteq \partial Z$ and so

$$
\partial X \cup \partial Y \subseteq \partial Z. \tag{3.5}
$$

First suppose Z is SFT and one of X or Y, say X, is not SFT. Then $\partial X \neq \emptyset$ however $\partial Z = \emptyset$. So X is SFT.

Now suppose X is not AFT. So there are two different infinite paths $x = \cdots e_{-1}e_0$ and $x' =$ $\cdots e'_{-1}e'_0$ with the same label and $t(e_0)=t(e'_0)$. If $\alpha \not\subseteq \mathcal{L}_{X_\infty}(x)=\mathcal{L}_{X_\infty}(x')$, then x and x' will be two paths in G_Z where $\mathcal{L}_{Z_\infty}(x)=\mathcal{L}_{Z_\infty}(x')$ and terminating at the same vertex of $\mathcal{V}(G_Z)$. So Z is not AFT which is absurd. Otherwise, since α is a synchronizing word and so magic for \mathcal{G}_X , we may assume $\mathcal{L}_X(e_{-(|\alpha|-1)} \cdots e_{-1}e_0) = \alpha$ and by the proof of Theorem [3.3,](#page-6-0) both of these paths terminate at the same vertex. By technique of merging [\(1,](#page-11-0) Section 3.3), one can obtain the Fischer cover of Z from g_Z . However, two vertices of g_Z merge only if one in $V(G_{Z_X})$ and the other is in $V(G_{Z_Y})$. Hence after merging, x and x' will be yet two different paths with the same label and terminating at the same vertex. This means Z is not AFT which is absurd.

If Z is near Markov, then it is AFT and $|\partial Z| < \infty$. So X and Y are near Markov if ∂X and ∂Y are finite which is a consequence of [\(3.5\)](#page-8-0). \Box

The converse in Theorem [3.6](#page-7-0) does not hold necessarily. We will give an example of X and Y , both AFT, in fact SFT, such that $X_V \& Y_W$ is not AFT for some set of generators V and W.

Example 3.7. Let $S = S' = \{0, 1, 2\}$, $X = X(S)$ and take Y to be the set of binary sequences *whose runs of* 1*'s is restricted to* S'. Choose $\alpha = 00$ and $\beta = 11$ to be the synchronized words for *defining the generating sets* V and W respectively. The Fischer cover of $X \& Y = X_V \& Y_W$ is as *in Figure [3.](#page-8-1) Observe that there are two different infinite paths terminating at the same vertex* a *and having the same label* (01)[∞]111*. Therefore,* X&Y *is not AFT.*

Now we give sufficient conditions such that the converse of Theorem [3.6](#page-7-0) holds. Suppose X is a sofic shift with the Fischer cover $\mathcal{G}=(G,\mathcal{L}).$ Let $G^{\#}$ be a new graph whose vertex set is the set $2^{\mathcal{V}}$ of subsets of the vertex set V of G. Let A be the alphabet of X. We draw an arrow labeled $a \in A$ from a subset $F\in 2^\mathcal{V}$ to another subset $F'\in 2^\mathcal{V}$, when

 $F' = \{x \in \mathcal{V} : \text{ there is an edge labeled } a \text{ from an element of } F \text{ to } x\}.$

We denote this new labeled graph by $(G^\#, \mathcal{L}^\#)$. By [\(10,](#page-11-9) Proposition 6.5), $\partial X=\mathcal{L}_\infty^\#(X_{G_2^\#})$ where $G_2^\#$ denotes the subgraph of $G^\#$ obtained by erasing all vertices $F\in 2^\mathcal{V}$ for which $\#F\neq 2,$ together with all arrows to or from such a vertex.

Lemma 3.8. Let X be a sofic shift with the Fischer cover $\mathcal{G} = (G, \mathcal{L})$. Also let $x = p^{\infty} \in \partial X$ where p *is primitive and let* $p = \mathcal{L}(\pi_0)$ *for some path* π_0 *in* G. If there is only one cycle γ *in* G such that $x=\mathcal{L}_\infty(\gamma^\infty)$, then γ consists of concatenations of at least two paths labeled p .

Proof. Let $p = p_0 p_1 \cdots p_{n-1}$. Then there is a cycle $\lambda = e_0 e_1 \cdots e_{n-1}$ in $G_2^{\#}$ such that $\mathcal{L}^{\#}(\lambda)$ p. Also suppose the edge e_i , $0 \le i \le n-1$ starts from the vertex $\{I_i, J_i\}$ and terminates at $\{I_{(i+1) \mod n}, J_{(i+1) \mod n}\}.$ Note that if $e \in \mathcal{E}(G_2^{\#})$ starts from $\{K_1, L_1\}$ and terminates at $\{K_2, L_2\},$ since $K_i \neq L_i$ for $i = 1, 2, e$ represents two different edges e_1 and e_2 in G such that $i(e_i) \in \{K_1, L_1\}$ and $t(e_i) \in \{K_2, L_2\}$. So there are two paths π_1 and π_2 in G such that $\mathcal{L}(\pi_i) = \mathcal{L}(\pi_0) = p$ and

$$
i(\pi_i),\,t(\pi_i)\in\{I_0,\,J_0\},\quad i=1,\,2.\tag{3.6}
$$

Suppose there is only one cycle γ in G such that $x = \mathcal{L}_{\infty}(\gamma^{\infty})$. Since $I_0 \neq J_0$, I_0 and J_0 are different vertices along γ and by [\(3.6\)](#page-9-2), they are initial and terminating points for two different paths in G labeled p and we are done. \Box

An immediate consequence of the above lemma is that if $x = p^{\infty} \in \partial X$, then there are two different paths π_1 and π_2 with $\mathcal{L}(\pi_i) = p$ for $i = 1, 2$ and either both are in a cycle γ or in the different cycles γ and γ' such that

$$
p^{\infty} = \mathcal{L}_{\infty}(\gamma^{\infty}) = \mathcal{L}_{\infty}(\gamma'^{\infty}).
$$
\n(3.7)

Lemma 3.9. *Suppose G is a finite right-resolving labeled graph with two different paths* $\xi = \cdots e_{-1}e_0$, $\xi'=\cdots e_{-1}'e_0'$ and $\mathcal{L}(e_i)=\mathcal{L}(e_i').$ Then there are two different cycles $C_\xi=e_{-m}\cdots e_{-n}$ and $C_\xi'=\xi$ $e'_{-m}\cdots e'_{-n}$ in $\mathcal G$ *.*

Proof. Without loss of generality assume that $t(e_0) \neq t(e'_0)$. Otherwise, there must be e_ℓ such that $t(e_\ell)\neq t(e'_\ell)$ and we will do our argument for paths $\eta=\cdots e_{-\ell-1}e_\ell$ and $\eta'=\cdots e'_{-\ell-1}e'_\ell.$

There is at least one vertex v in G such that ξ meets it infinitely many often. Let $v=t(e_{-i_j})$ for $j\in\mathbb{N}$ and choose $j_m>|{\cal V}_G|.$ Also let v'_j be the terminating vertex for $e'_{-i_j}.$ We follow ξ and $\tilde{\xi}'$ (backward) and simultaneously. Thus by pigeon principle, at least two vertices v'_{j_1} and v'_{j_2} amongst the j_m vertices v'_1,\cdots,v'_{j_m} are equal and let $v'=v'_{j_1}=v'_{j_2}.$ This means that when v^i returns to itself along $\xi',\,v$ returns to itself along ξ and so ξ and $\tilde{\xi}'$ have met at least a cycle simultaneously on their ways. Call the cycles $C_\xi = e_{-m}\cdots e_{-n}$ and $C_{\xi'}=e'_{-m}\cdots e'_{-n}$ respectively. Note that $C_\xi\neq C_{\xi'}$. Otherwise, since $t(e_0) \neq t(e_0')$, there is a vertex $w = t(e_k)$ for some $-n \leq k \leq -1$ with two different outer edges labeling the same which violates the fact that G is right-resolving. \Box

Theorem 3.10. *Let* X and Y be two synchronized systems generated by $V = V_\alpha$ and $W = W_\beta$ as *in* [\(3.2\)](#page-3-0) and $P_n(X) \cap P_n(Y) = \emptyset$ for all $n \in \mathbb{N}$ where $P_n(X)$ denotes the set of periodic points in X of *period* n. If $X = X_V$ and $Y = Y_W$ are SFT, AFT or near Markov, then $Z = X \& Y = X_V \& Y_W$ is SFT, *AFT or near Markov, respectively.*

Proof. Suppose X and Y are SFT but Z is not so. Then $\partial X = \partial Y = \emptyset$ while $\partial Z \neq \emptyset$. Since ∂Z is a sofic subsystem of Z, there is a periodic point $p^{\infty} \in \partial Z$.

First suppose $\beta v\alpha\not\subseteq p^{\infty}$, for any $v\alpha\in V.$ By the hypothesis, this means that either $p^{\infty}\in\mathcal{G}_{Z_X}$ or $p^{\infty} \in \mathcal{G}_{Z_Y}$. Suppose the former happens. Thus $\alpha \nsubseteq p^{\infty}$. Now choose m sufficiently large so that p^m is a synchronized word in X and $p^m \notin \mathcal{B}(Y)$. The existence of such m is guaranteed by the fact that X is SFT and $p^{\infty} \not\in Y$. To have a contradiction, we show that p^{m} is a synchronized word for Z. So let up^m and p^mw be arbitrary words for Z. Since $p^m \notin \mathcal{B}(Y)$, $u = u_1u'$ and $w = w'w_1$ where $u', w' \in \mathcal{B}(X)$ and they do not have α as a subword. We are trivially done if u_1 or w_1 is an empty word. Otherwise, without loss of generality assume $u_1 = \beta$ and $w_1 = \alpha$. Therefore, $\beta u'p^m$ and $p^m w' \alpha$ are in X and this implies $\beta u' p^m w' \alpha \in \mathcal{B}(X)$ and we are done.

Now suppose $\beta v\alpha \subseteq p$. Then $p = v_{i_1}\alpha w_{j_1}\beta \cdots v_{i_k}\alpha w_{j_k}\beta$ where $v_{i_r}\alpha \in V$ and $w_{i_r}\beta \in W$, $1 \leq r \leq k$. Without loss of generality assume that $p = v \alpha w \beta$ and let $V' = \{v : v \alpha \in V\}$, $W' =$ $\{w : w\beta \in W\}$. If $v \notin W'$ (resp. $w \notin V'$), then $\beta v\alpha$ (resp. $\alpha w\beta$) is a synchronized word for Z and $p^{\infty} \not\in \partial Z.$ So $v, \, w \in V' \cap W'$ and by the definition of our generators

$$
\alpha, \beta \not\subseteq v, \quad \alpha, \beta \not\subseteq w. \tag{3.8}
$$

By Lemma [3.8,](#page-9-1) there are two different paths π_1 and π_2 in G_Z with $\mathcal{L}_Z(\pi_i) = p$ for $i = 1, 2$ and either both are in a cycle γ or in different cycles γ and γ' such that [3.7](#page-9-3) holds. Consider the following cases.

- 1. There are more than one cycle. Then [\(3.7\)](#page-9-3) implies that $(v \alpha w \beta)^\infty = (v \beta w \alpha)^\infty$. By [\(3.8\)](#page-10-0), either $v = w$ or $\alpha = \beta$. Considering the fact that any path labeled $v\alpha \in V$ (resp. $w\beta \in W$) terminates to the same vertex, the former will not allow G_Z being right-resolving and the latter contradicts our hypothesis $P_n(X) \cap P_n(Y) = \emptyset$ for all n.
- 2. There is only one cycle γ with $p^\infty=\mathcal{L}_{Z\infty}(\gamma^\infty).$ Then the label of this unique cycle γ must be $v \alpha w \beta$. But by Lemma [3.8,](#page-9-1) this cycle must be formed from the concatenation of at least two paths with the same label and [\(3.8\)](#page-10-0) implies that in our situation $v\alpha = w\beta$ and this in turn implies $P_n(X) \cap P_n(Y) \neq \emptyset$ for some n.

As a result, $\partial Z = \emptyset$ and Z is SFT.

Suppose X and Y are AFT but Z is not AFT. So there are two different paths $\xi = \cdots e_{-1}e_0$ and $\xi' = \cdots e_{-1}' e_0'$ in G_Z with the same label and terminating at the same vertex. Also we may assume $e_0\neq e'_0$ and let $C_\xi=e_{-m}\cdots e_{-n}$ and $C_{\xi'}=e'_{-m}\cdots e'_{-n}$ be two different cycles provided by Lemma [3.9.](#page-9-4)

1. If C_{ξ} (resp. $C_{\xi'}$) is a cycle in G_{Z_X} (resp. G_{Z_Y}), then

$$
(\mathcal{L}(e_{-m}\cdots e_{-n}))^{\infty} = (\mathcal{L}(e'_{-m}\cdots e'_{-n}))^{\infty} \in P_{n+m}(X) \cap P_{n+m}(Y)
$$

violating our hypothesis.

- 2. If C_ξ and $C_{\xi'}$ are both cycles in G_{Z_X} , then we may assume that $t(e_0)=t(e_0')=I_\beta;$ otherwise, we may continue ξ and ξ' on a common path to get to I_β . But then we will have two different infinite paths labeled the same and terminating at the same vertex in \mathcal{G}_X violating the fact that \mathcal{G}_X^{α} is left closing by Theorem [3.2.](#page-4-2)
- 3. Note that in (1) and (2), $\mathcal{L}(C_\xi)=\mathcal{L}(C_{\xi'})$ does not have α or β as its subword. So the remaining case is that when $\alpha,\,\beta\subseteq\mathcal{L}(C_\xi).$ This implies $\mathcal{L}(C_\xi)=\mathcal{L}(C_{\xi'})=w_{i_1}\beta v_{j_1}\alpha\cdots\alpha.$ Let π_{i_1} and π'_{i_1} be the subpaths of C_ξ and C'_ξ such that $\mathcal{L}(\pi_{i_1})=\mathcal{L}(\pi'_{i_1})=w_{i_1}.$ The fact that \mathcal{G}_Z is rightresolving and paths labeled α terminate at the same vertex, implies that $\pi_{i_1} = \pi'_{i_1}$. By the same reasoning, paths in C_ξ and $C_{\xi'}$ labeled v_{j_1} are identical and carrying out this reasoning for all the subpaths of C_ξ and $C_{\xi'}$ we will have $C_\xi=C_{\xi'}$ which is absurd.

Now let X and Y be near Markov. So they are AFT and $|\partial X|, |\partial Y| < \infty$. Moreover, Z is AFT. If $|\partial Z| = \infty$, then since ∂Z is sofic there will be infinitely many periodic points in ∂Z . Apply the same reasoning as in the SFT – for the second part where $\beta v \alpha \subseteq p$ – to see that for any $p^{\infty} \in$ $\partial Z \setminus (\partial X \cup \partial Y)$, we will have a contradiction. Thus $\partial Z \subseteq (\partial X \cup \partial Y)$ and we are done. \Box

Competing Interests

The authors declare that no competing interests exist.

References

- [1] Lind D. Marcus B. An Introduction to Symbolic Dynamics and Coding, Cambridge Univ. Press; 1995.
- [2] Moon J. Brickner B. Maximum transition run codes for data storage systems, IEEE Trans. Magn, 1996; 32:3992-3994.
- [3] Blanchard F. Hansel G. Systèmes codés, Comp. Sci, 1986; 44: 17-49. French.
- [4] Nasu M. An invariant for bounded-to-one factor maps between transitive sofic subshifts, Ergod. Th. & Dynam. Sys, 1985; 5: 89-105.
- [5] Fiebig D. Fiebig U. Covers for coded systems, Contemporary Mathematics, 1992; 135: 139-179.
- [6] Thomsen K. On the structure of a sofic shift space, Comp. Sci, 2004; 9: 3557-3619.
- [7] Ahmadi Dastjerdi D. Jangjoo S. Dynamics and topology of S -gap shifts, Topology and its Applications, 2012; 159: 2654-2661.
- [8] Bassino F. Beta-expansions for cubic Pisot numbers, Theoretical Informatics (Cancun), Lecture Notes in Comput. Sci 2002; 2286: 141-152.
- [9] Jung U. On the existence of open and bi-continuing codes, Trans. Amer. Math. Soc, 2002; 363: 1399-1417.
- [10] Thomsen K. On the structure of β -shifts, Contemp. Math, 2005; 385: 321-332.

——— c *2014 D. Ahmadi Dastjerdi & S. Jangjooye Shaldehi; This is an Open Access article distributed under the terms of the Creative Commons Attribution License [http://creativecommons.org/licenses/by/3.0,](http://creativecommons.org/licenses/by/3.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.*

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) www.sciencedomain.org/review-history.php?iid=439&id=6&aid=3745