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Abstract
In this paper, we present an algorithm for approximating the eigenvalues of Sturm-Liouville
problems with parameter-dependent boundary conditions. The algorithm is based on the
Chebychev method. A few examples shall be presented to illustrate the proposed method and
a comparison made with the regularized sampling method. It is shown that the Chebychev method
yields better results.
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1 Introduction
The study of many physical phenomena, such as the vibration of strings, the interaction of atomic
particles, or the earths free oscillations yields Sturm-Liouville (SL) eigenvalue problems. The general
form of Sturm-Liouville problems that concerns this paper is

2∑
j=0

Pj(x)u
(j)(x) = λ2 q(x)u(x), x ∈ J = [0, 1] (1.1)

subject to the boundary conditions

a11(λ) a12(λ) b11(λ) b12(λ)

a21(λ) a22(λ) b21(λ) b22(λ)



u(0)
u′(0)
u(1)
u′(1)

 =

0

0

 (1.2)

where aij and bij are functions of λ and q(x), u(x) and Pj(x), are analytic functions . It will always
be assumed that (1.1) possesses an unique solution u ∈ Cn(J). The values of λ for which the
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boundary value problem has nontrivial solution are called eigenvalues of (1.1). A nontrivial solution
corresponding to an eigenvalue is called an eigenfunction. Theorems that list conditions for the
existence and uniqueness of solutions of such problems are thoroughly discussed in [1].

Recently, Sturm-Liouville problems were treated in [2] using Tau method, in [3] using spectral
method, in [4,5] using Chebyshev collocation method, in [6] using variational iteration method, in [7]
using differential quadrature (DQ) method, in [8] using the Adomian decomposition method, in [9]
using Haar wavelets, in [10] using boundary value methods, in [11] using the homotopy perturbation
method, in [12] using Regularized sampling method, in [13,14] using the differential transformation, in
[15] using finite-difference methods, in [16] using an iterative method, in [17] using mapped barycentric
Chebyshev differentiation matrix method and in [18,19,20] using the sinc-collocation method.

In recent years, a lot of attention has been devoted to the study of the Chebychev method to
investigate various scientific models. It is possible to solve linear differential equations [21], non-linear
[22,23], integral equations [24], second and fourth-order elliptic equations [25], nonlinear system of
second-order boundary value problems [26], fourth-order Sturm-Liouville problems [27] Troesch’s
problem [28], linear partial differential equations [29], nonlinear optimal control problems [30] and
integro differential equations [31,32] by using this method. The convergence analysis of the proposed
method studied by Changqing in [33].

To our knowledge there is no study on the Chebychev applications to Sturm-Liouville problems
with parameter-dependent boundary conditions.

The paper is organized into five sections. Section II contains notations, definitions and some
results of Chebchev polynomials. Section III is devoted to the numerical computation of the eigenvalues
problem of (1.1)-(1.2). Section IV is devoted to give some examples exhibiting the technique. Finally,
Section V provides conclusions of the study.

2 Some Properties of Chebychev Polynomials
The well known Chebyshev polynomials are defined on the interval [−1, 1] and the following definitions
are necessary for this step [34].

Definition 2.1. Chebyshev polynomial of degree n is defined as

Tn(x) = cos(n arccos (x)), n = 0, 1, . . . , x ∈ [−1, 1]

or, in a more instructive form,

Tn(x) = cos n θ, x = cos θ, θ ∈ [0, π]

One sees at once that, on [−1, 1],
1 Tn takes its maximal value with alternating signs (n+ 1) times:

‖Tn‖ = 1, Tn(xk) = (−1)k,

xk = cos

(
π k

n

)
, k = 0, 1, . . . , n (2.1)

2 Tn has n distinct zeros:

Tn(tk) = 0, tk = cos

(
(2 k − 1)π

2n

)
, k = 1, 2, . . . , n.

Lemma 2.1. Chebyshev polynomials Tn satisfy the recurrence relation

T0(x) = 1, T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1.
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In particular, Tn is indeed an algebraic polynomial of degree n with the leading coefficient 2n−1. Also,
orthogonality ∫ 1

−1

Tm(x)Tn(x)
d x√
1− x2

= 0, n 6= m∫ 1

−1

T 2
n(x)

d x√
1− x2

=

{
π
2
, n > 0;

π, n = 0.

(2.2)

In this paper we use orthonormal Chebychev polynomials, noting property (2.2).

Theorem 2.2. On the interval [−1, 1], among all polynomials of degree n with leading coefficient
an = 1, the Chebychev polynomial 1

2n−1 Tn deviates least from zero, i.e.,

inf(ai)‖x
n + an−1 x

n−1 + . . .+ a0‖ =
1

2n−1
‖Tn‖.

We are concerned with the approximate solution by means of the Chebychev polynomials in the
form

u(x) =

N∑
r=0

′ar Tr(x), −1 ≤ x ≤ 1 (2.3)

where Tr(x) denotes Chebychev polynomials of the first kind of degree r, ar are unknown Chebychev
coefficients and N is chosen any positive integer such that N ≥ 2. Let us assume that the first and
second derivatives of the function u(x) have truncated Chebychev series expansion of the form

u(k)(x) =

N∑
r=0

′a(k)r Tr(x), k = 1, 2. (2.4)

Then the solution expressed by (2.3) and its derivatives can be written in the matrix forms

A(k) = 2k Mk A

U(k) = 2k TMk A

where

T =


T0(x0) T1(x0) . . . TN (x0)
T0(x1) T1(x1) . . . TN (x1)
T0(x2) T1(x2) . . . TN (x2)

...
...

...
...

T0(xN ) T1(xN ) . . . TN (xN )

 ,

U(k) =


u(k)(x0)

u(k)(x1)
...

u(k)(xN )

 , U =


u(x0)
u(x1)

...
u(xN )

 ,

A =
[a0
2
, a1, . . . , aN

]τ
and

M =



0 1
2

0 3
2

0 5
2

. . . m1

0 0 2 0 4 0 . . . m2

0 0 0 3 0 5 . . . m3

. . . . . . . . . . . . . . . . . . . . .
...

0 0 0 0 0 0 . . . N
0 0 0 0 0 0 . . . 0


(N+1)×(N+1)

. (2.5)
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where

m1 =
N

2
, m2 = 0, m3 = N if N is odd

m1 = 0, m2 = N, m3 = 0 if N is even

The method can be developed for the problem defined in the domain [a, b] .

Definition 2.2. On the interval [a, b], the shifted Chebychev polynomial is given by

T ∗n(x) = Tn(y), y =
2

b− a

(
x− a+ b

2

)
.

Notice that its leading coefficient is equal to 2n−1
(

2
b−a

)n
.

To obtain the solution in terms of shifted Chebychev polynomials T ∗r (x) in the form

u(x) =

N∑
r=0

a∗r T
∗
r (x), a ≤ x ≤ b,

where T ∗r (x) = Tr
(

2
b−a

(
x− a+b

2

))
.

It is followed the previous procedure using the collocation points defined by

xi =
b− a
2

[(
a+ b

b− a

)
+ cos

(
i π

N

)]
, i = 0, 1, . . . , N, (2.6)

and the relation

A∗(k) =

(
4

b− a

)k
Mk A∗, k = 0, 1, 2.

where

A =

[
a∗0
2
, a∗1, . . . , a

∗
N

]τ
It is easily obtained T = T ∗, because of the properties of Chebychev polynomials.

3 The Description of Chebychev Scheme
We assume that u(x), the solution of (1.1), is approximated by the finite expansion of Chebychev
basis functions

u(x) =

N∑
r=0

′a∗r T
∗
r (x), 0 ≤ x ≤ 1 (3.1)

where T ∗r (x) = Tr(2x − 1) presents the shifted Chebychev polynomials of the first kind of degree
r and a∗r for r = 0, 1, . . . , N are the undetermined Chebyshev coefficients and the Chebychev
collocation points in [0, 1] are

xi =
1

2

[
1 + cos

(
i π

N

)]
, i = 0, 1, . . . , N. (3.2)

And its derivatives have truncated Chebychev series expansion of the form

u(k)(x) =

N∑
r=0

(a∗r)
k
T ∗r (x), k = 0, 1, 2. (3.3)

Using (3.1) and (3.3) and substituting x = xk in (3.2) and applying the collocation to it, we eventually
obtain the following theorem.

1127



British Journal of Mathematics and Computer Science 4(8), 1124-1133, 2014

Theorem 3.1. If the assumed approximate solution of the problem (1.1) is (3.1), then the discrete
Chebychev system is given by

2∑
j=0

Pj(xi)u
(j)(xi) = λ2 q(xi)u(xi) (3.4)

The fundamental matrix equation for(3.4) is

W A∗ = 0 (3.5)

where

W =

2∑
j=0

4j Pj T∗Mj − C T∗,

and

Pj =


pj(x0) 0 . . . 0

0 pj(x1) . . . 0
...

...
. . .

...
0 0 . . . pj(xN )

 ,

C =


λ2 q(x0) 0 . . . 0

0 λ2 q(x1) . . . 0
...

...
. . .

...
0 0 . . . λ2 q(xN )


The boundary condition is derived from equation (1.2) and matrices for conditions are

a11(λ)T∗(0)A∗ + a12(λ)T∗(0)M A∗ + b11(λ)T∗(1)A∗ + 4 b12(λ)T∗(1)M A∗ = 0 (3.6)

a21(λ)T∗(0)A∗ + a22(λ)T∗(0)M A∗ + b21(λ)T∗(1)A∗ + 4 b22(λ)T∗(1)M A∗ = 0. (3.7)

Consequently, replacing two rows of the augmented matrix by the equation (3.5), we have

W̃ A∗ = 0. (3.8)

This set of equations has a non-trivial solution only if the determinant of the coefficients matrix
vanishes. This gives a function of and the roots of this function are eigenvalues of the problem.

4 Examples and comparisons
In this section, we present a few examples to illustrate our method. In the following, λexact denotes
the exact eigenvalue, λCheby denotes the approximate eigenvalue computed by the method of section
3. We use the absolute error which is defined as

ECheby =
∣∣∣λexact − λCheby

∣∣∣
Example 1: [12] We considered the following example

−u′′ = λ2 u(x), 0 < x < 1

subject to the boundary conditions

u(0) +
(
λ2 − 4π2) u′(0) = 0

u(1)− λ2 u′(1) = 0
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The exact characteristic function is

βexact =
(
1 + 4π2 λ4 − λ6) sin λ

λ
−
(
2λ2 − 4π2) cos λ

where zero is not an eigenvalue. The computed eigenvalues together with the ”exact” ones are
displayed in Table 1.

Table 1 The first three eigenvalues of λexact and λCheby for Example 1 at N = 16.

λk λexact λCheby
1 9.7308865782130820 9.730886578213059
2 88.763316252589763 88.76331847516812
3 157.88411043863472 157.8842052283192

Maximum absolute error are tabulated in Table 2 for Chebychev method together with the analogous
results of (12) .

Table 2 Comparison of maximum absolute errors for Example 1

λk ‖ECheby‖ Results of (12)
1 1.9539E-14 0.1554E-06
2 2.2225E-06 4.8758E-07
3 9.4789E-05 3.6142E-05

Example 2: [12] Consider the Sturm-Liouville problem

−u(x)′′ = λ2 u(x), 0 < x < 1

subject to the boundary conditions

u(0)− 2u′(0) = 0

(1 + λ) u(1) + (1− λ2)u′(1) = 0

The exact characteristic function is

βexact =

(
2 cos λ+

sin λ

λ

)
+ (1− λ) [−2λ sin λ+ cos λ]

where 1 is not an eigenvalue. The computed eigenvalues λ together with the ”exact” ones are
displayed in Table 3.
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Table 3 The first three eigenvalues of λexact and λCheby for Example 2 at N = 16.

λk λexact λCheby
1 0.929679054283188 0.929679054283189
2 9.9387434140 9.938743414040601
3 11.2738742105212 11.27387421054431

Maximum absolute error are tabulated in Table 4 for Chebychev method together with the analogous
results of [12].

Table 4 Comparison of maximum absolute errors for Example 2

λk ‖ECheby‖ Results of (12)
1 9.9920E-016 0.1554E-06
2 4.0602E-011 4.8758E-07
3 2.3119E-011 3.6142E-05

Example 3: [12] Consider the Sturm-Liouville problem

−u′′(x) + ei 2 x u(x) = λ2 u(x)

subject to the boundary conditions

u(0) + λu(1) = 0

u′(0) = 0

The exact characteristic function is

Bexact = det

 J√λ(1) +
√
λJ√λ(e

i) J−
√
λ(1) +

√
λJ−

√
λ(e

i)

1
2
J−
√
λ−1(1)−

1
2
J√λ+1(1)

1
2
J√λ−1(1)−

1
2
J−
√
λ+1(1)


where Ja and J−a are the Bessel functions of the first kind of order a. Table 5 lists the first three
eigenvalues of Example 3 at N = 10.

Table 5 The first three eigenvalues in Example 3

λk λexact λCheby
1 4.96854309+0.3906545 i 4.96854305+0.3906547 i
2 20.6027103+0.7502325 i 20.6027193+0.7502221 i
3 64.1403824+0.6842283 i 64.1382692+0.6839719 i

Example 4: [12] Consider the Sturm-Liouville problem

−u′′(x) + ex u(x) = λ2 u(x)

subject to the boundary conditions

u(0) = 0

−λ sin(λ)u(1) + cos (λ)u′(1) = 0

Table 6 lists the first three eigenvalues of Example 4 at N = 14.
Table 6 The first three eigenvalues in Example 4

λk λexact λCheby
1 0.92906202857 0.92906202844
2 6.74788117825 6.74788117868
3 16.1245477258 16.1245477689
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5 Conclusion
The Chebychev technique is applied to solve Sturm-Liouville problems with parameter dependent
boundary condition. We have presented a few examples to illustrate the method and compared
the computed eigenvalues with the exact ones obtained as the zeros of the exact characteristic
functions. Numerical results are compared to those obtained by the regularized sampling method
[12] to illustrate the effectiveness of the proposed method. It is shown that the Chebychev technique
is very promising in this problem. The results of example 3 clearly indicate that our method are
accurate even when the coefficients pi are complex-valued function satisfying pi ∈ L1

Ioc(0, 1).
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[7] Yücel U. Approximations of Sturm-Liouville eigenvalues using differential quadrature (DQ)
method, J. Comp. Appl. Math. 2006; 192: 310-319.

[8] Attili B. The Adomian decomposition method for computing eigen-elements of Sturm-Liouville
two-point boundary value problems, Appl. Math. Comput. 2005; 168: 1306-1316.

[9] Bujurkea, N., Salimatha C., Shiralashettib, S. Computation of eigenvalues and solutions of
regular Sturm-Liouville problems using Haar wavelets, J. Comp. Appl. Math. 2008; 219: 90-
101.

[10] Ghelardoni P. Approximations of Sturm-Liouville eigenvalues using boundary value
methods, Appl. Numer. Math.1997; 23: 311-325.

1131



British Journal of Mathematics and Computer Science 4(8), 1124-1133, 2014

[11] Attili, B., Syam M. The homotopy perturbation method for eigenelements of a class of two-point
boundary value problems, Adv. Stud. Contemp. Math. 2005; 14: 83-102.

[12] Chanane B. Computation of the eigenvalues of Sturm-Liouville problems with parameter
dependent boundary conditions using the regularized sampling method, Math. Comput. 2005;
74: 1793-1801.

[13] Chen, C., Ho S. Application of differential transformation to eigenvalue
problems, Appl. Math. Comput. 1996; 79: 173-188.

[14] Hassan I. On solving some eigenvalue problems by using a differential
transformation, Appl. Math. Comput. 2002; 127: 1-22.

[15] Paine J., De Hoog F., Anderssen R. On the correction of finite difference eigenvalue
approximations for Sturm-Liouville problems, Computing 1981; 26:123-139.

[16] Godart M. An iterative method for the solution of eigenvalue problems, Numer. Math. 1991; 59:
243-254.

[17] Zhang X. Mapped barycentric Chebyshev differentiation matrix method for the solution of regular
Sturm-Liouville problems, Appl. Math. Comput. 2010; 217: 2266-2276.

[18] Eggert, N.,Jarratt M., Lund J. Sine function computation of the eigenvalues of Sturm-Liouville
problems, J. Comput. Phy. 1987; 69: 209-229.

[19] Jarratt I., Lund J., Bowers K. Galerkin schemes and the sinc-Galerkin method for singular Sturm-
Liouville problems, J. Comput. Phys. 1990; 89:41-62.

[20] Lund J., Riley B. A Sinc-collocation method for the computation of the eigenvalues of the radical
equation, IMA J. Numer. Anal. 1984; 4: 83-98.

[21] Sezer M., Kaynak M. Chebyshev polynomial solutions of linear differential equations,
Int. Math. Educ. Sci. Technol. 1996; 27: 607-618.

[22] Norton H. The iterative solution of non-linear ordinary differential equations in Chebyshev series,
Comput. J. 1964; 7: 76-85.

[23] Clenshaw C., Norton H. The solution of nonlinear ordinary differential equations in Chebyshev
series, Comput. J., 1963; 6: 88-92.

[24] Khalifa A., Elbarbary El., Abd Elrazek M. Computing integral transforms and solving integral
equations using Chebyshev polynomial approximations, J. Comput. Appl. Math. , 2000; 121:
113-124.

[25] Khalifa A., Elbarbary El., Abd Elrazek M. Chebyshev expansion method for solving second and
fourth-order elliptic equations, Appl. Math. Comput. , 2003; 135: 307-318.

[26] Saadatmandi A., Farsangi J. Chebyshev finite difference method for a nonlinear system of
second-order boundary value problems, Appl. Math. Comput. 2007; 192: 586-591.

[27] El-Gamel M., Sameeh M. An efficient technique for finding the eigenvalues of fourth-order
Sturm-Liouville problems, Applied Mathematics , 2012; 3(8): 920-925.

[28] El-Gamel M., Sameeh M. A Chebychev collocation method for solving Troesch’s problem,
Int. J. Math. Comput. Appl. Res , 2013; 3: 23-32.

1132



British Journal of Mathematics and Computer Science 4(8), 1124-1133, 2014
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