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Impact of Factors Influencing Cyber Threats on 
Autonomous Vehicles
A. Seetharaman, Nitin Patwa , Veena Jadhav, A. S. Saravanan, 
and Dhivya Sangeeth

S P Jain School of Global Management

ABSTRACT
Advanced Technologies are transforming the Automotive industry 
and the pace of innovation is accelerating at a breakneck speed. 
Autonomous Vehicles (AVs) incorporate many different systems 
and technologies and their increased computer functionality and 
connectivity lead to enormous cybersecurity risk. The aim of this 
research is to explore the significant factors that influence cyber 
threats on AVs and to examine their level of importance.

Partial Least Squares path modeling was preferred for research 
studies for its flexible modeling and identifying key drivers. The 
data analysis was carried out using ADANCO 2.0.1 to develop and 
evaluate the structural model and the causal relationships between 
the variables.

Correlation of in-vehicular network vulnerabilities with trust and 
the correlation between the “workload of the driverless system” 
with cyber-attacks and cyber threats to AVs are two relations but 
have not been touched upon in previous studies. In this research, 
a modified framework is proposed based on the Cyber Cycle and 
integrated model of Diamond Model of Intrusion Analysis with the 
Active Cyber Defense Cycle.

Introduction

The advent of Autonomous Vehicles (AVs) creates “Revolution” (shift from 
human-driving to machine-driving) and “Evolution” (change in definition 
from “who a driver is” to “what a driver is”) (McChristian and Corbett 
2016). According to the World Health Organization Report (2013), road traffic 
accidents are one of the main causes of death among young people worldwide. 
About 94% of serious road accidents were caused by human distraction [53]. 
AVs can improve road safety by reducing the number of accidents and other 
injuries caused by human error (Fitch, Bowman, and Llaneras 2014), reduce 
congestion, engage in non-driving tasks, better transportation services, effi-
cient land use, and mobility access to people with driving constraints (elderly, 
disabled) (Anderson et al. 2014). However, there are concerns about the extent 
of these predicted benefits (Taeihagh and Lim 2018) and about the issues such 
as privacy, environmental impact, economics and cybersecurity (Shladover, 
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2015). One of the biggest threats that society expect to face is the Cybersecurity 
which is less explored and still unknown even among those in the industry 
(Toews 2016)

Autonomous Vehicles

According to The Society of Automotive Engineers International’s Scale of 
Automation, fully Autonomous Vehicles belong to the Level 5 category. AVs 
can drive itself with no human intervention and works on a three-phase design 
called “sense-plan-act” to perceive its dynamic driving environment in real 
time using sensors, cameras, and navigation systems and make the right 
driving decisions (Bagloee et al. 2016). AVs are the promising technological 
change that could reduce the social and monetary costs of accidents [53].

Cyber Threats

A cyber threat is “any event that has the potential to adversely affect people, 
property (tangible or intangible), organizations or the nation by unauthorized 
access through an information system” [54]. Cyber-attack can be targeted on 
any device that is connected to the internet with the malicious aim to disrupt 
or damage and people’s reliance on digital technologies will create more 
opportunities for cyber-attacks. Cyber-attacks can be Passive (no system 
damage but eavesdropping to gather information) or Active (more fatal to 
the system or the entire network). Attackers could be Internal (with authorized 
system access) or External and with intentional or unintentional purposes 
(Shladover 2015). The frequency and cost of successful cyber-attacks continue 
to grow exponentially worldwide (Kamhoua et al. 2015) and rapid advances in 
cybercrime technology have led to an unprecedented increase in security 
breaches. World Economic Forum Report in 2018 announced the most serious 
global risks of 2018 and cyber-attacks were one among the top four.

Cyber Threats on Autonomous Vehicles

Cyber-threats are likely to be a more prominent concern in AVs since they are 
simply an evolution of modern vehicles and hence inherits its associated 
cybersecurity issues (Haddrell 2016). Due to their dependence on sensing, 
communication and artificial intelligence, AVs are attractive targets for cyber- 
attacks (Shladover, 2015). Threats could be Internal (attacking the in-vehicle 
systems and communication network) or External (hacking through devices, 
systems, applications and other technologies connected to the vehicle; for 
example, remote diagnostic systems, third-party applications) (Haddrell 
2016). The attackers could take total or partial control of the vehicle {critical 
vehicle systems, in-vehicle sensing technologies, and navigation systems}, the 
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infrastructure or unauthorized access to gain sensitive personal information. 
Wide range of threat vectors have not yet been fully identified and cyber 
threats have been a less explored area of research in AVs (Bagloee et al. 2016).

Seven factors that influence cyber threats on AVs have been identified based on 
the literature review: Socio-cultural, Regulations, Intelligent Transportation 
Systems, Predictive Measures, Cyber Attacks, in-vehicular Network, and Trust.

Cyber Cycle & Integrated Theory of Diamond Model and the Active Cyber 
Defense Cycle

In this study, we have used the “Cyber Cycle” theory which states that “the tussle 
between hackers and protectors is an unending competition.” Figure 1Cyber attack-
ers wish to maximize the damage to the system while cyber defenders want to 
minimize it. Attackers scan networks for possible vulnerabilities and develop 
exploits to attack them. Defenders monitor the network to detect attacks, analyze 
exploits and deploys security strategy to protect the system. Defender’s “detect 
then mitigate” strategy is highly unstable making systems extremely vulnerable to 
unknown attacks (McMorrow 2010) (Daly, Endicott-Popovsky, and 
Wendleberger 2002) (Adams et al. 2013).

The technological capabilities of attackers and defenders have evolved swiftly 
and in tandem (Mandt 2017). In this study, we will be focusing on the defender’s 
cyber process and we have examined that cyber cycle theory and unified theory of 
Diamond Model and the Active Cyber Defense Cycle by (Mandt 2017) can be 
integrated and applied for cyber threats on AVs. The results of this integration 
provide a cyber-threat intelligence analysis of attackers and an active cyber- 
defensive security strategy for the defenders. This is further discussed in the 
contributions section.

Figure 1. Cyber cycle.
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Figure 2. Research framework.

Figure 3. Demographics of respondents.
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Literature Review

Socio-Cultural Factors

Since the beginning of the 20th century, the automobile has revolutionized our 
spaces, practices, cultures, and identities by complex linkages (Fraedrich, Beiker, 
and Lenz 2015). The advent of AVs will have a tremendous impact on our society. 
Many socio-cultural factors, not technological, seem to be the potential barrier to 
widespread acceptance of AVs (Bonnefon, Shariff, and Rahwan 2016) which is 
crucial for the success of AV technology and realize the predicted benefits (Regan 
2017). The following three aspects have been identified:

Re-engagement – In the event of system failure or other situations, the process 
of how efficiently and rapidly the driver takes over control from machine-driving 
is a key area. The time taken over is likely to be influenced by a combination of 
traffic density, driver experience and driver engagement in secondary tasks (Zeeb, 
Buchner, and Schrauf 2015) (Cunningham and Regan 2015).

Workload of Driverless System – According to (Wu and Liu 2007), excessive 
driving-related information provided to the user might increase the workload 
and have a negative impact on safety.

Liability issues – Despite AVs perceived benefits, accidents still may occur by its 
programming (Naughton, 2015). Current AV regulations pertaining to product 
liability are yet to be updated and it is necessary to provide a framework to 
determine who or what is to blame or responsible for the accidents for the 
remedial procedures (Villasenor 2014) (Brodsky 2016) (Glancy 2015).

Regulations

Current laws and regulations pertaining to AVs deal primarily with the author-
ization of AV testing on the roads. Some US States foster its development 
without any AV legislation (McChristian and Corbett 2016). The laws regulating 
the operation of AVs are also reactive and should make progress with innovation 
(Douma and Palodichuk, 2012). The regulators must therefore recognize and 
address the uncertainty about the development and deployment of AVs. 
However, the limits and scope of the regulatory bodies to handle comprehensive 
social implications in a timely manner remain a concern (Taeihagh and Lim 
2018). The following areas are taken for research:

Criminal Law & Enforcement – Considerable analysis has been carried out on 
civil liability issues in comparison with criminal law and enforcement in AVs 
(Glancy 2015). The criminal laws should be reconsidered to reflect the risk 
profile of AVs. AVs can also lead to the creation of new crimes and the misuse 
of AVs in crimes is another area in which new types of crimes can arise.

Forensic Investigations – To understand what happened in criminal cases that 
involve AVs, it would be necessary to investigate the systems and other compo-
nents to provide a sound legal reason for prosecution (Parkinson et al. 2017).
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Cybersecurity Laws & Regulations – It is important to consider all possible 
cybersecurity attacks in the AV systems and protocols at the design stage. 
Although computer technologies are being used to defend these attacks, 
appropriate standards and regulations should also be developed to reduce 
such attacks (He, Meng, and Qu 2017).

Intelligent Transportation Systems (ITS)

ITS cover a wide range of fields to provide safer, efficient and sustainable 
transport-related services. ITS aims to reduce time, money, and energy costs 
and improve road congestion and infrastructure management (Friesen and 
McLeod 2015). ITS would be necessary despite the intrinsic intelligence in 
AVs since AVs require enormous computing and storage requirements to be 
fully aware of all conditions in a city and this might not utterly represent a real 
end-to-end solution for an effective ITS (Turner and Uludag 2016). Although 
ITS research has started significantly over a decade ago, open research challenges 
still exist for its success (Hamida, Noura, and Znaidi 2015). The following sub- 
areas have been identified for research:

Privacy – If the vehicles constantly transmit information to other vehicles 
and to a control infrastructure, there are high chances to easily track the log 
details of the vehicles (Simic 2013). The profoundly connected nature of ITS 
could conflict with the fundamental privacy requirements of passengers 
(Elbanhawi, Simic, and Jazar 2015). Consequently, the flow, obscurity and 
storage of this sensitive data are expected to be cautiously administered.

Traffic Congestion – Research studies have shown that congestion alone in 
transportation systems consumes immense resources (Turner and Uludag 
2016). Various researchers differ in their views on the impact of AVs on 
congestion. Few scholars anticipate reduced traffic delays and congestion, 
higher transport system reliability and increased vehicle throughput. Few 
others envision that AVs could have a negative impact on traffic congestion 
by increasing vehicle-kilometer-traveled and inducing additional demand 
which could add traffic density and other additional burdens to an already 
congested network. The overall impact of the AV on congestion has therefore 
not yet been investigated (Bagloee et al. 2016).

Big Data – “Connectivity” and “Big Data” are believed to be two additional 
elements for the AV’s success. Connectivity requires huge datasets, “Big Data” 
from a wide range of sources and one of the biggest challenges anticipated is 
the processing and analysis of Big Data to ensure Vehicle-to-Vehicle and 
Vehicle-to-Infrastructure connectivity (Bagloee et al. 2016).

Vehicular Ad-Hoc Network (VANET) – VANETs are ad hoc networks used 
for communication among and between vehicles and roadside units which has 
the potential to reduce congestion and traffic safety & management. Security 
Challenges in VANETs are the lack of central points, mobility, wireless links, 
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cooperativeness, and lack of a clear line of defense. Due to these character-
istics, conventional security approaches cannot be directly applied to VANETs 
(Sakiz and Sen 2017). Researchers have demonstrated how Denial of Service 
can be performed against VANETs to disrupt the infrastructure. VANET’s 
safety and security aspects are an overlooked area in AVs and it is important to 
explore them because compromising these control protocols could lead to 
incorrect decisions that threaten AVs‘ stability and safety (Amoozadeh, 2015) 
(Parkinson et al. 2017).

Predictive Measures

AV’s decision-making system plays a crucial role in AVs in predicting surround-
ing vehicles’ driving behaviors to provide safe and reasonable abstract driving 
measures (Geng et al. 2017). Decision-making is difficult because of vulnerability 
on the constant condition of close-by vehicles and, specifically, because of 
uncertainty over their movements (Galceran et al. 2017). The following areas 
are taken for research:

Urban Scenarios – AV’s decision-making system needs to predict accurately 
the future driving behavior which is quite challenging especially in urban road-
ways. Most driving behavior prediction models work for one specific scenario 
and cannot be adapted to different scenarios. However, AVs drive through 
dynamically changing urban environments in which a diversity of scenarios 
appear over time (Carvalho et al. 2014) and multiple scenario-specific adaptation 
models should be designed according to the scenario characteristics (Geng et al. 
2017).

System Uncertainties – One of the main challenges is to systematically account 
for the uncertainties due to the presence of other static or moving objects (e.g. 
vehicles, bicycles, pedestrians). Approaches that do not account for the system’s 
uncertainties can lead to unsafe results (risk) and robust control approaches that 
deal with worst-case disturbances can be excessively conservative and expensive. 
It is still not possible to interpret accurately the traffic scenarios without increas-
ing the computation complexity (Geng et al. 2017). Hence, it is necessary to 
introduce prediction models to deal with the uncertainties of the system as 
a trade-off between risk and conservativeness (Carvalho et al. 2014).

Insurance – AVs bring about “evolution” which means that there will 
a paradigm shift in the definition of “driver” (McChristian and Corbett 2016). 
This transition will bring about a considerable change in how the dangers 
associated with AV-related accidents are protected (Crane, Logue, and Pilz 
2016). Hence, the traditional auto-insurance models will need to gradually 
evolve since the existing driver-centric models appear to be inappropriate 
(Glancy 2015). AVs might bring uncertain liability risks, cyber risks, etc., and 
hence there is a need for AVs to have a comprehensive risk insurance policy.
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Cyber-Attacks

Cyber-attack aims to disrupt, damage or destroy any digital system and 
currently highly sophisticated and complex attacks have continued to increase 
(Hansman and Hunt 2005). Increased vehicle autonomy and connectivity 
often exacerbate the risk of cybersecurity attacks (Parkinson et al. 2017).

Large-scale hacking – Criminal and terrorist attacks on AVs are particularly 
detrimental and a large-scale attack on vehicles on roads, for example, could 
cause transportation chaos across a large region. The greater challenge of 
system-wide hacking, terrorist-related hacking or other prevalent electronic 
disabling of vehicles is unknown (Kennedy 2016).

Cyber-attack detection – The degree of human involvement in cyber aspects 
is a less explored area. There are many research articles on attacking and 
compromising vehicle safety, but there is no literature on how the driverless 
system warns about detecting a potential cyber-attack (Parkinson et al. 2017).

Phishing & Ransomware attacks – When connected to the AV, the user’s 
device can be used as an attacking mechanism to mount attacks on the AVs via 
phishing attacks (pretending to be a trusted source for getting sensitive informa-
tion or compromising the system). It is anticipated that phishing and ransom-
ware (disabling the system or vehicle function until ransom is paid) attacks 
could take control of the vehicle and potentially create damages to the user. 
However, there is a lack of research detailing how these attacks could be carried 
out and how they could be mitigated (Parkinson et al. 2017).

Anticipation of Range of threats – The attack surface for AVs will rapidly 
broaden as more advanced services and communications systems are incorpo-
rated into vehicles. Today, many wireless communication technologies exist and 
the connectivity between the vehicles has increased the potential points of attack 
(Carsten et al. 2015). This clearly indicates that there will be a wide range of 
threat vectors available to an attacker and possibly lead to unknown conse-
quences and significant threats to automations systems (Koscher et al. 2010).

In-Vehicular Network

Controller Area Network (CAN) is a dominant in-vehicle communication net-
work protocol that connects multiple ECUs (Electronic control units). CAN’s 
enormous role in interconnectivity and functionality makes it an irreplaceable 
part at present. Therefore, the functionality and safety of AVs rely on the safe 
and secured communication network between ECUs (Haddrell 2016).

CAN’s broadcast nature, lack of {authentication, integrity, confidentiality, 
network segmentation and data encryption} and vulnerability to Denial of 
Service attack are identified as the current weaknesses of CAN (Buttigieg, 
Farrugia, and Meli 2017) (Dariz et al. 2017). Simple methods employed in 
CAN to protect the integrity of the message are widely known to be inadequate 

112 A. SEETHARAMAN ET AL.



(Zhang, Antunes, and Aggarwal 2014). Potential CAN vulnerabilities against 
cyber-attacks are therefore unacceptable and could lead to cybersecurity threats 
(Carsten et al. 2015).

Lack of Authentication – CAN is not equipped to identify the source of 
messages and is unable to find out whether the messages are legitimate or 
originate from the legitimate components. This means that any compromised 
component can easily control all the other components connected within the 
CAN network (Buttigieg, Farrugia, and Meli 2017).

Potential entry points of attacks – To compete in the market, many companies 
offer their customers highly sophisticated and value-added services. Many 
electronic equipment, communication features and third-party applications 
are introduced and integrated into the system to support these growing func-
tionalities. These trends increase the range of attacks and an attacker can gain 
access to the vehicle network. Hence, it is essential that a safe environment is 
provided against malicious attacks (Buttigieg, Farrugia, and Meli 2017) (Wang, 
Lu, and Qu 2018)

Vulnerabilities of Electronic Control Units (ECU) – Since the CAN lacks enough 
security and protection, many security-critical ECUs are exposed to attacks. ECUs 
weak access control allows to be reprogrammed to update them with malicious 
code. Threats to cybersecurity on an ECU could possibly manipulate the opera-
tions of other components (Koscher et al. 2010). Attacking single or multiple ECUs 
to (1) exploit safety critical operations such as braking, speeding, lighting control 
systems, etc., (2) send unauthorized communication messages or altering valid 
messages, (3) flood the bus to create traffic problem could have a major impact or 
even a fatal failure (Dariz et al. 2017) (Wang, Lu, and Qu 2018).

Attacks on Sensors & Navigation systems – AVs rely on sensing technology and 
data fusion software to sense their environment and make the right driving 
decisions. Attacks on sensors, cameras and navigation systems could lead to false 
data display, malfunctions, damage to vehicle control systems and the potential 
consequences could be life-threatening for one vehicle or for many vehicles 
connected to the network (Yan, Xu, and Liu 2016). Several potential attacks are 
demonstrated by many white-hat hackers on these sensors (Haddrell 2016). 
However, the extent to which sensors and navigation systems could be compro-
mised and their impact on the function of a vehicle are unclear (Parkinson et al. 
2017).

Personal Data Protection – Hackers gained access to personal information of 
seven million drivers and 57 million Uber’s global users. Uber reported theft of 
data such as names, e-mail addresses, phone numbers, driving license number, etc. 
(Eric Newcomer 2017). Which type of personal information will be generated and 
stored in AV systems is still unclear, but possible steps should be taken to protect 
the privacy of individuals. The location and movement of the vehicle could provide 
valuable data for targeted theft, advertising purposes, understand behavioral habits 
and so on (Parkinson et al. 2017).
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Trust

Trust is considered critical in adopting and accepting the vehicle automation and 
earning this trust becomes even more crucial for AVs which has an increasing 
complexity of automation and vulnerability of the users (Wortham and 
Theodorou 2017). Trust is the most vital part for humans and robots to work 
together as a team (Hancock et al. 2011). There are many psychological barriers 
such as {ethical dilemmas, overreactions to accidents by AVs, overreliance on the 
AV technology, lack of situational awareness and transparency in predicting AVs 
behavior} to trust which stand in the way of achieving the potential benefits of AVs 
(Shariff, Bonnefon, and Rahwan 2017) (Petersen et al. 2017).

Predictability & Comfort – To generate trust, it is important to ensure that 
people can comfortably predict the driving behavior. AVs decision-making pro-
cesses are technologically opaque and people may have different assumptions 
about the extent and capabilities of AVs. Improved education in line with the 
actual abilities might help to overcome either underestimating or overestimating 
AVs (Anderson, Kalra, and Wachs 2009). In addition, AVs will need to commu-
nicate not just with their occupants, but with pedestrians, drivers and the other 
road stakeholders (Shariff, Bonnefon, and Rahwan 2017). How AVs interact with 
manually driven vehicles and vice versa, in “mixed-traffic” situations stay unclear 
(Cavoli et al. 2017). Therefore, it is critical to investigate what amount and type of 
information should be communicated to people to foster predictability and com-
fort in order to generate trust (Shariff, Bonnefon, and Rahwan 2017).

Trust among the entities of ITS – ITS relies on data gathered (by periodic 
information shared by users) to reduce congestion, make transport safer and 
efficient. The verification of data aggregation is essential to build trust among 
ITS entities (Gosman, Dobre, and Pop 2017). The aggregation of data poses 
significant security risks in ITS and in the absence of protection mechanisms, 
most of these applications can jeopardize the privacy of participants and end users 
(Christin 2016). Therefore, a secure, trustworthy, and decentralized architecture 
should be developed to build a healthier and safer ITS ecosystem and maintain its 
overall stability, productivity, and efficiency (Yuan and Wang 2016).

Privacy – According to FTC Report on the Internet of Things (IOT) 2015, the 
technological advancement has surpassed the rules and regulations in cybersecur-
ity and privacy aspects, thereby reducing trust in IOT devices. If AVs follow the 
same direction, public’s trust could be damaged by a major privacy invasion. Some 
ITS technologies use the location and movement data of the vehicle posing serious 
privacy threats. Therefore, it is important to establish a high level of trust 
(Lederman, Taylor, and Garrett 2016).

Human-machine interface (HMI) – HMI acts as the connectivity point between 
humans and driverless system and for a safe system, optimal design of the HMI is 
necessary to promote trust. It is essential to keep the vehicle occupants ‘in-the-loop’ 
(awareness about the status of vehicles and road traffic situation). This is important 
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to signal a safer re-engagement during emergencies (Cunningham and Regan 
2015).

Trust on V2X Communications – By 2025, each new vehicle is expected to be 
connected in several ways. ITS will leverage various vehicular communications 
such as vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to- 
pedestrian (V2P), and vehicle-to-anything (V2X) to deliver transport-related 
services. Different companies offer different equipment, systems and technologies 
and it is therefore vital to standardize ITS to ensure interoperable V2X commu-
nications between them irrespective of their brands and models thereby improving 
the trust on these technologies (Hamida, Noura, and Znaidi 2015).

Research Methodology

Review of academic articles helped to identify the research gap and to determine 
seven independent variables and its sub-variables. The following framework 
illustrates the relationship between cyber threats and independent variables:

Data Collection

Primary research was conducted by expert interview and online survey question-
naire. The survey contained 34 questions based on variables/sub-variables (Figure 
2) and 4 questions on participant’s demographic details. Responses for all ques-
tions were measured on a five-point Likert scale.

Profile of Respondents

Pilot-testing was conducted with a sample size of 30 respondents working in 
automotive industries and AV start-ups. Expert interview was also conducted to 
gather additional input and after Pre-testing, the final online questionnaire was 
sent to all the stakeholders of automotive industry. The online questionnaire was 
sent to Autonomous Vehicle Communities, Automakers and others with driving 
experience or domain knowledge through social media (LinkedIn, Facebook and 
WhatsApp). Survey link was distributed to about 650 participants, out of which 
203 attended the survey (34% response rate).

Data Analysis

Partial Least Squares path modeling is preferred for research studies for its flexible 
modeling and identifying key drivers (Hair, Ringle, and Sarstedt 2011). The data 
analysis was carried out using ADANCO 2.0.1 to develop and evaluate the 
structural model and the causal relationships between the variables.
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Reliability

The two variable reliability measurements used in this study are (1) Cronbach’s 
alpha (α) and (2) Jöreskog’s rho (ρc). Cronbach’s alpha coefficient should be 
between >0.6 and <1 to obtain an acceptable level of reliability (Pallant. 2007). 
Jöreskog’s Rho evaluates “composite reliability” to appreciate the integrity and 
homogeneity of the model (Werts et al. 1978). All variables have produced 
acceptable reliability measurements.

Validity

(a) Convergent Validity

As (Carlson and Herdman 2012) mentioned, convergent validity evaluates the 
degree of correspondence between two measures of variables and the cutoff value 
≥0.5 is acceptable (Henseler and Dijkstra 2015) (Hair, Ringle, and Sarstedt 2011).

(b) Discriminant Validity

Discriminant validity ensures that the constructs that differ from each other are 
proven to be different (Henseler and Dijkstra 2015). The AVE measure of other 
variables should be lesser than the square root of AVE obtained from a particular 
variable table 2. This Fornell-Larcker method is used for evaluating the degree of 
distinction between the variables (Carless 2004).

Table 2. Average variance extracted (AVE) 
for each construct.

Variable
Average variance 

extracted

Cyber Threats on AVs 0.5207
Socio-Cultural 0.5577
Regulations 0.5680
ITS 0.5331
Predictive Measures 0.5791
Cyber attacks 0.5181
In-vehicular Network 0.5158
Trust 0.5232

Table 1. Overall reliability of variables.
Variables R2 Jöreskog’s rho (ρc) Cronbach’s alpha (α)

Cyber Threats on AVs 0.436 0.8835 0.8475
Socio-Cultural 0.7886 0.6061
Regulations 0.7957 0.6167
ITS 0.8201 0.708
Predictive Measures 0.8046 0.6352
Cyber attacks 0.8106 0.691
In-vehicular Network 0.8385 0.7575
Trust 0.8454 0.7712
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(Squared correlations; AVE on the diagonal)

(c) Indicator Multicollinearity

Multicollinearity exists when two indicators are correlated to each other providing 
unnecessary information. If the cutoff value (which is calculated by measuring the 
variance inflation factor) exceeds 5 table 4, then the indicator is not a significant 
parameter (Hair, Ringle, and Sarstedt 2011).

Path Analysis

Path analysis or causal modeling depicts the independent variables and 
dependent variable graphically along with the strength of each path.

Hypotheses Testing

To understand the assumed relationships, the t-values and the p-values from the 
total effects inference table are used to evaluate the impact between variables. To 
evaluate the parameters of the unknown population, bootstrapping is the simple 
and appropriate method used in statistics (Efron 1987).

Figure 4. Graphical representation of the model with path coefficients.
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Findings

The path coefficient of 16 hypotheses is highly significant, two hypotheses H8 
and H15 have a significant impact and the hypotheses H14 and H16 have 
a moderate impact. Hence, all these hypotheses are accepted. However, H2 and 
H19 have shown that they have no effect and have therefore been rejected. The 
cutoff values suggested by (Bullmore et al. 2000) were taken to measure the 
strength of the path coefficient for each sub-variable; 0.5–0.8 means 

Table 4. Indicator multicollinearity.

Indicator

Cyber 
threats on 

AVs
Socio- 

cultural Regulations
Intelligent trans-

portation systems
Predictive 
measures

Cyber 
attacks

In-vehicular 
network Trust

SC1 1.1967
SC2 1.3272
SC3 1.1864
RE1 1.32
RE2 1.1274
RE3 1.34
IT1 1.3638
IT2 1.3112
IT3 1.2521
IT4 1.463
PM1 1.349
PM2 1.373
PM3 1.1463
CA1 1.2439
CA2 1.1686
CA3 1.5693
CA4 1.6014
CN1 1.5842
CN2 2.1656
CN3 1.8217
CN4 1.1721
CN5 1.2486
TR1 1.4834
TR2 1.431
TR3 1.6965
TR4 1.4183
TR5 1.4087
EM1 1.88
EM2 2.1127
EM3 1.8758
EM4 1.7145
EM5 1.6533
EM6 1.6767
EM7 1.5058

The above table shows that there is no multicollinearity.

Table 5. Levels of significance to evaluate the signifi-
cance of variable’s relationship.

Significance t-value Confidence interval

p < .1 ≥ 1.65 90%
p < .05 ≥ 1.96 95%
p < .01 ≥ 2.59 99%
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a moderate effect while >0.8 indicates a strong effect on the independent 
variable. The findings of 22 hypotheses are explained below:

Socio-Cultural

Figure 4 shows that vehicle occupants want an information system in AVs that 
does not provide excessive information and increase their mental workload, 
which would otherwise have a negative impact on safety. H1 (t-value 3.063; 
p < .01) is accepted indicating that the impact of socio-cultural factors on cyber 
threats is highly significant. Similarly, H3 (t-value 6.0004; p < .01) is accepted 
which signifies a highly significant effect of socio-cultural factors on Trust. 
There would be an increased trust if the AVs provide safe and efficient take- 
over, clarity in remedial procedures during accidents and adequate vehicle 
information. However, H2 (t-value −0.668) is rejected showing that there is no 
impact of socio-cultural factors through three sub-variables on cyber-attacks. 
Overall, we found a strong correlation between the “workload of the driverless 
system” with cyber-attacks and cyber threats to AVs. This relationship has not 
been mentioned in prior studies.

Regulations

Figure 4 shows that the criminal law and enforcement issues relating to AVs 
have a strong impact on the regulations. Forensic investigations and cyberse-
curity laws affect the regulations moderately.

All the above six hypotheses H4 – H9 are accepted based on the t-value. This 
signifies the impact of regulations on several aspects. This is in line with the earlier 
studies that argued that Regulatory rather than technological obstacles could 
become a practical barrier to AV technology implementation (Brodsky 2016). 
Regulations have a highly significant effect on cyber threats, cyber-attacks, socio- 

Figure 5. Active Cyber Defense Cycle correlated with Defender’s cyber process.
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cultural factors, intelligent transportation systems, predictive measures and trust. It 
is clear from these results that criminal law and enforcement issues (if not 
addressed) have a huge impact on cyber threats. In addition, regulatory interven-
tion in the personal data protection and privacy requirements of passengers, safety 
and security of the vehicle network, insurance risks, standardizing AV behavior for 
predictability, educating the public about the actual capabilities of AVs, and 
bringing trust among the entities of ITS are necessary. Furthermore, product 
liability framework for remedial procedures should be in place to avoid any liability 
issues which might impede the success of AVs. These findings are in line with the 
earlier studies by (Glancy 2015) (Surden and Williams 2016) (Bloom et al. 2017).

Figure 6. Integrated Model – General & Modified; NSM – Network security monitoring, APT – 
Advanced persistent threat.

Figure 7. Modified Cyber cycle Theory.
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Intelligent Transportation Systems

Figure 4 shows that all the sub-variables of ITS have a moderate impact on 
the ITS.

All the above four H10 – H13 assumptions are accepted based on the t-value. 
This means that ITS has a high impact on several aspects. ITS has a very significant 
impact on cyber threats, cyber-attacks, predictive measures and trust through its 
sub-variables such as privacy, traffic congestion, Big data and VANET. Trust in 
ITS and cybersecurity depends on how parameters such as (1) the safety and 
security of VANET protocols against attacks, (2) processing and analysis of Big 
Data to ensure interconnectivity among and between vehicles and control sys-
tems, (3) AVs impact on traffic congestion, and (4) flow, obscurity and storage of 
personal and vehicle information are handled in ITS ecosystem. This is in 
accordance with the findings of the previous research studies (Elbanhawi, Simic, 
and Jazar 2015) (Bagloee et al. 2016) (Amoozadeh, 2015) (Sakiz and Sen 2017).

Predictive Measures

Figure 4 shows that the AVs driving behavior accounting for system uncertainties 
have a strong impact on the predictive measures. H14 (t-value 1.7358; p < .1) and 
H16 (t-value 1.9437; p < .1) show that predictive measures have a moderate impact 
on cyber threats and trust through designing prediction models for dynamic urban 
scenarios, comprehensive insurance risks policy and system uncertainties. H15 
(t-value 2.1069; p < .05) tested the effects of predictive measures on cyber-attacks 
and the results show that the effects are significant. It is determined from this study 
that predicting driving behavior with accurate perception and interpretation to 

Figure 8. Modified Defender’s cyber process with Research output measures.
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face the system uncertainties (dynamic traffic scenarios and surrounding entities) 
that requires a trade-off between safety risks and expensive computational com-
plexity has a significant impact on possibility of cyber-attacks. This substantial 
correlation is not addressed in any of the previous research studies.

Cyber Attacks

Figure 4 shows that all four sub-variables affect cyber-attacks moderately. H17 
(t-value 2.6809; p < .01) and H18 (t-value 8.0959; p < .01) are accepted, 
showing that the effects of cyber-attacks on cyber threats and trust are extre-
mely significant and intuitive. Cyber-attacks through its sub-variables, such as 
(1) large-scale cyber risk of hacking on vehicles, (2) designing driverless 
systems to alert against attacks, (3) phishing and ransomware attacks on 
vehicles and (4) anticipating a wide range of threat vectors, strongly influence 
the possibility of cyber threats against AVs. These findings are in line with the 
earlier studies (Kennedy 2016) (Parkinson et al. 2017).

In-Vehicular Network

Figure 4 shows that the potential attack points on AVs and vulnerabilities of 
ECU have a strong impact on the in-vehicle network. All the other three 
variables affect the in-vehicle network moderately. H19 (t-value 0.5382) is 
rejected indicating that the in-vehicle network does not have an impact on 
cyber threats through its sub-variables. However, H20 (t-value 5.5081; p < .01) 
shows that the in-vehicle network strongly influences cyber-attacks, which 
explains that they also influence cyber threats indirectly. Parameters such as 
ECU weaknesses, possible attack surfaces of AVs adversely affecting the in- 
vehicle network, attacks on sensors and navigation systems and the personal 
data protection by influencing in-vehicular network impact the cyber-attacks. 
H22 (t-value 3.9995; p < .01) is also accepted signifying the highly important 
correlation between in-vehicle network and trust on AVs.

From this study, it is examined that vulnerabilities of ECU and possible 
attack entry points by strongly impacting in-vehicle network influence cyber 
threats highly significantly. These are in line with the earlier studies 
(Parkinson et al. 2017) (Koscher et al. 2010). In addition, the impact of in- 
vehicle network on trust is highly significant. This shows that ECU vulner-
abilities, CAN weaknesses and wide attack entry points if not addressed 
properly, this might pose a great security threat thereby diminishing trust on 
AVs. This correlation of in-vehicular network vulnerabilities with trust is not 
touched upon in earlier studies.
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Trust

Figure 4 shows that the privacy issues in AVs have a strong impact on the trust 
factor. H22 (t-value 2.6591; p < .01) is accepted which signifies that effect of 
trust on cyber threats on AVs is highly significant. Trust on vehicular commu-
nication network, mutual trust among the ITS entities, predictability and 
comfort on AVs, privacy issues and human-machine interface strongly impact 
the cyber threats on AVs. Privacy breach poses a strong threat to cybersecurity 
and seriously damages public trust hampering the adoption of AV technology. 
Hence, it is important to establish a high level of trust by protecting information 
against misuse or disclosure through greater transparency in the technologies 
and regulations governing the data used (Lederman, Taylor, and Garrett 2016).

Contributions

The results obtained from this study indicate that most of the factors have 
a positive influence on the cyber threats. Correlation of in-vehicular network 
vulnerabilities with trust and the correlation between the “workload of the 
driverless system” with cyber-attacks and cyber threats to AVs are two rela-
tions which have not been touched upon in previous studies.

The following are the research answers to the questions mentioned in 
Section 1.5:

(1) Socio-cultural factors such as re-engagement, workload of driverless 
system and liability issues have a highly significant influence on cyber 
threats on autonomous vehicles.

(2) Impact of regulatory matters on criminal law enforcement, forensic 
investigations and cybersecurity laws on cyber threats on autonomous 
vehicles is highly significant.

(3) Privacy, Vehicular Ad-hoc network, Big data and Traffic congestion in 
Intelligent Transportation Systems show a very significant influence on 
cyber threats on autonomous vehicles.

(4) The influence of dynamic urban traffic scenarios, system uncertainties 
and insurance risks on cyber threats on autonomous vehicles is 
moderate.

(5) Large-scale hacking, cyber-attack detection, phishing, ransomware 
attacks and anticipation of range of threats influences cyber threats on 
autonomous vehicles highly significantly.

(6) Weaknesses of In-vehicular Network such as lack of authentication, 
potential entry points of attacks, vulnerabilities of Electronic control 
units, attacks on sensors & navigation systems and personal data pro-
tection positively impacts cyber-attacks but does not show any impact 
on cyber threats on autonomous vehicles.
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(7) The impact of predictability, comfort, trust among the entities of 
Intelligent transportation systems, privacy, Human-machine interface 
(HMI), and Trust on V2X Communications on cyber threats on auton-
omous vehicles is highly significant.

(8) The Active Cyber Defense Cycle (Lee, 2015) is a defensive cyber 
strategy executed on one’s own network and systems Figure 5. It 
consists of four phases that are continuous, concurrent and interre-
lated and the phase “Threat intelligence consumption” is a key com-
ponent that adds value to other three phases. This phase is added to 
the defender’s cyber process of Cyber cycle; in addition, all the other 3 
phases are corelated with the four processes in the defender’s cyber 
process of Cyber cycle as below:

Diamond Model of Intrusion Analysis (Caltagirone 2015) provides a flexible 
model for collecting information on the cyber-threat intelligence of an attacker. 
It is based on four core features: the adversary, capability, infrastructure and 
victim. The researcher (Mandt 2017) has integrated this Diamond Model with 
the Active Cyber Defense Cycle to provide a useful model for maintaining 
situational awareness of both the activities of an attackers and the cyber- 
defense activities and capabilities of protectors. The integrated model is custo-
mized to show the cyber threats operating environment of AVs in the Figure 6.

Improving the Cyber cycle with the above modified model of two theories 
produces the following:

It is examined that cyber cycle theory modified with integrated model of 
Diamond Intrusion theory and Active Cyber Defense Cycle can be applied on 
cyber threats on AVs Figure 7. This improved theory gives defenders a more 
proactive cyber-threat intelligence analysis of attackers with the defender’s 
cyber process. The following diagram shows the output measures of this 
research of the Defender’s cyber process of the modified Cyber Cycle: Figure 8

In addition, according to the study results, strict, proactive and adequate 
regulations on criminal law and enforcement (which strongly influences cyber 
threats) pertaining to AVs might deter the attackers to perform attacks and 
slow down the cyber cycle. Strong policies should be in place to punish the 
cyber criminals.

Implications for the Automotive Industry

Cybersecurity, a biggest threat to AVs must be given critical importance 
right from the “Design” stage and embedded in the culture of develop-
ment and maintenance. Cyber threats if less addressed can have severe 
consequences for the operations of companies (functions, reputation and 
assets). In addition, potential range of threat vectors ought to be identified 
for creating user acceptance and adoption of AVs. People may have 
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different expectations about the extent and capabilities of autonomous 
vehicles which may not align with its actual abilities. They may either 
underestimate AVs leading to deadlock and safety problems or inefficien-
cies (by acting unduly cautious with AVs) or overestimate and expect AVs 
to operate with near perfect accuracy. Hence, educating public on the 
actual capabilities of AVs is crucial to avoid over-reliance or overreactions 
for promoting user acceptance of AVs. This study has shown that protec-
tion of privacy is a strong influencing factor on trust and hence focus on 
privacy is critical. Otherwise, there would be difficulty in getting informa-
tion from traffic participants. Finally, the success of AVs depends on 
public–private partnerships, governments, researchers, technology compa-
nies and automobile manufacturers.

Limitations and Scope for Future Research

This research was conducted to understand several factors that influences 
cyber threats on AVs and the effect of those factors. Most of the participants 
who attended the survey were from Asia-pacific. Participation from other 
regions would have added little more value to this research. Autonomous 
vehicles studied in this research belong to the first generation of AVs that 
might give control to humans during certain situations or events. This paper 
considered the integration of the Diamond Model of Intrusion Analysis and 
Active Cyber Defense Cycle with the defender’s cyber process in the Cyber 
cycle and the output measures are shown from a conceptual perspective and 
a further study exercise testing the usefulness of this integration to validate it 
can bring significant benefits. This research could be further guided on other 
factors such as socio-economic factors that impact the cyber threats. Future 
studies can be conducted on cybersecurity in devising and controlling 
Intelligent transportation systems and control infrastructure.

Conclusion

Few companies have announced that in early 2019, they will release AVs on 
a commercial scale (Google’s Waymo, Volkswagen’s self-driving ride- 
hailing service in Israel [66]). Since AVs are at the crossroads, this research 
was conducted to find out the significant factors and investigate their impact 
on “Cyber Threats on Autonomous Vehicles.” Several sub-variables for each 
of those factors have been identified and the significance of those sub- 
variables are studied. According to the hypotheses results, socio-cultural 
factors, regulations, intelligent transportation systems, cyber-attacks and 
trust have a strong significant impact on cyber threats and the in- 
vehicular network has a strong influence on cyber-attacks. Other results 
include criminal law and enforcement strongly influencing the regulations, 
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privacy issues having high significant impact on trust, strong effect of 
workload of driverless systems on socio-cultural factors and system uncer-
tainties with trade-off between risk and conservativeness strongly influen-
cing predictive measures. In addition, the defender’s cyber process in the 
Cyber cycle theory was unified with the integrated model of Diamond 
Model of Intrusion Analysis with the Active Cyber Defense Cycle and the 
research output measures are shown.
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