
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

Power-Aware Characteristics of Matrix Operations
on Multicores

Guruprasad Konnurmath & Satyadhyan Chickerur

To cite this article: Guruprasad Konnurmath & Satyadhyan Chickerur (2021) Power-Aware
Characteristics of Matrix Operations on Multicores, Applied Artificial Intelligence, 35:15,
2102-2123, DOI: 10.1080/08839514.2021.1999013

To link to this article: https://doi.org/10.1080/08839514.2021.1999013

Published online: 29 Dec 2021.

Submit your article to this journal

Article views: 479

View related articles

View Crossmark data

Citing articles: 1 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2021.1999013
https://doi.org/10.1080/08839514.2021.1999013
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2021.1999013
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2021.1999013
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1999013&domain=pdf&date_stamp=2021-12-29
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1999013&domain=pdf&date_stamp=2021-12-29
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2021.1999013#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2021.1999013#tabModule

RESEARCH ARTICLE

Power-Aware Characteristics of Matrix Operations on
Multicores
Guruprasad Konnurmatha and Satyadhyan Chickerurb

aSchool of Computer Science and Engineering, K L E Technological University, Hubballi, Karnataka, India;
bCentre for High Performance Computing, K L E Technological University, Hubballi, Karnataka, India

ABSTRACT
GPU accelerators are massively parallel in nature and tailored for
processing numerically intensive high-performance computing
applications. But most of the applications that involve heavy
computations take excess time to process as the dataset gets
larger and lead to more power consumption. Hence, among all
the factors in sustainable computing that contribute to operar-
tional costs of GPU, power and time management is one of the
major challenging issue. This paper presents a methodology to
reduce power consumption in GPUs, meanwhile keeping paral-
lel execution of jobs as high as possible. To achieve this, a power
and time aware framework is created by integrating TensorFlow
library, InterPSS, and Dynamic Voltage Frequency Scaling (DVFS)
techniques. For most of the scientific computing, matrix opera-
tions are considered as the fundamental building block. So, the
performance, power consumption, and power efficiency of GPU
for matrix applications are analyzed under proposed model.
Experimental results reveal that proposed methodology sub-
stantially reduces peak power of GPUs by 20%, with improved
speedup in execution time around 15%.

ARTICLE HISTORY
Received 28 January 2021
Revised 19 October 2021
Accepted 22 October 2021

Introduction

Unfeasible increase in consumption of energy has forced manufacturers of
hardware components to prefer energy efficiency as primary concern in their
design implementations. The main objective in managing power is to improve
performance metrics within the estimated power budget. In case of multicores
systems enabled with High-Performance Computing (HPC) capabilities,
Graphics Processing Units (GPUs) have proven its performance at peak level
as compared with CPUs. In the recent ranking for Top 500 supercomputers,
101 of them are GPU-accelerated systems. But due to its much complex
structure with its own memory, control chipset integrated with many proces-
sors, high computational power, and capacity to perform much sophisticated
task, GPUs consume much higher energy. Some GPUs alone consume 100
watts of power and sometimes more than all other combined parts of the

CONTACT Guruprasad Konnurmath guruprasad.konnurmath@kletech.ac.in School of Computer Science and
Engineering, Kle Technological University, Hubballi, India

APPLIED ARTIFICIAL INTELLIGENCE
2021, VOL. 35, NO. 15, 2102–2123
https://doi.org/10.1080/08839514.2021.1999013

© 2021 Taylor & Francis

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1999013&domain=pdf&date_stamp=2022-03-08

computing system. To address these issues, especially for the researchers,
understanding the mechanisms to cater power management is significantly
an important factor to produce effective solutions and introduce power opti-
mized GPUs. Applications related to High-Performance Computing (HPC)
mainly utilize GPUs and consume high power as compared to CPUs with
much impact on architectural design, reliability, as well as economic feasibil-
ity. Many power management strategies such as power aware algorithms
(Matteo, Vanzolini, and Mucci 2015) (Steven and Daescu), programming
models (Hesham, Moussa., and Farag 2017), CPU-GPU workload division,
dynamic resource allocation techniques, and energy saving mechanisms in
GPU components (Khaled, El-Hosseini, and Ali 2015) (Sparsh and Jeffrey
2014) have been proposed to tackle power management. Research (Hayri et al.
2016) suggests that more software modifications are required to exploit the
resulting improvements in current and future hardware technologies.
Basically, TensorFlow is open-source popular programming framework parti-
cularly used to perform numerical computations employing dataflow graphs.
This TensorFlow also supports several HPC applications (Chien et al. 2019)
that run on variety of device types, including GPU and CPU. In this research
work, TensorFlow framework is used to notify GPU information such as the
GPU type, total number of GPUs, the type of application running on GPU,
and its memory consumption. Since TensorFlow library supports pipelining
mechanism that creates data parallelism, it is used to reduce execution time.

Along with the analysis of GPU power utilization in terms of various
metrics, understanding state of art works for multicore Central Processing
Units with different embedded platforms used for similar kind of DSP and AI
workloads under specific applications, delivers broader overview about var-
ious models, processor architecture, coding strategies with respect to the
analysis of power utilization, and performance. For instance, minimal selec-
tion of architecture of the deep neural network and software framework of
deep learning along with specific embedded platform of hardware show some
differences with respect to performance. Mainly few of software integrated
deep learning frameworks showing the same functionality do not produce the
performance in a similar way when the same model of network is executed on
a specific hardware platform. Implementation in the work (Velasco-Montero
et al. 2019) illustrate different programming techniques and underlying
libraries of acceleration exhibit huge impact on consumption of power,
instantaneous throughput, and workload utilization on CPU when the same
inference is carried with OpenCV, TensorFlow, Caffe libraries, and Caffe2
techniques on a multicore processor which is ARM Cortex-A53. Also the
proposed framework exemplify statistical analysis about how the hardware-
oriented resources are differently exploited and also illustrates stating a strong
bond in between inference throughput and results, including consumed power
and correlated sensitive parameters related with usage of memory modules

APPLIED ARTIFICIAL INTELLIGENCE 2103

and procedures flow control. The advent of trending artificial intelligence and
machine learning techniques in the field of terrestrial applications have revo-
lutionized new productive innovations in our everyday life the future space
mission concepts require high-performance on-board data processing with
limited power consumption and enhanced dependability. In this context, the
work (Leon et al. 2021) illustrates heterogeneous system of multicore on chip
processor for the use on-board future generation spacecrafts to support
realistic digital signal processors having computational efficiency and
Artificial Intelligence functionalities. To exhibit need and efficiency of lower
energy consumption in satellites, implementations include integration of
Intel’s system on the chip Movidius Myriad2 and mainly focus on software
development as well as performance parameters. A systematic methodology
and software framework is presented to reach effective partitioning, concur-
rency, mapping, parallelism, optimization of code, and soft tuning of complex
productive algorithms. Along with this, avionics architecture is introduced
combining this with field programmable gate array device. The results illus-
trate several benefits of using Myriad2 in replacement with conventional field
programmable gate array and Central Processing Units. In case of
Convolutional Neural Networks (CNNs), workloads produce streaming kind
of character which make these CNN appealable for reconfigurable mode of
architectures that include Field-Programmable Gate Arrays (FPGAs), while
there is major need for lower consumption of power and execution speed has
introduced Application-Specific Integrated Circuit (ASIC) kind of accelerators
as replacement giving alternative effective solutions. The huge improvement in
Hardware Description Language (HDL) integrated CNN accelerators, either
for Field-Programmable Gate Arrays or Application-Specific Integrated
Circuit, has created great academic interest because of high performance and
flexible platforms for optimizations. In the view with this, a framework com-
prising library-based software is proposed in the work (Leon et al. 2020),
which incorporates TensorFlow methods, a framework based on machine
learning and automatically produces higher effective throughput inference
engines of CNN for ASICs and FPGAs. The proposed framework in the
work allows developers of software to exhibit the productive outcomes of
ASIC/ FPGA acceleration without the need of any expertise on HDL imple-
mentation and lower level design. In case of results with comparison of various
types of CPU and GPU combinations, the accelerator results around 10 times
of improved speedup on the execution of inference engine and optimizable
savings in power.

To clearly analyze power features of processing elements running on
GPUs, it is better to simulate the undergoing system. Hence, in the proposed
methodology, the computing system is simulated using InterPSS (Mike and
Huang 2017), a power system simulation technique. The relationship
between GPU power consumption and inherent computational patterns is

2104 G. KONNURMATH AND S. CHICKERUR

interpreted using dynamic voltage and frequency scheduling (DVFS) tech-
nique (Ashish and Khare 2015). To address this issue of power management,
we consider two main design features of GPUs that contribute to achieve
higher performance: (i) on-core chip massive parallelism based on rate of
total number of computation instructions and (ii) memory bandwidth with
respect to total count of global memory transactions. GPU kernel’s perfor-
mance is primarily dependent on the frequency of these two operating
components. Two applications, namely, computationally intensive matrix
multiplication and memory intensive matrix transpose are used to charac-
terize energy efficiency of GPUs. The common data access patterns and
heavy parallel computational requirements suggest matrix operations as
best suitable for effective evaluation on GPUs.

The combination of TensorFlow, InterPSS, and DVFS techniques in the
proposed methodology make GPU to perform computations in a very efficient
and optimized way with speedy execution and lesser power consumption. To
achieve this following objectives are defined:

● Analyze and investigate power dissipation in association with parallel
program execution of multi-core processor/GPU in a computer system.

● For analysis, identify possible areas of various scientific applications,
techniques, and automate the process of workload power analysis.

● Design & implement time aware model that exhibits speedy execution
and power aware model to optimize power consumption.

● Model relationship between time and power characteristics and inte-
grate to result workload aware model to achieve both time and power
efficiency in multi-core processor/GPU. Finally compare and evaluate
performance.

Background

In the past decade, many power management techniques, algorithms, and
programming models have been introduced by various researchers. To have
clear review about the research work, literature survey with respect to time and
power management in multicores and GPUs is carried out under various
categories.

For power management, the techniques are broadly classified among two
major categories: reactive and predictive (Khaled, El-Hosseini, and Ali 2015).
The reactive techniques react in accordance to changes in performance based
on workload. When the change is identified in workload’s state, accordingly
this technique responds to that specific change. Hence, predictive technique is
preferred to be better than reactive technique. Our research work is followed
by predictive technique. To optimize power consumption in CPU as well
GPU, the most well-known technique is DVFS method (Sparsh and Jeffrey

APPLIED ARTIFICIAL INTELLIGENCE 2105

2014)(Ashish and Khare 2015)(Xinxin et al. 2013). This method is implemen-
ted by altering the voltage and frequency levels of multicores. This technique is
introduced commercially under many names such as AMD’s PowerNow,
Intel’s SpeedStep technology and many more.

Improper workload distribution between CPU and GPU too affects the
energy consumption. Several research works have been carried out to compare
and validate the energy consumption between CPU and GPU. The survey
results (Sparsh and Jeffrey 2014) show GPUs consumes more energy as
compared to CPU. The methodologies introduced under some of the frame-
works (Dong, Byna, and Chakradhar 2011) prove that managing GPU work-
load consolidation systematically can improve overall throughput of the
system leading to desirable savings in the energy as compared with multicore
CPUs.

Power consumption on any GPU varies depending on the type of applica-
tion introduced. Hence, selection of proper applications (Phuong, Young., and
Gun 2017) and its implementation is one of major factor to analyze energy
efficiency in GPUs. Rodinia benchmark suite (Martin, Giusti, and Naiouf
2018) an application set that includes PathFinder, SRAD, BFS, LavaMD,
CFD Solver, and LUD were mainly used to interpret the performance, energy
consumed by CPU along with GPUs. Mainly the suite compares single-
threaded and multi-threaded versions of CPU with GPU implementations
and characterizes instant power generated, total time executed, and average
energy consumed. Some of the experiments were implemented on real-time
GPU platform tested using 37 benchmark applications (Xinxin, Wang, and
Chu 2016). Results revealed that by gradually scaling down the GPU core
voltage and GPU core frequency, around 19.28% energy reduction can be
achieved and prove GPU DVFS (Ashish and Khare 2015) to be one of the
effective approach for energy conservation in GPUs. Power profiling also
varies for different types of GPU architectures. By altering core clock as well
as memory clock frequencies experiments (Peter et al. 2016,) were conducted
for three Nvidia GPU generations (Maxwell, Fermi, and Kepler architectures).
The outcomes prove that the change in architecture of GPU also has an impact
on power consumption.

Selection of proper algorithms and programming languages helps in effi-
cient utilization of resources by the GPUs. A detailed study of memory
utilization, energy consumption, and runtime of well-known software lan-
guages is discussed in the paper (Rui, Couto, and Cunha et al. 2017). Results
reveal slower programming languages consume more energy and a faster
language consume less and later analyzes the influence of memory usage on
energy consumption. Also some compilers supporting these programming
languages not only influence code’s execution performance but also affect
the energy consumption. Even though parallel algorithms are effective some
of them fall short in terms of optimization when addressing the issue of unique

2106 G. KONNURMATH AND S. CHICKERUR

GPU architectures. The design model (Steven and Daescu) for a parallel
algorithm using template matching algorithm, introduces Parallel GPU
Model (PGM), show better degree of optimality for GPU architecture com-
pared with traditional type parallel models. The increasing demand of GPU
usage in HPC systems for computations has led to major challenges in power
management. To address these power management issues, machine learning
methods provide software-based unique approach. The problem of GPU
power management is explored using machine learning at different DVFS
states. An ensemble technique (Bishwajit, Adhinarayanan, and Feng 2018)
integrated with three techniques of machine-learning namely sequential mini-
mum optimization regression, linear regression, and decision tree were imple-
mented to decrease mean absolute error around 3.4%. These three techniques
also examine energy management in GPUs. Several examples (Martin and
Barham et al. 2016) were introduced and analyzed to describe the efficiency of
TensorFlow programming model that facilitates unique experimentation and
proves that the resulting implementations are scalable and performant. The
results interpret the advantages of running well-known operations in deep
learning such as matrix calculations and convince TensorFlow libraries are
flexible for both CPU and GPU architectures parallelly.

Basically simulations are performed to observe and analyze dynamic beha-
vioral nature of the objects and predicts about the change in functioning of the
entire system when the individual components of that system are being
altered. The detailed survey of power modeling in GPUs and profiling meth-
ods (Robert, Imam., and Mintz 2016) like Qsilver, UNISIM, PowerRedMcPAT
implemented on GPUs show that software-based power measurement tools,
computer power monitoring have grown at a larger extent, which is made
possible by modeling and simulation environment. A power model for GPU
using McPAT and a CPU power simulation tool is developed that estimates
the power consumed by different components of GPU by using configuration
parameters, which can be determined through experimental evaluation. The
design of InterPSS simulation engine (Mike and Huang 2017), including its
software architecture, object model, and development process of software
prove InterPSS to be more flexible and efficient simulation software. To per-
form power analysis of a system, components from existing system and other
system can be integrated into InterPSS. In the proposed research work,
InterPSS is used to provide power system analysis/simulation model service.

Experimental Methodology

The proposed methodology’s architecture is shown in Figure 1. This metho-
dology is carried at two levels. First at the hardware level, system component
power analysis is performed using TensorFlow, InterPSS and DVFS. In
the second, software function analysis is performed using TensorFlow library

APPLIED ARTIFICIAL INTELLIGENCE 2107

to achieve parallel computation involving better concurrency. Both levels are
integrated to form time-power model. Efficiency of execution time and power
consumption is analyzed using matrix multiplication and matrix transpose
applications. Finally, performance is evaluated by comparing the GPU imple-
mented with the proposed methodology to the naive GPU without any such
methodology.

TensorFlow and InterPSS

TensorFlow engine performs activity of dynamic resource management sys-
tem (DRMS) by generating graph nodes. Nodes of the graph are represented
by the mathematical operations and the edges in the graph communicating
between these nodes represent multidimensional arrays called as tensors. This
flexible and adaptive architecture of TensorFlow allows distributing computa-
tions on one or more CPU as well GPU in par with the requirement.
Representing itself as a graph, an efficient data structure TensorFlow allows
boosting execution speed. Whenever, the unused nodes in the graph are
detected and eliminated, thus optimizing it for size and evacuating idle
power consumption. It also identifies redundant operations or sub-optimal

Figure 1. Architecture of proposed methodology.

2108 G. KONNURMATH AND S. CHICKERUR

graphs and replaces them with the best alternatives with the aim of optimizing
time constraints. This nature of TensorFlow ensures computation optimiza-
tion yielding efficiency in terms of execution time as well as power consump-
tion. In the proposed work, TensorFlow library is used to run matrix operation
on particular device instead of automatic selection using tf.device to create
a dedicated device context and all the related operations around the context
shall execute on the same designated device. Since integrated GPU does not
own video Random Access Memory, this integrated GPU requires only
a minimal amount of memory space. In comparison with onboard-graphics
card consist of its own video memory module, or a short Video Random
Access Memory, which is found to be one of the biggest advantage. Also for
these dedicated graphics card, peripheral, and external devices are clocked in
faster way leading to high-performance level. This huge performance through-
put is accompanied with higher power consumption, heat dissipation and
which lead to memory fragmentation in some cases. TensorFlow library in
the proposed work is used to select the dedicated devices and to limit memory
growth.

TensorFlow whenever programmed for GPU by default it maps to nearly all
the GPU memory of all available GPUs (with respect to cuda_visible_devices)
This process is undergone to efficiently utilize the precious GPU memory
resources relatively on the devices for reducing the increasing ratio of memory
fragmentation. To limit the TensorFlow utilization for a specific set of GPUs
among all available GPUs, the method tf.config.set_visible_devices is used. In
the implementation, memory growth is turned on by using tf.config.experi-
mental.set_memory_growth that allocates only memory as required by GPU
based on its computation. As the method is called it begins to allocate very
little memory, and when the program starts executing more amount of GPU
memory is allocated and extended for this TensorFlow process. Because it may
lead to memory fragmentation, memory is not released continuously at
a stretch. Based on above mentioned conditions and advantages with respect
to dedicated GPU, in the proposed work, we apply Tensorflow method only
for prioritizing GPU device placement and limiting GPU memory growth and
not for NN framework for building and running the model. TensorFlow
libraries tf.data, num_parallel_calls and tf.data.experimental.AUTOTUNE
allows to increase data parallelism and automatically improves the execution
speed.

Power measurement, analysis of jobs, and system components is done using
Internet technology based Power System Simulator(InterPSS). InterPSS archi-
tecture enables components associated with GPU to be easily plugged into
InterPSS to augment its functionality and perform any kind of power analysis.
Hence, for power analysis, InterPSS simulates existing system and provides
service to the TensorFlow deep learning engine. Since it’s able to map the
memory of almost all the GPUs visible to the processes, TensorFlow relatively

APPLIED ARTIFICIAL INTELLIGENCE 2109

uses the GPU memory resources efficiently there by reducing the memory
fragmentation on the devices. In the proposed work, this simulation being
applied to the existing system integrated with GPU GeForce GTX 1060 shall be
helpful in enhancing power system design, clear analysis, diagnosis, and
operation of power flow without any power flow variation, when the DVFS
technique is applied to alter voltage and frequency levels as compared to the
scenario without application of InterPSS. Also this helps to identify the
memory usage of each GPU including details of its idleness and workload
share.

DVFS

The main priority to use DVFS technique in this paper is to analyze and
optimize power consumption of GPU by reducing voltage or frequency during
the interval when the GPU has lesser workload. Due to limitation of applica-
tions parameters, it is not always reasonable for any kind of application
requiring GPUs to map and utilize all the available cores. In many of the
applications, sometimes the memory bandwidth of GPU cores acts as
a bottleneck affecting the throughput and performance of GPU. Because of
this affecting bottleneck, the GPU cores remains unutilized many number of
times during its running process, an efficient power management technique is
needed. Based on the status of GPU workload gathered using TensorFlow, that
informs whether the application on GPU has lesser-activities undergoing or
idle periods, power consumption may be reduced by applying DVFS technique
on those GPUs. Based on the status of GPU workload gathered using
TensorFlow, that informs whether the application on GPU has lesser-
activities undergoing or idle periods, power consumption may be reduced by
applying DVFS technique on those GPUs. In this research work DVFS is
implemented by altering the frequency levels of GPU core and GPU memory.
Following equation depicts the energy consumed by GPU:

Power ¼ Capacitance � Voltage2 � Frequency

where,

● P = Power consumed by GPU
● C = Capacitance
● V = Voltage supply to GPU
● F = GPU clock frequency

Hence, the power consumed by any application applied with DVFS can be
decreased by reducing Frequency or Voltage, or both. The main preference
to implement DVFS technique in the paper is to analyze and optimize GPU

2110 G. KONNURMATH AND S. CHICKERUR

power consumption by reducing voltage and frequency during the periods
when GPU undergoes lesser workload. As the frequency is lowered, the
consumption in power will be lowered parallely. And if there is lowering of
voltage is done, there is a drop in consumption of power. A strong correla-
tion exists between the frequency in clock and performance, which indi-
cates that decrease in frequency also leads decrement in the performance.
Hence as a first priority to reach these issues, DVFS mainly provides tool to
improve performance with power and energy reduction. DVFS technique is
largely used to achieve Energy per instruction at different ratios. The main
goal of this DVFS technique is to adjust frequency and voltage pairs within
separate yet already defined pairs to achieve optimized power consumption
and improved level of performance. For huge parallel workloads, multiple
cores execute at lower rate of voltage and frequency pair. In case of scalar
workloads that includes larger portion of serial code, it is proved better to
run on few cores and improve their frequency to adjust to the specific task.
To implement DVFS technique in the proposed work, mainly two prede-
fined performance levels is fixed for the GPU (NVIDIA GeForce GTX
1060), namely ‘Idle’ and ‘Maximum Performance.’ In case of the maximum
performance settings, clock speeds of the GPU is set to highest level to reach
the best effective performance. For idle setting level, when the TensorFlow
method detects the GPU is in the idling state, then automatically it will low
down the GPU cores frequencies and memory to the already defined ‘Idle’
level. Specifically, the NVIDIA GeForce GTX 1060 GPU core clock is set
from 600 MHz to 800 MHz mean, while the GPU memory clock is set from
600 MHz to 1000 MHz.

Experimental Setup

The aim of the proposed research work presented is to examine and analyze
GPU kernel’s power consumption, execution time, and performance for
matrix operations for particular intervals. Data is collected frequently from
multiple runs of matrix operations and since the focus of research work is on
power analysis of GPU alone, only the data related to that GPU is included.
The research work is implemented on a NVIDIA’s GeForce GTX 1060 GPU
card integrated with 6 GB GDDR5 memory type hosted by Intel. It has
supporting graphics clock frequency of 1500 MHz and processor clock fre-
quency around 1700 MHz with 1280 cuda cores. The minimum system power
requirement is 400 watts and maximum power consumption of GPU is around
120 watts. The software configuration includes ubuntu distribution installed
with CUDA toolkit 10.0. Hazelcast Python Client library is used to integrate
TensorFlow Python runtime environment and InterPSS Java runtime envir-
onment for communication.

APPLIED ARTIFICIAL INTELLIGENCE 2111

Application Characterization

Matrix multiplication and matrix transpose applications are implemented
under the integrated framework of TensorFlow, InterPSS, and DVFS techni-
ques to analyze time and power efficiency of GPUs in the configured system. In
our experiments, two matrix applications were tested, first one represent dense
matrix multiplication considered to be computationally intensive application
and the second dense matrix transpose found to be memory intensive applica-
tion to showcase consumed power and performance characteristics of the
GPU. Following section gives detailed description of the two tested
applications.

Dense Matrix Multiplication
This dense matrix multiplication (MatMul) application is systematically opti-
mized in a way to use the maximum computational power characteristics of
GPU. To take the advantage of coalesced global memory accessing of GPU and
faster local memory, blocked version of matrix multiplication algorithm is
adopted. The rate of instructions issued (Mike and Huang 2017) by the GPU
kernel is the major bottleneck to be handled. It offers memory access regularly
and heavy computations parallelly but features data reuse of O(n) and con-
forms to be the best legitimate candidate for faster implementation of GPUs.

Dense Matrix Transpose
Matrix Transpose is a building block algorithm for many applications that
performs conversion of array of rows M by columns N (i.e. M*N) to array rows
N by columns M (i.e. N*M). Whenever the offload of algebraic libraries to
GPUs is high, increased performance for in-place transposition is required.
Hence, this in-place transpose have to be best fit for most of GPU architectures
because of its minimal availability of on-board memory and maximum
throughput. The dense matrix transpose (MatTran) preferably designed for
memory related manipulations with lesser amount of required computation
for memory indices and thread’s ID. To completely utilize GPU’s capability of
parallel processing, every multiple rows of matrix are simultaneously inter-
preted. Intermediate outcomes are recorded in local memory, holding them to
write back into global memory.

Experimental Profiling
To understand the execution of the kernel, profiling information of each
kernel is collected through NVIDIA’s OpenCL Visual Profiler. To understand
whether a kernel is of memory-intensive type or of compute-intensive these
two types of kernel is understood on the basis of rate of instruction issues for
the first type and second type defined by ratio of number of global memory
transactions to computation instructions. A compute intensive task is found to

2112 G. KONNURMATH AND S. CHICKERUR

be considered as the task to fully utilize the potential computational power
effectively and requires a large amount of computation on GPU cores. In case
of memory intensive task, an application requires a large amount of memory
for computing a particular application. In the proposed work, as mentioned in
the section power aware matrix multiplication and power aware matrix trans-
pose, for matrix multiplication the narrow growth of performance in Figure 2
mentioned under the section Results and Discussions, at all frequency levels
show that the performance of GPU for matrix multiplication is independently
determined by core frequency of the GPU. This is mainly due to higher rate of
instructions are executed on GPU cores at all frequencies. Hence, matrix
multiplication is considered to be performing compute intensive task. In
case of matrix transpose, as shown in Figure 3 mentioned under the section
Results and Discussions, the memory clock of the GPU determines the per-
formance and efficiency of matrix transposition and found to be independent
from its core frequency. This complete memory oriented dependency of
matrix transpose is decided based on the rate of global memory transactions.
Hence, matrix transpose is considered to be performing memory intensive
task.

Table 1 gives details about GPU kernel categories, the type of applications
used and average power consumed in watts. Based on the computational
ability matrix multiplication is considered compute intensive application
and matrix transpose as memory intensive application.

The memory efficiency (RatMem) is calculated by total number of memory
transactions of instructions taken place in GPU memory upon total number of
instructions computed on the GPU core.

Rat
Mem ¼

Number of Global Memory Transactions

Number of Computation Instructions

The core efficiency (RatInstrns) of GPU core is calculated by computing total
number of instructions computed by GPU core upon time taken by GPU to
compute instructions as shown below:

Rat
Instrns
¼

Number of Computation Instructions

Time taken by GPU

The profiling information of RatMem, RatInstrns for each of the two applications
were developed, with the sample codes available from, as mentioned under
Table 2. Periodically, the total number of global memory requests and also the
transactions has to be reported since multiple global memory transactions
might be required for single global memory request. Hence, this is nothing but
the actual count of all the memory transactions that finds the latency for each
memory access. Each request on memory will be considered as an instruction
that is deducted while determining the real number of instructions computed.

APPLIED ARTIFICIAL INTELLIGENCE 2113

Figure 2. Evaluation of performance, power consumption, and power efficiency for matrix
multiplication.

2114 G. KONNURMATH AND S. CHICKERUR

Figure 3. Evaluation of performance, power consumption and power efficiency for
MatrixTranspose.

APPLIED ARTIFICIAL INTELLIGENCE 2115

Evaluation Metrics

Following evaluation metrics are used to compare and analyze various DVFS
configurations of the system for each application:

● Time: The measurement of each application’s kernel execution is the
execution time. To reduce the effects of noise, application of same type
is run for multiple number of times for each setting and also average
minimal time (T) is used.

● Performance: Most well known quality assurance metric used in
HPC systems is Floating-Point Operations per Second (FLOPS),
but this performance metric cannot be applied for some specific
applications such as matrix transposition. Due to another metric
megabytes per second (MBPS) is used to analyze the performance
of matrix transpose to notify about the throughput during the run
time.

● Energy: Energy (E) is major metric measured regularly during par-
ticular intervals for the entire system while executing GPU kernel.

● Power: Usually considered as average power (P), is calculated by
ratio of total amount of energy consumed upon time taken for
execution:

Power ¼
Energy Consumed

Execution Time

● Power Efficiency: Power efficiency is indicated by the ratio of improved
performance on each GPU per power.

Efficiency ofPower ¼
Improved Performance

Power

Table 1. Kernel category and application type.
Kernel Type Application Type Average Power Consumption

Compute Intensive Matrix Multiplication 150 w
Memory Intensive Matrix Transpose 170 w

Table 2. Application characterization.
Application Type Rat

Mem
Rat

Instrns

Matrix Multiplication 4.52% 203102301
Matrix Transpose 43.7% 10084784

2116 G. KONNURMATH AND S. CHICKERUR

Results and Discussion

Under this final section, experimental results for the applications matrix
multiplication and matrix transpose is presented fewer than two categories.
The first category defined by power aware model presents the results obtained
by measuring the metrics to analyze power consumption, power efficiency,
and performance for each application running on the GPU. And the second
category defined by time aware model presents the improved execution
speedup of GPU kernel under proposed methodology for both applications
in comparison with naive GPU method.

Power Aware Matrix Multiplication

The power usage of the system without GPU utilization in the idling state is
111.2 watts and 142.5 watts for the GPU enabled system.

Separate set of graphs are generated for the proposed methodology to
present performance, power consumption and power efficiency of dense
matrix multiplication, as shown in Figure 2. The x-axis in graph depicts core
frequency of GPU and the legend plots memory frequency of GPU. The matrix
multiplication application is run under different GPU core frequencies
(600 MHz, 650 MHz, 700 MHz, 750 MHz, and 800 MHz) and different
memory frequencies (600 MHz, 700 MHz, 800 MHz, 900 MHz, and
1000 MHz) to reach reduction in power consumption. The narrow growth
of performance on Figure 2, at all frequency levels show that the performance
of GPU for matrix multiplication is independently determined by core fre-
quency of the GPU. This is mainly due to higher rate of instructions are
executed on GPU cores at all frequencies with much greater speed using
TensorFlow library and much lower rate of global memory transactions at
GPU memory.

As depicted in the Table 2, around 2 million instructions per computing unit
are executed and the rate of global memory transactions is not more than 5%.
Hence, the matrix multiplication for the proposed methodology executed under
GPU proves to be compute intensive application and to achieve better
performance.

GPU has to be configured with highest core frequency and lowest memory
frequency. Also, the high level data parallelism of TensorFlow library boosts
the execution speed by double for different frequencies. Due to this, around
20% reduction in power consumption is achieved with improvement in power
efficiency by approximately 18 MFLOPS/watt.

APPLIED ARTIFICIAL INTELLIGENCE 2117

Power Aware Matrix Transpose

Behavior of matrix transpose application kernel is shown in Figure 3 for different
GPU core as well as frequency settings. The group of horizontal lines seen in the
graph show that the memory clock of the GPU determines the performance and
efficiency of matrix transposition and found to be independent from its core
frequency. This complete memory oriented dependency of matrix transpose is
decided based on the rate of global memory transactions obtained by the ratio of
RatMem using TensorFlow library having much lesser effect on GPU core fre-
quency. The global memory transaction intensity of GPU kernel for matrix
transpose is 20 times greater than matrix multiplication intensity. Hence to
reach better performance in terms of power optimization for matrix transpose,
GPU should run at maximum memory frequency and minimum core frequency.

We can analyze from Figure 3 that GPU is run and processed at GPU
memory frequency with highest level as well as GPU core frequency with
lowest level to reach nearly optimized performance mean while with reduction
in the absolute power been consumed by approximately 3 watts for every
decrement in frequency of 50 MHz and indicate computing units idle for most
of times for matrix transpose kernel. Further in comparison with matrix
multiplication, the power consumption is less for matrix transpose with
improvement in power efficiency by 15%. When memory frequency of GPU
is fixed constant at 1200 MHz, minimal power consumed to execute matrix
transposition is around 216.4 watts and maximum power observed around
237.3 watts, means just a few difference of 20 watts.

Time Aware Model

The following section presents comparison of GPU speed between GPU
kernel implemented with the proposed methodology and the naive GPU
without any such approach. The proposed work in this time aware
model mainly project on higher implementation of parallelism for
Matrix operations. Basically, these matrix operations are widely used in
many areas of scientific computing communities and also the basis for
mathematical operations on multicore processors. Proposed solution for
Matrix operations is achieved by exploiting the higher level of paralle-
lism by the multicore GPUs. It adopts to several generalized GPU
effective workload optimizations and also specific type of GPU architec-
tural, design optimizations. The heterogeneous higher level parallel
matrix operations kind of method is tested for matrices under different
sizes and various ranges of power. Proposed work uses the highly
optimized GPU for the matrix multiplication and matrix transpose.
Because the matrix-related operations possess heavy data parallelism

2118 G. KONNURMATH AND S. CHICKERUR

nature of applications, matrix operations exhibit maximal speed up in
a fine tuned concurrency and massive parallelism supported devices like
Graphics Processing Units.

Both methods are compared with various sized matrices and powers
in the increasing for matrix multiplication and matrix transpose applica-
tions. Table 3 shows speedup comparison between naive GPU kernel and
proposed methodology for matrix of 64 by 64 size. The naive GPU
kernel has good performance speedup of almost 4 times but the speedup
remained constant, even though the power of matrix increased exponen-
tially. In case of proposed methodology for matrix multiplication and
matrix transpose show high-performance improvement and increased
speedup correspondingly with the increase in matrix power exponen-
tially over the naive GPU approach. The graphical representation of
speedup comparison between naive GPU kernel and proposed metho-
dology for the matrix of size 64 by 64 is shown in Figure 4.

Table 4 shows the comparison of speedups in seconds between naive GPU
kernel and proposed methodology for matrix size 128 by 128. As shown in the
Figure 5, the speedup comparison represented using graphs depicts that the
naive GPU has better speedup in performance of almost 6 times for matrix size
of 128 by 128. After some time, the speedup remained constant even though

Table 3. Matrix exponentiation of size 64 by 64.

Size

Naive GPU(MatMul)

inseconds

Naive GPU(MatTran)

inseconds

Proposed Methodology(MatMul)

inseconds

Proposed Methodology(MatTrans)

inseconds

64 0.1 0.15 0.04 0.06
128 0.3 0.35 0.04 0.06
256 0.7 0.8 0.05 0.075
512 1.2 1.5 0.05 0.075
1024 2 2.4 0.06 0.082

Figure 4. Speedup comparison for matrix size 64 by 64.

APPLIED ARTIFICIAL INTELLIGENCE 2119

there is an exponential increase in power of the matrix. Hence, the proposed
approach for matrix multiplication and transposition not only display the
larger improvement in performance over naive GPU approach, even it
shows increased speedup correspondingly with the increase in matrix power
exponentially.

Based on comparison obtained from Table 5 and the graphical repre-
sentation in Figure 6, the power of matrix has increased exponentially but
the speedup remained constant for naive GPU approach. Hence, it is clear
that, the matrix of 256 by 256 size with maximum exponential value for
matrix power 512 exhibit enormous improvement of 10 times speedup for
the proposed methodology as compared with the naive GPU kernel code.

As shown in Table 6 and Figure 7, along with greater performance
improvement over the naive GPU approach, the proposed methodology
for matrix multiplication and matrix transpose shows increased speedup
correspondingly with the increase in power of matrix exponentially. The

Table 4. Matrix exponentiation of size 128 by 128.

Size

Naive GPU(MatMul)

inseconds

Naive GPU(MatTran)

inseconds

Proposed Methodology(MatMul)

inseconds

Proposed Methodology(MatTrans)

inseconds

64 0.1 0.11 0.02 0.03
128 0.3 0.33 0.021 0.04
256 0.4 0.5 0.023 0.055
512 0.7 0.85 0.023 0.06

Figure 5. Speedup comparison for matrix size 128 by 128.

Table 5. Matrix exponentiation of size 256 by 256.

Size

Naive GPU(MatMul)

inseconds

Naive GPU(MatTran)

inseconds

Proposed Methodology(MatMul)

inseconds

Proposed Methodology(MatTrans)

inseconds

64 0.23 0.4 0.1 0.15
128 0.4 0.5 0.11 0.17
256 0.8 1.0 0.12 0.18

2120 G. KONNURMATH AND S. CHICKERUR

matrix of 512 by 512 size with maximum exponential value for the matrix
power 256 exhibit greater improvement of 12 times speedup for the
proposed methodology as compared with the naive GPU kernel code.

Figure 6. Speedup comparison for matrix size 256 by 256.

Table 6. Matrix exponentiation of size 512 by 512.

Size

Naive GPU(MatMul)

inseconds

Naive GPU(MatTran)

inseconds

Proposed Methodology(MatMul)

inseconds

Proposed Methodology(MatTrans)

inseconds

64 0.2 0.22 0.042 0.05
128 0.4 0.44 0.043 0.054
256 0.8 0.89 0.05 0.067
512 1.7 1.84 0.054 0.068

Figure 7. Speedup comparison for matrix size 512 by 512.

APPLIED ARTIFICIAL INTELLIGENCE 2121

Conclusion and Future Work

The implementation of the proposed methodology on GPUs with the combi-
nation of three techniques namely TensorFlow, InterPSS, and DVFS supports
the capability of supercomputing with relatively cheaper GPUs and from the
results we can analyze that the performance, power efficiency, and power
consumption of GPU application kernels are determined by the rate of
instruction issues by the GPU cores and the ratio of number of global memory
transactions to the total number of computation instructions by GPU mem-
ory. The proposed methodology is tested for dense matrices up to 512 by 512
size against the high powers of up to 256 that show reasonable tremendous
improvement in execution speed around 15%. TensorFlow’s flexible dataflow
architecture allows power users to achieve excellent performance and supports
automatic GPU placement, GPU kernels fusion, efficient GPU memory man-
agement, and scheduling that can be considered as a better alternative machine
learning technique for power optimization and speedy execution. Also, the
proposed approach includes many architectural performance benefits con-
fined to Nvidia GTX series GPUs. Also, pooling of DVFS technique with
TensorFlow engine and InterPSS allows reasonable saving of energy in
a more optimized way as compared with other energy saving mechanisms.
The combined methodology can be further extended for future research work
in designing energy efficient Green GPUs and implemented for different GPU
architectures.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

Ashish, M., and N. Khare. 2015. Analysis of DVFS techniques for improving the GPU energy
efficiency. Open Journal of Energy Efficiency 4 (4):77–86. doi:10.4236/ojee.2015.44009.

Bishwajit, D., V. Adhinarayanan, and W. Feng. 2018. GPU power prediction via ensemble
machine learning for DVFS space exploration. ACMDigital library ISBN: 978-1-4503-5761-6.

Chien, S. W. D.,Stefano Markidis, Vyacheslav Olshevsky, Yaroslav Bulatov, Erwin Laure,
Jeffrey S. Vetter. 2019. An evaluation of tensorflow performance in HPC applications,
arXiv:1903.04364v1 [cs.DC] March 11, 2019

Dong, L., S. Byna, and S. Chakradhar. 2011. Energy-Aware workload consolidation on GPU.
IEEE 1530-2016/11 © 2011. doi:10.1109/ICPPW.2011.25.

Hayri, A., G. Alptekin, J. P Gelas, and P. Ghodous. 2016. The impact of source code in software
on power consumption. International Journal of Electronic Business Management, Electronic
Business Management Society Taiwan, 14, pp.42–52. <hal-01496266>.

Hesham, H. M., A. S. Moussa., and I. Farag. 2017. Performance vs. Power and energy
consumption: impact of coding style and compiler. (IJACSA) International Journal of
Advanced Computer Science and Applications Volume 8 (Number 12).

2122 G. KONNURMATH AND S. CHICKERUR

https://doi.org/10.4236/ojee.2015.44009
https://doi.org/10.1109/ICPPW.2011.25

Khaled, M. A., A. M. El-Hosseini, and A. H. Ali. 2015. Dynamic power management techniques
in multi-core architectures: A survey study. Production and Hosting by Elsevier 2090–4479,
Volume 8, Issue 3. Ain Shams University.

Leon, V., G. Lentaris, E. Petrongonas, D. Soudris, G. Furano, A. Tavoularis, and D. Moloney.
2021. Improving performance-power-programmability in space avionics with edge devices:
VBN on Myriad2 SoC. ACM Transactions on Embedded Computing Systems (TECS)
20 (3):1–23. doi:10.1145/3440885.

Leon, V., S. Mouselinos, K. Koliogeorgi, S. Xydis, D. Soudris, and K. Pekmestzi. 2020.
A TensorFlow extension framework for optimized generation of hardware CNN inference
engines. MDPI Technologies 8 (1):1–15. doi:10.3390/technologies8010006.

Martin, A., P. Barham, et al., 2016. TensorFlow: A system for large-scale machine learning,
OSDI’16 Proceedings of the 12th USENIX(Advanced Computing Systems Association)confer-
ence on Operating Systems Design and Implementation, Savannah, GA, USA, 265–83. ACM
Digital library.

Martin, P. P., L. D. Giusti, and M. Naiouf. 2018, October. Are GPUs non-green computing
devices? Journal of Computer Science & Technology Volume 18 , Number 2.

Matteo, C., L. Vanzolini, and C. Mucci. 2015, March. Power-aware job scheduling on hetero-
geneous multicore architectures. IEEE Transactions on Parallel and Distributed Systems
26 Issue 3, Page(s): 868 - 877.

Mike, Z., and Q. Huang. 2017. InterPSS: A new generation power system simulation engine.
2017 Link: https, ResearchGate.

Nvidia CUDA C Programming Guide, version 3.1. 2007. NVIDIA corporation. Link: http://
developer.nvidia.com/object/cuda.html .

Nvidia CUDA Programming Guide, Nvidia, Santa Clara, CA, USA. 2011.
Peter Goldsborough , 2016, A Tour of TensorFlow, arXiv: 1610.01178v1 [cs.LG], October 1st.

https://www.tensorflow.org/guide/gpuhttps://www.nvidia.org
Phuong, T. Y., L. D. Young., and L. J. Gun. 2017. Impacts of optimization strategies on

performance, power/energy consumption of a GPU based parallel reduction. Journal of
Central South University Springer 24:2624–37.

Robert, B., N. Imam., and T. Mintz. 2016, December. Understanding GPU power: A survey of
profiling, modeling, and simulation methods. Journal, ACM Computing Surveys (CSUR)
49 (Issue 3). Article No. 41,pp 1–27.

Rui, P., M. Couto, J. Marco Couto, Rui Pereira, Francisco Ribeiro, Rui Rua, Jacome Cunha, Joao
Paulo Fernandes, . 2017. Energy efficiency across programming languages. Association for
Computing Machinery, ACM ISBN 978-1-4503-5525-4/17/10. doi:10.1145/3136014.3136031.

Sparsh, M., and S. Jeffrey. 2014, July. A survey of methods for analyzing and improving GPU
energy efficiency. ACM Computing Surveys Volume 47, Issue 2 . Article 19, Pages 1-23.

TOP500 Supercomputer Site. 2017. http://www.top500.org
Tyler, A., and G. Rong. 2016. Characterizing power and performance of GPU memory access.

IEEE 978-1-5090-3856-5/16, 2016. Pages 46–53.
Velasco-Montero, D., J. Femández-Bemi, R. Carmona-Gálán, and A. Rodríguez-Vázquez.

2019. On the correlation of CNN performance and hardware metrics for visual inference
on a low-cost CPU-based platform. International Conference on Systems, Signals and Image
Processing (IWSSIP) 249–54. doi:10.1109/IWSSIP.2019.8787329.

Xinxin, M., L. S. Yung, K. Zhao, and X. Chu. 2013. A measurement study of GPU DVFS on
energy conservation. ACMDigital Library ISBN: 978-1-4503-2458-8.

Xinxin, M., Q. Wang, and X. Chu, 2016. A survey and measurement study of GPU DVFS on
energy conservation, arXiv: 1610.01784v1 [cs.DC] 6.

APPLIED ARTIFICIAL INTELLIGENCE 2123

https://doi.org/10.1145/3440885
https://doi.org/10.3390/technologies8010006
http://developer.nvidia.com/object/cuda.html
http://developer.nvidia.com/object/cuda.html
https://www.tensorflow.org/guide/gpuhttps://www.nvidia.org
https://doi.org/10.1145/3136014.3136031
http://www.top500.org
https://doi.org/10.1109/IWSSIP.2019.8787329

	Abstract
	Introduction
	Background
	Experimental Methodology
	TensorFlow and InterPSS
	DVFS

	Experimental Setup
	Application Characterization
	Dense Matrix Multiplication
	Dense Matrix Transpose
	Experimental Profiling

	Evaluation Metrics

	Results and Discussion
	Power Aware Matrix Multiplication
	Power Aware Matrix Transpose
	Time Aware Model

	Conclusion and Future Work
	Disclosure statement
	References

