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Abstract 
 
This paper found upper and lower bounds on the expected nearest neighbor distance for 
distributions having unbounded supports (-∞,∞) and induced lower and upper bounds for logistic 
and Laplace distributions, as typical. Then we found the risk of nearest neighbor of their 
distributions. 

 

Keywords: Nearest neighbor classification, expected nearest neighbor distance, logistic 
distribution, Laplace’s distribution. 

 

1 Introduction 
 
The nearest neighbor rule was first studied by Fix and Hodges [1]. Cover and Hart [2] proved that 
�∗ ≤ �∞ ≤ 2�∗(1 − �∗) under certain conditions, where �∗ denotes the Bayes error (the minimum 
probability of error over all decision rules), and �∞ is the nearest neighbor risk in the infinite-sample 
limit. Cover [3] has shown that �� = �∞ + �(���) for the nearest neighbor classifier in the case 
one-dimensional bounded support, mixture density � ≥ � > 0 , and under some additional 
conditions, where ��  denotes the finite sample risk, and �  is the sample size. Kulkarni and 
Posner [4] studied the rate of convergence for nearest neighbor estimation in terms of the covering 
numbers of totally bounded sets. Evans et al. [5] derived an asymptotic moments of near neighbor 
distance distributions. Irle and Rizk [6] found an asymptotic evaluation of the conditional risk ��(�) 
(the probability of error conditioned on the event that � = � ) by using partial integration and 
Laplace’s method. Liitiäinen et al. [7] studied a boundary corrected expansion of the moments of 
nearest neighbor distributions. Rizk and Ateya [8] found lower and upper bounds for the risk of 
nearest neighbor of generalized exponential distribution.  
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In this paper, we find upper and lower bounds on the expected nearest neighbor distance for 
distributions having unbounded support � = (−∞,∞) for which we derive upper and lower bounds 
on the expected nearest neighbor distance of logistic and Laplace distributions as typical, and 
evaluate the bounds of the risk for their distributions. 
 
In pattern recognition if we have a random variable (�,�), such that � ∈ ��  is an observed pattern 
from which we wish to predict the unobservable class �. This class takes values in a finite set 
� = {1,2,...,�}. If the joint distribution of (�,�) is known, then the best classifier is the Bayes 
classifier, see [9,10]. In general the joint distribution of (�,�) will be unknown, and we have a 

training sequence �� = ���(�),�(�)�,��(�),�(�)�,… ,��(�),�(�)��  at our disposal, where patterns 

and corresponding classes are observed and we assume that 

���(�),�(�)�,��(�),�(�)�,… ,��(�),�(�)��, the data, stem from a sequence of independent identically 

distributed random pairs with the same distribution as (�,�). The nearest neighbor rule assigns 
any input feature vector to the class given by the label �′ of the nearest reference vector.  
 
The problem to be considered is the classification of a random variable � taking values in � =
{1,2} given a sample �  in � , with the goal of minimizing the finite-sample risk �� = �(� ≠ �′), 
where �  is a separable metric space equipped with metric �  which we denote as the pair 
(�,�).Define the nearest distance at time � as �� = �(�,�′). 
 

2 Bounds for the Expected Nearest Neighbor Distance 
 
In this section, we find upper and lower bounds for expected nearest neighbor distance for 
distributions having unbounded support � = (−∞,∞), compare [6].  
 

2.1 An Upper Bound on the Expected Nearest Neighbor Distance 
 
We use constants, −∞ < ��(�) ≤ 0 ≤ ��(�) < ∞ depending on �, to write  
 

��� = � � �(|� − �|> �)�
∞
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 = � � �(|� − �|> �)�
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��� = ��(�) + ��(�) + ��(�).                                                                                       (2.1) 

where, 
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��(�) = � � �(|� − �|> �)����(�)��.
∞

�

��(�)

��(�)

                                                                  (2.4) 

 
2.1.1 Bounding ��(�) and ��(�) 
 
We assume for the following that |� − �| has a finite moment generating function �(�,�) =

����|���|�, � ∈ � ,0 < �< 1. By Markov's inequality for any  0 < �< 1, we obtain: 

 

� �(|� − �|> �)�
∞

�

�� = � ����|���|> ����
�

∞

�

�� 

≤ � �(�,�)�
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, and�≥ 1, we have ∫ �(|� − �|> �)��� ≤ �� �
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.
∞
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It follows  
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�(�)��,                                                                                    (2.5) 
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�(�)��.                                                                                     (2.6) 

 
2.1.2 Bounding ��(�) 
 
From (2.4) we have 

��(�) = � � �(|� − �|> �)����(�)��
∞

�

��(�)

��(�)
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                                                     (2.7) 

 
where �(�,�) = −log�(|� − �|> �).Assume that the following inequality holds: 
There exists � > 0 such that for all � in the support of � and for all � > 0 
 

�(�,�) ≥ ���(�).                                                                                                                           (2.8) 
 
From this inequality, we obtain  
 

� � ����(�,�)�(�)���� ≤ � � ������(�)�(�)����
∞
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��(�)
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1

��
���(�) − ��(�)�.                                                                              (2.9) 

 
We can show that a sufficient condition for �(�,�) ≥ ���(�) is given by, see [6]: 
 

�(|� − �|≤ �) ≥ ���(�). 
 
Note that this second condition will always be violated for unbounded Support letting � tend to∞. 
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2.2 Deriving a Lower Bound 
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In the following sections we derive the upper and lower bounds for the expected nearest neighbor 
distance ��� for logistic and Laplace’s distributions. 
 

3 Bounds on the Expected Nearest Neighbor Distance for 
Logistic Distribution 

 

Let � have a probability density function�(�) =
�
�(���)

�

�����
�(���)

� �

� ,−∞ < � < ∞, where � the location 

parameter and �> 0 the scale parameter. We use the method in the previous section to find the 
upper bound for the logistic distribution. Now, without loss of the generality, we assume that �= 0. 
 

3.1 An Upper Bound for the Logistic Distribution 
 
Using the method in (2.1), we take  –��(�) = ��(�) > 0, for � ∈ �,�> 0. 
 
3.1.1 Bounding ��(�) and ��(�) 
 
Firstly, we evaluate �(�,�),i.e, we find the moment generating function of |� − �|. For � ∈ �,0 <
�< 1, we have 
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whereΓ gamma function.Hence, for �=
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It follows 
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For  ��(�) = 2�log�, it follows 
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we note that �
�

��

���
�

��

� → 1 for large �. 

 
3.1.2Bounding ��(�) 
 
From (2.7) we have 

��(�) = � � ����(�,�)�(�)����,                                                                               
∞

�

��(�)

��(�)

(3.2) 

 
where, 
 

�(�,�) = −log�(|� − �|> �) ≥ �(|� − �|≤ �) = �(� + �) − �(� − �).               (3.3) 
 
Then we need good asymptotic estimates for �(� + �) − �(� − �), as � → 0, By using the Taylor 
expansion for the functions �(� + �) and �(� − �) we obtain  
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since �(�)(�) ≥ 0 for �= 0,2,4,… , then we obtain �(�,�) ≥ 2��(�).  Hence 
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where –��(�) = ��(�) > 0, and ��(�) = 2�log�. 
 
Substituting (3.1) and (3.4) in (2.1), we obtain the upper bound of ��� for the logistic distribution. 
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3.2Alower Bound for the Logistic Distribution 
 
Appling the method in section 2.2, we have  
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Now, we can find an upper bound on the finite sample risk ��in terms of the expected nearest 
neighbor distance for logistic distribution by using the following result: 
 
If, for some �� > 0 and0 < �≤ 1 we have |�(�) − �(�′)|≤ ���(�,�′)�, for all�,�′ ∈ �, then for 
some suitable � > 0independent of �, 
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where� = ���{��,��
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This result is due to Irle and Rizk [6], for which they found an upper bound on the finite sample risk 

��in terms of the expected nearest neighbor distance. Putting�=
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4 Bounds on the Expected Nearest Neighbor Distance for 
Laplace’s Distribution 

 
We look at ��  in the case of the Laplace’s distribution with probability density function �(�) =
�

��
�
�
|�|

� , where � > 0,−∞ < � < ∞. 

 

4.1 An Upper Bound for the Laplace’s Distribution 
 
Using the method in 2.1, we take  –��(�) = ��(�) > 0, for � ∈ �,�> 0. 
 
4.1.1 Bounding ��(�) and ��(�) 
 
Now, we evaluate �(�,�). For � ∈ �,0 < �< 1, we have 
 

�(�,�) = ���|���|≤ ���|�|��|�| 
 

  = ��|�|�
1

2�

∞

�∞

�
�
|�|

� ����� 

= 
��|�|

2�
�� �

��
�

�
���

��+� �
���

�

�
���

�� 
∞

�

�

�∞

� 

  = 
��|�|

2�
�

�

(1 + ��)
+

�

(1 − ��)
�=

��|�|

(1 − ����)
 . 

 

Hence for�=
�

��
<

�

�
, we obtain 

 

� �
�

��
,��

�

≤
�
|�|
�

���
��

�� ��
� = �

|�|

� �1 +
��

�������
�

. Then 

��(�) + ��(�) ≤ 4  �1 +
��

4�� − ��
�

�

� �
�

�
1

2�
�
�
�

���
∞

��(�)

 

 =
2

�
�1 +

��

4�� − ��
�

�

� �
���

�

�
�
�

�
�

∞

��(�)

�� 

= 4�1 +
��

4�� − ��
�

�
�
���(�)�

���

��
�

(2 − �)
 

 

For ��(�) = log�
��

���,  it follows 
 

��(�) + ��(�) ≤
4  

2 − �
�1 +

��

4�� − ��
�

�
1

�
= � �

1

�
�,                                                (4.1) 

 

since  �1 +
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→  1  as � → ∞. 
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4.1.2 Bounding ��(�) 
 
From (2.7) we have 
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where �(�,�) = −log�(|� − �|> �), and �(�) even function. Similarly, as in the previous section 
we have �(� + �) − �(� − �) ≥ 2��(�),as � → 0. Then we obtain �(�,�) ≥ 2��(�). Hence 
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where ��(�) = log�
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���. 
 
From (4.1), (4.3), we obtain the upper bound of ��� for Laplace distribution in the form: 
 

��� ≤
4  

(2 − �)�
�1 +

��

4�� − ��
�

�

+  
log�

��

���

2�
.                                                            (4.3) 

 
Thus 
 

�� ≤ �∞ +  � ��
��
�

+
log�

��

���

2�
+
��
�

+
log�

��

���

2�
�,                                                               (4.4) 

 

where, �� =
�  

(���)
�1 +

��

�������
�
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4.2Alower Bound for the Laplace’s Distribution 
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5 Conclusion 
 
We found upper and lower bounds on the expected nearest neighbor distance for distributions 
having unbounded supports� = (−∞,∞), and induced lower and upper bounds for logistic and 
Laplace distributions, as typical. Then we found the risk of nearest neighbor of their distributions. 
Note that, from (3.5),(3.6) and (4.3),(4.5) the lower and upper bounds of the expected nearest 
neighbor distance are different in constants, extra term depend on � and very small for large �,    

and the term log�  and log�
��

���  respectively. That is, for the distributions have exponentially 
decaying tails there is an additional logarithmic term over the rates for compact support. This 
example illustrates that the expected nearest neighbor distance depends on the tails of the 
distribution. 
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