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Abstract 
 

In this paper, we derive a new quarter-step hybrid block method for the solution of first-order 
Ordinary Differential Equations (ODEs). We employ the approach of interpolating the power 
series and collocating the differential system within a quarter-step interval of integration. The 
evaluation is carried out at off grid points within the step of the method to produce various 
discrete schemes to form our block method. The basic properties of the new hybrid block 
method were further investigated. The new method was also tested on some problems and the 
results obtained were found to compete favorably with those of the existing ones. 
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2010 AMS Subject Classification: 65L05, 65L06, 65D30. 
 

1 Introduction 
 
In this paper, we consider the numerical solution of first-order ordinary differential equations of the 
form, 

0 0' ( , ), ( ) ,y f x y y x y a x b                                                        (1) 
 

where 0: , , ,m m mf y y f   is assumed to satisfy Lipchitz condition. 

 

Most of the problems in Sciences, Medicine, Agriculture, e.t.c. are modeled in the form of (1), the 
few that are modeled in higher order are first reduced to systems of first order before appropriate 
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method of solution is applied, [1]. Scholars have proposed different numerical methods for the 
solution of (1), these methods can be in the form of single step or multistep methods. Multistep 
method can be in the form of k-step method or hybrid method. Hybrid method has been reported to 
have circumvented Dahlquist barrier condition through the introduction of off step points, though 
this method is difficult to develop but it gives better approximation than the k-step method 
especially when the method is of low step-length, [2]. Hybrid method is equally reported to give 
better stability condition especially when the problem is stiff or oscillatory, [3], [4] and [5]. 
 
In this paper, we develop a new method called the quarter-step method which gives results at a 
non-overlapping interval. The paper is organized as follows; introduction has been given in section 
one, section two discusses the derivation of the new method, in section three we analyze the basic 
properties of the method derived. Section four considers the numerical experiments and the 
discussion of results. Finally, section five gives conclusion and necessary recommendations. 
 

Theorem 1 [1]: Let ),( yxf  be defined and continuous for all points ),( yx  in the region D  

defined by ,a x b y      , a and b  finite, and let there exists a constant L  such that, 

for every 
yyx ,, such that ),(),( yxandyx are both inD ; 

 

  yyLyxfyxf ),(),(  

 

Then, if 0y  is any given number, there exists a unique solution )(xy  of the initial value problem 

(1), where ( )y x  is continuous and differentiable for all ( , )x y in D . 

 

2 Methodology 
 
2.1 Derivation Technique of the Quarter-step Method 
 
Consider the power series approximate solution of the form; 
 

1

0

( )
r s

j
j

j

y x a x
 



                                                                                                     (2) 

 
where r and s are the number of interpolation and collocation points respectively. The first 
derivative of (2) is given by, 
 

1
1

1

'( )
r s

j
j

j

y x ja x
 





                                                                                              (3) 

 

where ja   for 0(1)7j   and ( )y x is continuously differentiable. Let the solution of (1) be 

sought on the integration interval  ,a b  with a constant step-size h , defined by, 1n nh x x  , 

0,1,...,n N   
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Substituting equation (3) in (1) gives, 
 

1
1

0

( , )
r s

j
j

j

f x y ja x
 





                                                                                             (4) 

 

We interpolate equation (2) at point , 0n sx s   and collocate equation (4) at points 

1 1 1 5 1
, 0, , , , ,

24 8 6 24 4
n rx r

 
   

. This leads to the following system of equations,  

 

XA U                                                                                                                   (5) 
 

where  

0 1 2 3 4 5 6 7[ ]TA a a a a a a a a
 

 

1 1 1 1 5 1

24 12 8 6 24 4

T

n n
n n n n n n

U y f f f f f f f
     

 
  

 
 

and  
 

2 3 4 5 6 7

2 3 4 5 6

2 3 4 5 6
1 1 1 1 1 1

24 24 24 24 24 24

2 3 4 5 6
1 1 1 1 1 1

12 12 12 12 12 12

2 3 4 5 6
1 1 1 1 1 1

8 8 8 8 8 8

1

6

1

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3

n n n n n n n

n n n n n n

n n n n n n

n n n n n n

n n n n n n

n n

x x x x x x x

x x x x x x

x x x x x x

x x x x x x

X x x x x x x

x x

     

     

     





2 3 4 5 6
1 1 1 1 1

6 6 6 6 6

2 3 4 5 6
5 5 5 5 5 5

24 24 24 24 24 24

2 3 4 5 6
1 1 1 1 1 1

4 4 4 4 4 4

4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

n n n n

n n n n n n

n n n n n n

x x x x

x x x x x x

x x x x x x

    

     

     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

Solving (5), for the ' , 0(1)7ja s j   and substituting back into (2) gives a linear multistep hybrid 

method of the form:  
 

0 1 1 1 1

24 24 12 12

0

1 1 1 1 5 5 1 1

8 8 6 6 24 24 4 4

( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

n
n n

n

n n n n

t f t f t f

y t t y h
t f t f t f t f

  


   

 

   

  
 

      
  

 (6) 

 
where 
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0

7 6 5 4 3 2
0

7 6 5 4 3 2
1

24

7 6 5 4 3 2
1

12

1

1
(3981312 4064256 1693440 370440 45472 3087 105 )

105

1
(7962624 7741440 2999808 584640 58464 2520 )

35

1
(19906560 18385920 6628608 1161720 98280 3150

35

t t t t t t t

t t t t t t

t t t t t t











      

      

     

7 6 5 4 3 2
1

8

7 6 5 4 3 2
1

6

7 6 5 4 3 2
5

24

1

4

)

1
(79626240 69672960 23417856 3749760 284480 8400 )

105

1
(19906560 16450560 5177088 773640 55440 1575 )

35

1
(7962624 6193152 1838592 262080 18144 504 )

35

t t t t t t

t t t t t t

t t t t t t









      

     

      

7 6 5 4 3 21
(3981312 2903040 822528 113400 7672 210 )

105
t t t t t t























      
                            (7) 

   

where ( )nt x x h  . Evaluating (6) at 
1 1 1 1 5 1
, , , , ,

24 12 8 6 24 4
t

 
   

  gives a discrete block 

scheme of the form: 
 
 

(0) ( ) ( )m n n mA hd hb  Y Ey f y F Y                                                                (8) 

 
where 

1 1 1 1 5 1 5 1 1 1 1

24 12 8 6 24 4 24 6 8 12 24

,

T T

m n n
n n n n n n n n n n n
y y y y y y y y y y y y

          

   
    

   
Y y   

 

1 1 1 1 5 1 5 1 1 1 1

24 12 8 6 24 4 24 6 8 12 24

( ) , ( )

T T

m n n
n n n n n n n n n n n
f f f f f f f f f f f f

          

   
    

   
F Y f y

 
 

(0)

1 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 1
,

0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 1

A

   
   
   
   

    
   
   
   
   

E ,       

19087
0 0 0 0 0

1451520

1139
0 0 0 0 0

90720

137
0 0 0 0 0

10752
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0 0 0 0 0

11340

3715
0 0 0 0 0

290304

41
0 0 0 0 0

3360
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2713 15487 293 6737 263 863

60480 483840 11340 483840 60480 1451520

47 11 83 269 11 37

756 30240 5670 30240 3780 90720

27 387 17 243 9 29

448 17920 420 17920 2240 53760

58 16 9 29 2 1

945 945 1120 3780 945 2835

725 2125 125 387

12096 96768 2268

b

  

 

 




5 235 275

96768 12096 290304

9 9 17 9 9 41

140 1120 210 1120 140 3360

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
It is important to note that the quarter-step method has 6 function evaluations per step. 

 
3 Analysis of Basic Properties of the Quarter-step Method 
 
3.1 Order of the Quarter-step Method 
 

Let the linear operator  ( );L y x h  associated with the block (8) be defined as, 

 

  (0)( ); ( ) ( )m n n mL y x h A Y Ey h df y h bF Y                                  (9) 

 
where   is the order of the differential equation. Expanding (9) using Taylor series and comparing 

the coefficients of h  gives,  
 

  2 1 1
0 1 2 1( ); ( ) '( ) ''( ) ... ( ) ( ) ...p p p p

p pL y x h c y x c hy x c h y x c h y x c h y x 
           (10) 

 

Definition 3: The linear operator L  and the associated linear multistep method (6) are said to be 

of order p if 0 1 2 1... 0 0p pc c c c and c       , see [6]. 1pc   is called the error constant and 

the local truncation error is given by, 
 

( 1) ( 1) 2
1 ( ) ( )p p p

n k p nt c h y x O h  
  

                                                                     
(11) 

 

For our quarter-step method, 
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              (12) 

Expanding (12) in Taylor series gives, 
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    (13) 

 

Equating the coefficients of the Taylor series expansion to zero yields, 
  

 
 

0 1 2 3 4 5 6

7

0

1.48( 011) 9.91( 012) 1.37( 011) 7.23( 012) 6.58( 011) 2.17( 010)
T

c c c c c c c

c

      

      
  

 
Therefore, the quarter-step method is of uniform order 6. 

 
3.2 Zero Stability of the Quarter-step Method 
 
Definition 4 : The block integrator (8) is said to be zero-stable, if the roots , 1,2,...,sz s k  of the 

first characteristic polynomial ( )z  defined by 
(0)( ) det( )z z  A E  satisfies 1sz   and every 

root satisfying 1sz   have multiplicity not exceeding the order of the differential equation, see [6]. 

Moreover, as 0,h  ( ) ( 1)rz z z     where   is the order of the differential equation, r  is 

the order of the matrices 
(0) andA E , see [7] for details.  

 
For our quarter-step method, 
 

1 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 1
( ) 0

0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 1

z z

   
   
   
   

     
   
   
   
   

                                   (14) 

 
5

1 2 3 4 5 6( ) ( 1) 0, 0, 1z z z z z z z z z           . Hence, the quarter-step method is 

zero-stable. 
 

3.3 Consistency of the Quarter-step Method 
 
The quarter-step method is consistent since it has order 6 1p   . 
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3.4 Convergence of the Quarter-step Method 
 
The quarter-step method is convergent by consequence of Dahlquist theorem below. 
 
Theorem 2 [8]: The necessary and sufficient conditions that a continuous LMM be convergent are 
that it be consistent and zero-stable.  
 

3.5 Region of Absolute Stability of the Quarter-step Method 
 

Definition 5 : Region of absolute stability is a region in the complex z  plane, where z h . It is 

defined as those values of z  such that the numerical solutions of   'y y   satisfy 

0jy as j    for any initial condition, see [9]. 

 

We shall adopt the boundary locus method to determine the region of absolute stability of the 
quarter-step method. This is achieved by substituting the test equation, 
 

 'y y                                                                                             (15) 

 

 into the block formula gives (8). This gives, 
 

(0) ( ) y ( ) ( ) ( )m n n mw w h y w h w   A Y E D BY                                     (16) 

Thus, 

      

(0) ( ) ( )
( )

( ) ( )
m n

n m

Y w y w
h w

y w Y w

 
  

 

A E

D B
                                                 (17) 

 

since h  is given by 
ih h and w e   . Equation (17) is our characteristic/stability polynomial. 

For the new quarter-step method, equation (17) is given by, 
 

6 6 5 5 6 5

4 6 5 3

16911563 5947 96010940393 6233
( )

13376773560729600 9364045824000 2140283769716736000 73156608000

772779871 907343 79135273807

116117826048000 146313216000 37157704335

h w h w w h w w

h w w h

   
      

   

 
   

 

6 5

2 6 5 6 5 6 5

3749

3600 15052800

155480573 17561 1 179

20479334400 2822400 8 1120

w w

h w w h w w w w

 
 

 

   
        

   

 (18)  

 
This gives the region of absolute stability shown in the figure below. 
 

From Fig.  1, the RAS is L-stable because it contains the left-half of the complex plane and the 
stability polynomial in (18) tends to zero as .w   Matlab software was used to plot the RAS. 
 

4 Numerical Experiments 
 
We shall apply the newly developed quarter-step method on some first-order initial value problems 
which have appeared in literature and compare the results with solutions from some methods of 
similar derivation. The following notations shall be used in the tables below; 
 

ERR - |Exact Solution-Computed Solution| 
ERJ - Error in [10] 
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4.1 Numerical Examples 
 
Problem 1  
 

Consider the ODE 
 

' , (0) 0, 0 1, 0.1y x y y x h                                                (19) 

 

which has the exact solution, 
 

  ( ) 1xy x x e                                                                              (20) 
 

Problem 2  
 

Consider the ODE, 
 

' , (0) 1, 0 1, 0.1y xy y x h                                                     (21) 

 

with the exact solution, 

  
21

2( )
x

y x e                                                                 (22) 

 

 
Fig. 1. Showing the region of absolute stability of the quarter-step method 
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Table 1. Showing the results for problem 1 
 

x Exact solution                   Computed solution                ERR ERJ 
0.10 0.00483741803596 0.00483741803596 1.0899(-14) 1.7443(-11) 
0.20 0.01873075307798 0.01873075307798 3.6577(-14) 1.5786(-11) 
0.30 0.04081822068172 0.04081822068172 4.4761(-14) 1.4283(-11) 
0.40 0.07032046035649 0.07032046035649 6.1209(-14) 1.2924(-11) 
0.50 0.10653065971263 0.10653065971263 6.1209(-14) 1.1694(-11) 
0.60 0.14881163609403 0.14881163609403 7.0592(-14) 1.0581(-11) 
0.70 0.19658530379141 0.19658530379141 7.9268(-14) 9.5739(-12) 
0.80 0.24932896411722 0.24932896411722 8.3601(-15) 8.6613(-12) 
0.90 0.30656965974060 0.30656965974060 9.4146(-15) 7.8396(-12) 
1.00 0.36787944117144 0.36787944117144 9.7071(-15) 7.0906(-12) 

 
 Table 2. Showing the results for problem 2 

 
x Exact solution Computed solution                ERR ERJ 
0.10 1.005012520887401 1.005012520887400 1.2473(-13) 1.6554(-11) 
0.20 1.020201340026755 1.020201340026753 2.4989(-13) 4.3981(-11) 
0.30 1.046027859908716 1.046027859908711 4.0149(-13) 7.8451(-11) 
0.40 1.083287067674958 1.083287067674951 5.7196(-13) 1.2662(-11) 
0.50 1.133148453066826 1.133148453066819 7.5116(-13) 1.9709(-10) 
0.60 1.197217363131810 1.197217363131801 9.2698(-13) 3.0180(-10) 
0.70 1.277621313204886 1.277621313204855 3.0572(-12) 4.5771(-10) 
0.80 1.377129776433595 1.377129776433564 3.1135(-12) 6.8954(-09) 
0.90 1.499302500056767 1.499302500056705 6.1995(-12) 1.0336(-09) 
1.00 1.644872127070013 1.644872127069923 6.6348(-12) 1.5435(-09) 

 
4.2 Discussion of Results 
 
We considered two numerical examples in this paper. The two problems were earlier solved by the 
authors in [10], where they applied an order seven hybrid block method. We applied a new order 
six quarter-step hybrid block method to solve these two problems and from the results obtained, 
the quarter-step method performed better than the existing method with which we compared our 
results. It was also observed that our uniform order six method performed better than the order 
seven method developed by authors in [10]. 
 

5 Conclusion 
 
We have developed a new method called a quarter-step method for the solution of first-order 
ordinary differential equations. The method was applied on some problems and from the results 
obtained it shows that the method is more computationally reliable than the existing one. The 
method was also found to be zero-stable, consistent and convergent. This method is therefore 
recommended for the solution of problems of the form (1). 
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