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ABSTRACT 
 

In this paper we have obtained vacuum solutions of the plane symmetric space-time in )(Rf
gravity. The general solutions of the field equations of plane symmetric space-time have been 
obtained under the assumption of special form of deceleration parameter. The physical and 
geometrical aspect of the model is also discussed. 
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1. INTRODUCTION 
 
Among the various modification of general 
relativity, the f(R) theory of gravity is treated most 
seriously during the last decade. The f(R) theory 
of gravity has also been helpful in describing the 

evolution of the universe. It provides a natural 
gravitational alternative to dark energy. Carroll [1] 
explained the presence of a late time cosmic 
acceleration of the universe in f(R) gravity. 
Bertolami [2] have proposed a generalization of 
f(R) modified theories of gravity by including in 
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the theory an explicit coupling of an arbitrary 
function of the Ricci scalar R with the matter 

Lagrangian density mL . As a result of the 

coupling, the motion of the massive particles is 
non-geodesic, and an extra force, orthogonal to 
the four-velocity, arises. The connections with 
Modified Newtonian Dynamics (MOND) and the 
Pioneer anomaly were also explored. This model 
was extended to the case of the arbitrary 
couplings in both geometry and matter by Harko 
[3]. The astrophysical and cosmological 
implications of the non-minimal coupling matter-
geometry coupling were extensively investigated 
by Harko [4]. The Palatini formulation of the non-
minimal geometry-coupling models was 
considered by Harko [5]. Harko & Lobo [6] 
proposed a maximal extension of the Hilbert-
Einstein action, by assuming that the 
gravitational Lagrangian is given by an arbitrary 
function of the Ricci scalar Rand of the matter 

Lagrangian
mL . The f (R) gravity provides a very 

natural unification of the early-time inflation and 
late-time acceleration. It describes the transition 
from deceleration to acceleration in the evolution 
of the universe [7,8]. Over the past few years, 
Many works are available in literature 
[9,10,7,3,11,12,13]. The general schemes for 
modified gravity reconstruction from any realistic 
FRW cosmology have been discussed by Nojiri 
and Odintsov [14]. It seems that f (R) gravity 
models pass all known observational local test 
currently [15,16,17,1819,20,21,22,23,24,25,26] 
have studied anisotropic models in f (R) theory. 
Cappozziello [27], Felice & Tsujikawa [28], Zhai 
& Liu [29] have studied various aspects of f (R) 
theory of gravity in detail. Recently, Singh [30] 
have studied Functional form of f (R) with power-
law expansion in anisotropic model.  
 
These are the motivations to consider f(R) theory 
of gravity by large number of researchers. In this 
paper we have considered the plane symmetric 
space-time in f(R) gravity. The general solutions 
of the field equations of plane symmetric space-
time have been obtained under the assumption 
of special form of deceleration parameter. The 
physical and geometrical aspects of the model 
are also discussed. 
 

2. f(R) THEORY OF GRAVITY 
 
We know that the )(Rf  theory of gravity is the 

generalization of general relativity. The action for

)(Rf  theory of gravity is represented by  

 

( ) xdLRf
G

gS m

4

16

1








+−= ∫ π

. (2.1) 

 

Here )(Rf   is a general function of the Ricci 

scalar Rand mL  is the matter Lagrangian. One 

should note that above action is obtained just by 

replacing R  by )(Rf in the standard Einstein-

Hilbert action expression.  
 
Now, by varying the action given by equation 

(2.1) with respect to the metric ( µνg ), we get the 

corresponding field equations of f(R) gravity as 
 

( ) ( ) µννµµνµν gRFgRfRRF +∇∇−− )(
2

1 □ ( ) µνκ TRF = ,   (2.2) 

 

where ( ) dRRdfRF /)(= , □ µ
µ∇∇≡ , µ∇ is the 

covariant derivative, µνT is the standard matter 

energy-momentum tensor derived from the 

Lagrangian mL and )/8( 4
cGπκ = is the 

coupling constant in gravitational units. 
 
Now contracting the field equations (2.2), we get  
 

( ) ( ) 32 +− RfRRF □ ( ) TRF κ=    (2.3) 

 

and in vacuum (i.e. for 0=T ), we have 

 

( ) ( ) 32 +− RfRRF □ ( ) 0=RF        (2.4) 

 
From equation (2.4), we get  
 

( )
( )

2

3

2
+=

RRF
Rf □ ( )RF               (2.5)  

 
The equation (2.5) gives an important 

relationship between )(Rf  and ( )RF  which 

will be used to simplify the field equations and to 

evaluate )(Rf  also. 

 

3. METRIC AND THE FIELD EQUATIONS 
 
In view of the importance of the plane symmetry, 
we consider the line element in plane symmetric 
form [31,32,33] as 

 
2222222 )( dzBdydxAdtds −+−=

, 
 (3.1)   
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where A  and B  are functions of the cosmic time 
t only. 
 
The Ricci scalar for the line element (3.1) has 
value 
 









+++−=

AB

BA

A

A

B

B

A

A
R

&&&&&&&

222
2

2

,        (3.2)  

 
where overhead dot (

.
) represents derivative with 

respect to time t. 
 
Using equation (2.5) in the vacuum field 

equations (2.2) (i.e. for 0=T ), we have 

 

( )[ −RRF
4

1
□ ( )]RF

( ) ( )

µν

νµµν

g

RFRRF ∇∇−
= .  (3.3) 

 
Since the metric (3.1) depends only on t, one can 
view (3.3) as a set of differential equations for

)(tA , )( tB  and )(tF .  

 
It follows from equation (3.3) that the 
combination  
 

( ) ( )

µµ

µµµµ

µ
g

RFRRF
K

∇∇−
≡               (3.4) 

 
is independent of the index µ and hence 

0=− νµ KK for all µ and v. 

 

Here µK  is just a notation for the traced 

quantity. 
 

The field equations in )(Rf  gravity for the 

metric (3.1) with the help of equation (3.4) 
  

[for ,0,0 2010 =−=− KKKK  and

030 =− KK  respectively] are given by     
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022 =+−−
F

F

BF

FB

AB

BA

A

A &&&&&&&&

    ,               (3.6) 

 
where overhead dot (

.
) denotes derivative with 

respect to time t. 

4. SOLUTIONS OF THE FIELD 
EQUATIONS 

 
The field equations (3.5) and (3.6) are two non-
linear differential equations with three unknowns

A , B and F . In order to solve this system 
completely, and in order to get a model 
consistent with present day observations [q 
decreases from +1 to -1 for evolution of the 
universe] , we motivated to  use a special form of 
deceleration parameter defined by [34,35] as 
 

α

α

aa

aa
q

+
+−=−=

1
1

2
&

&&
,                  (4.1)  

 

where 0>α is a constant and a  is scale factor 

of the universe.  
 
After solving equation (4.1) one can obtain the 

mean Hubble parameter H  as 
 

)1( α−+== ak
a

a
H

&
,                       (4.2) 

 

where 0>k  is a constant of integration. 

 
On integrating equation (4.2), we obtain the 
mean scale factor as  
 

αα 1)1( −= tk
ea .                             (4.3) 

 

In view of space time (3.1), the spatial volume V
and   average scale factor a will be 

 

BAV 2= and
3/12 )( BAa =
           

 (4.4) 

 

The mean Hubble parameter H  will be 
 

( )zyx HHH
a

a
H ++==

3

1&
,         (4.5) 

 

where
B

B
H

A

A
HH zyx

&&

=== , are the 

directional Hubble parameters in the directions of 
yx , and z  axes respectively.   

 
Now, subtracting equation (3.6) from equation 
(3.5), we get 
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After solving equation (4.6), one can write the 

metric functions A  and B explicitly as 
 









= ∫ Fa

dtc
acA

3

13/1

2
3

exp  ,                  (4.7)  

 









−= ∫

−

Fa

dtc
acB

3

13/2

2
3

2
exp  ,            (4.8) 

where 1c and  2c  are constants of integration. 

 
Now, we use the power-law to solve the integral 
part in the above equations. The power-law 
relation between scale factor and scalar field has 
already been used by Johri and Desikan [36]. 
Uddin [37], Sharif & Shamir [38] have established 

a result in the context of )(Rf gravity which 

shows that 
maF ∝ .  

 
Thus, using power-law relation between F and a, 
we have 
 

m
alF =  ,                                                (4.9) 

 
where l is the constant of proportionality and m  

is any integer. 
 
Using equations (4.3) and (4.9) for 

2,1 == αk and 2−=m  in the equations 

(4.7) and (.4.8), we obtain the scale factors as  

 

( ) 







−−= −
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1
2112

1

23/1
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3

exp)1( tt
e

l

c
ecA  , (4.10) 
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3

2
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e
l

c
ecB  .   (4.11)  

 

where 1c and  2c  are constants of integration and 

l is the constant of proportionality. 

 

4.1 Some Physical Properties 
 
Using equations (4.10) and (4.11), the directional 
Hubble parameters in the directions of x, y and z 
-axis are found to be 
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The mean Hubble parameter H is found to be 
 

)1( 2

2

−
=

t

t

e

e
H  .                                        (4.14) 

 
Using equations (4.10) and (4.11) in equation 

(4.4), the volume V  of the universe is given by  

 

( )2

3
2 1−= teV .                                         (4.15) 

 

The expansion scalar H3=θ  is given by 

 

)1(

3
2

2

−
=

t

t

e

e
θ .                                         (4.16) 

 

The mean anisotropy parameter ∆ of the 
expansion is define as 
 

23
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1
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where ( )3,2,1=iH i represent the directional 

Hubble parameters. 
 

The anisotropy parameter ∆ of the expansion is 
found to be   
 

t
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The shear scalar is define as 
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The deceleration parameter is define as 

1
1

−







=

Hdt

d
q  and found to be  

  

1
2
2

−=
t

e
q .                                            (4.19)   

 
Using equations (4.10) and (4.11) in equation 
(3.2), the Ricci scalar for Bianchi type-I model is 
given by 
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−

+
=

)1(9
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2/32
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Using equation (2.5), we obtain the function of  

Ricci scalar i.e. )(Rf as 

 

( )
( ) ( )[ ]Relel

e
Rf

tt

t

222

32
126

12

1
)( −+−

−
= .  (4.21)   

 

5. DISCUSSION 
 
(i) From Fig. 1, one can observe that the spatial 

volume  V  vanishes at 0=t . It expands 

exponentially as time t increase and becomes 
infinitely large as ∞→t . 

 
From Fig. 2, it is observed that the expansion 

scalar θ  starts with infinite value at 0=t and 

then rapidly becomes constant after some finite 
time. 
 

From Fig. 3, it is observed that anisotropy ∆  
increases as time increases and then quickly 
decreases to zero after some time and remains 
zero after some finite time. Hence, the model 
reaches to isotropy after some finite time which 
matches with the recent observation as the 
universe is isotropic at large scale. 
 

The deceleration parameter q  varies from 1+  

to 1−  as shown in above Fig. 4). The 
deceleration parameter q is in the range 

5.01 ≤≤− q  (shaded region in the Fig. 4). 

 

1 2 3

1

2

3

V

t

 
Fig. 1. The variation of   V vs. t   for 

.2,1 == αk
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Fig. 2. The variation of θ vs. t   for 

.2,1 == αk
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Fig. 3. The variation of ∆ vs. t for  

.2,1 == αk
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Fig. 4. The variation of  q  vs. t  for .2=α  

 

6. CONCLUSION 
 

(i)  It should be noted that the solutions given 
by equations (4.10) & (4.11) are different to 
the solutions obtained by Sharif & Shamir 
[38],whereas, they are similar to the 
solutions obtained  by Reddy . 

(ii)  It is interesting to observe that, in this 
case, we get, the deceleration parameter q 

in the range 5.01 ≤≤− q which matches 

with the observations made by Riess and 
Perlmutter and the present day universe is 
undergoing accelerated expansion. It also 
shows that the universe accelerates after 
an epoch of deceleration. 

(iii)  This idea can be explored much in the 
forthcoming papers. 
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