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ABSTRACT 
 

The main concern of present study is to investigate the MHD stagnation flow past a porous rotating 
disk in the presence of the velocity slip condition. The boundary-layer governing partial differential 
equations (PDEs) are transformed into highly nonlinear coupled ordinary differential equations 
(ODEs) consist of the momentum and energy equations using similarity solution. The velocity 
profiles in radial, tangential and axial directions and temperature distribution are obtained via a semi 
analytical/numerical method, called Homotopy Analysis Method (HAM). An excellent agreement is 
observed between some of the obtained results of the current study and those of previously 
published studies. The influences of physical flow parameters such as magnetic interaction 

parameter , slip factor ( )γ , rotation strength parameter ( )ω , and suction parameter ( )sW on 

the all fluid velocity components, temperature distribution as well as the skin friction coefficients and 
the rate of heat transfer are examined and analyzed. This simulation presents the feasibility of using 
magnetic rotating disk drives in novel nuclear space propulsion engines. 

( )M
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NOMENCLATURE 
 

Constant parameter a  
External uniform magnetic field  B  
Constant magnetic flux density  

0
B

 
Specific heat at constant pressure  

p
c

 
Self-similar radial velocity F  
Self-similar tangential velocity G  
Self-similar axial velocity H  
Thermal conductivity  k  
Pressure  p

 
Self-similar pressure P  
Stagnation pressure 

0
p

 
Radial direction in cylindrical polar coordinates r  
Fluid temperature  T  
Velocity component in the radial direction  u  
External flow velocity 

e
u

 
Velocity component in the tangential direction  v  
Velocity component in the axial direction  w  
Uniform suction 

0
w

 
Normal direction in cylindrical polar coordinates z  

Dimensionless parameters 

Magnetic interaction parameter ( )2

0
B aσ ρ  M  

Prandtl number ( )p
c kµ  Pr  

Suction parameter ( )0
w aν  sW

 

Rotation strength parameter ( )aΩ  
ω  

Slip factor ( )( )2 v vaσ ξ ν σ −   
γ

 

 
Greek symbols 

A scaled boundary-layer coordinate η  
Mean free path ξ

 
Self-similar temperature θ  
Dynamic viscosity  µ  
Kinematic viscosity  ν  
Density  ρ  
Electrical conductivity  σ  
Tangential momentum accommodation coefficient 

v
σ

 
Tangential direction in cylindrical polar coordinates φ  
Angular velocity of the disk  Ω  

Subscripts 
Condition of the wall w  
Condition of the free steam ∞  
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1. INTRODUCTION 
 
One of the most important fluid mechanics 
classic problems that attracted many attentions 
in several industrial and engineering processes 
such as rotating machinery, lubrication, 
oceanography and computer storage devices is 
the problem of flow over a rotating disk. Von 
Karman [1] was the first one who studied the 
hydrodynamic flow over an infinite rotating disk. 
In this study, he introduced his famous 
appropriate transformations, giving rise to 
ordinary differential equations that are a reduced 
form of the governing partial differential 
equations. The exact solution results for the heat 
transfer problem of a rotating disk with fluid flow 
around it were demonstrated by Shevchuk and 
Buschmann [2]. Attia [3] presented the laminar 
steady flow of an incompressible viscous fluid 
past a rotating disk with an infinite expansion in 
the porous medium. Osalusi et al. [4] 
demonstrated the effects of ohmic heating, 
viscous dissipation, and Hall effect in an MHD 
flow over the porous rotating disk considering 
variable fluid properties such as density, 
viscosity, and thermal conductivity. Beside the 
theoretical investigations, significant researches 
have been executed in the field of experimental 
studies of rotating disk systems [5]. In another 
study, Asghar et al. [6] discussed steady 3D flow 
and heat transfer of viscous fluid on a rotating 
disk stretching in radial direction. Their results 
showed that the exact analytical solutions were 
existed for the case of pure stretching. 
 
No-slip boundary conditions (the assumption that 
a liquid adheres to a solid boundary) is applied in 
most of the studies. In some investigations like 
emulsions, suspensions, foams and polymer 
solution [7], the no-slip conditions are not 
adequate. For the slip flow regimes, the standard 
Navier–Stokes and energy equations can be still 
applied by taking into account the velocity slip 
conditions. The slip-flow regimes have been 
widely studied and the researchers have been 
concentrating on the analysis of micro-scale in 
micro-electro-mechanical systems (MEMS) 
associated with the embodiment of velocity slip 
condition. Sparrow et al. [8] assumed the fluid 
flow due to the rotation of a porous surface disk 
and employed a set of linear slip flow conditions. 
As a result of slip condition, a substantial 
reduction in torque occurred. Sahoo [9] 
investigated the effect of partial slip, viscous 
dissipation, and Joule heating on the flow and 
heat transfer of an electrically conducting non-
Newtonian fluid over to a rotating disk. 

Turkyilmazoglu and Senel [10] showed the effect 
of roughness on the heat and mass transfer for 
the flow past a rotating disk subjected to a wall 
suction or injection. 
 
Understanding MHD is strongly related to the 
comprehension of physical effects which take 
place in MHD. When a conductor moves into a 
magnetic field, electric current is induced in the 
conductor and creates its own magnetic field 
(Lenz’s law). Since the induced magnetic field 
tends to eliminate the original and external 
supported field, the magnetic field lines will be 
excluded from the conductor. Conversely, when 
the magnetic field influences the conductor to 
move it out of the field, the induced field amplifies 
the applied field. The net result of this process is 
that the lines of force appear to be dragged 
accompanied by the conductor. In this paper the 
conductor is the fluid with complex motions. To 
understand the second key effect which is 
dynamical we should know that when currents 
are induced by a motion of a conducting fluid 
through a magnetic field, a Lorentz force acts on 
the fluid and modifies its motion. In MHD, the 
motion modifies the field and vice versa. This 
makes the theory highly non-linear [11,12]. 
 
HAM is known as one of the most reliable 
techniques to solve nonlinear problems. HAM 
was employed by Liao, who was the first, to offer 
a general analytical method for nonlinear 
problems [13,14]. Considering the effects of 
Brownian motion and thermophoresis, Mustafa et 
al. [15] studied stagnation point flow of a nano-
fluid towards a stretching sheet using HAM. 
Rashidi et al. [16] perused partial slip, thermal-
diffusion and diffusion-thermo on MHD flow over 
a rotating disk with viscous dissipation and 
Ohmic heating. The mixed convection of an 
incompressible Maxwell fluid flow over a vertical 
stretching surface was studied by Abbas  et al. 
[17] via HAM, considering both cases of assisting 
and opposing flows. Thermal radiation effect on 
an exponential stretching surface was perused 
by Sajid and Hayat [18] via HAM. Rashidi et al. 
[19] demonstrated the parametric analysis and 
optimization of entropy generation in unsteady 
MHD flow past a stretching rotating disk using 
artificial neural network (ANN), particle swarm 
optimization (PSO) algorithm and HAM. 
Dinarvand et al. [20] employed HAM to 
investigate the unsteady laminar (MHD) flow 
near the forward stagnation point of a rotating 
and translating sphere. Abbasbandy et al. [21] 
employed HAM for nonlinear boundary value 
problems. Nowadays HAM has been employed 
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by researchers for different nonlinear problems. 
Rashidi et al. [22] investigated the flow of a 
viscous incompressible fluid between two parallel 
plates due to the normal motion of the plates 
using HAM. In another study, Rashidi et al. [23] 
presented the homotopy simulation for nano-fluid 
dynamics from a non-linearly stretching 
isothermal permeable sheet with transpiration. 
 
The current perusal is mainly motivated by the 
need to study the MHD stagnation flow over a 
porous rotating disk in the presence of the 
velocity slip condition. HAM, an analytical 
method, is employed to investigate the effects of 
physical flow parameters such as magnetic 
interaction parameter, slip factor, rotation 
strength parameter, and suction parameter on 
the fluid velocity in all directions and temperature 
distribution. 
 
2. GOVERNING EQUATIONS AND 

MATHEMATICAL FORMULATION 

 
We consider the 3D steady MHD laminar 
incompressible flow of electrically conducting 
viscous fluid over a porous rotating disk in the 
presence of an externally applied uniform vertical 
magnetic field in the neighborhood of a 
stagnation point of a body of revolution. The 
axisymmetric governing equations for the 
continuity, momentum and energy in laminar 
MHD incompressible boundary-layer flow in 
cylindrical coordinates can be presented, 
respectively, as follows [24]: 

 

where ρ  is the fluid density, p is the fluid 

pressure, ν is the kinematic viscosity, σ is the 

electrical conductivity, 
e

u is the velocity of the 

external flow, k is the thermal conductivity and 

p
c  is the specific heat at constant pressure. The 

coordinate system used in this problem is non-

rotating cylindrical polar coordinates ( ),  ,  r zφ . 

Let the disk rotate with a constant angular 

velocity ( )Ω  and be placed at 0z = . The flow 

velocity components ( ), ,u v w  are in the 

directions of increasing cylindrical polar 
coordinates, respectively. The coordinate system 
and geometry of the problem are shown in Fig. 1. 
An external uniform magnetic field B is applied 
normal to the surface of the disk, which has a 
constant magnetic flux density B0 that is 
assumed constant by taking small magnetic 
Reynolds number much smaller than the fluid 
Reynolds number. The surface of the rotating 

disk is maintained at a uniform temperature w
T , 

while the temperature and pressure of the 

ambient fluid are T∞  and p∞ , respectively. 

Considering the effect of velocity slip is very 
important and should be included in the modeling 
of flow field for the more accurate prediction. In 
the base of slip flow theory, one can declare that 
the fluid velocity at the surface is different from 
the wall velocity compared to the local velocity 
gradient in normal direction. 
 

( )
1

0,
w

ru
r r z

∂ ∂
+ =

∂ ∂
  (1) 

( )
22 2 2

0

2 2 2

1 1
,e

Bu u v p u u u u
u w u u

r z r r r r r z r

σ
ν

ρ ρ

 ∂ ∂ ∂ ∂ ∂ ∂
+ − = − + + + − + − 

∂ ∂ ∂ ∂ ∂ ∂ 
 (2) 

22 2

0

2 2 2

1
,

Bv v uv v v v v
u w v

r z r r r r z r

σ
ν

ρ

 ∂ ∂ ∂ ∂ ∂
+ + = + + − − 

∂ ∂ ∂ ∂ ∂ 
 (3) 

2 2

2 2

1 1
,

w w p w w w
u w

r z z r r r z
ν

ρ

 ∂ ∂ ∂ ∂ ∂ ∂
+ = − + + + 

∂ ∂ ∂ ∂ ∂ ∂ 
 (4) 
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2 2

2 2

1
,

p

T T k T T T
u w

r z c r r r zρ

 ∂ ∂ ∂ ∂ ∂
+ = + + 

∂ ∂ ∂ ∂ ∂ 
 (5) 

The appropriate boundary conditions subject to uniform suction 
0

w  through the disk and slip 

condition are introduced as: 
 

0

2 2
, , , , at 0,v v

w

v v

u v
u v r w w T T z

z z

σ σ
ξ ξ

σ σ

− −∂ ∂
= = Ω + = = =

∂ ∂   
, , , as ,

e e
u u v v T T z∞→ → → → ∞

  

(6) 

 
where 

v
σ  is the tangential momentum accommodation coefficient, which is usually determined 

empirically [25] and depends on fluid and surface finish, ξ is the mean free path. It is found that in the 

potential flow regime: 
 

R
a
d
iu
s

 
 

Fig. 1. Schematic of the flow configuration and geometrical coordinates 
 

( )2 2 2

0

1
, 0, 2 , 4 ,

2
e e e

u a r v w a z p a r z pρ= = = − = − + +
  

(7) 

Where a  is a constant and 
0

p is the stagnation pressure. Hereupon, the stagnation point occurs at 

the origin. The non-dimensional forms of mean flow velocities and temperature distributions of Eqns. 
(1)-(5) are given by Von Karman’s exact self-similar solution of the Navier-Stokes equations: 
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( ) ( ) ( )

( )( ) ( ) ( ) ( )2 2

, , , ,

1
, ,

2
w

a
z u a r F v a r G w a H

p a r P T T T T

η η η ν η
ν

ρ η θ η ∞ ∞

= = = =

= − + = − −
 

(8) 

 
Where F ,G , H  and θ  are the non-dimensional functions of modified dimensionless vertical 
coordinateη . Substituting the above similarity transformations into Eqns. (1)-(5), the nonlinear 

ordinary differential equations are obtained 
 

           
( ) ( )2 0,H Fη η′ + =  (9) 

( ) ( ) ( ) ( )( ) ( )( ) ( )( )1 1F H F F G M Fη η η η η η
2 2

′′ ′− − + − − + = 0,  (10) 

           
( ) ( ) ( ) ( ) ( ) ( )G H G F G MGη η η η η η′′ ′− −2 − = 0,  (11) 

           
( ) ( ) ( )

1
,H

Pr
θ η η θ η′′ ′− = 0

        
 (12) 

Where 2

0
M B aσ ρ=  is the magnetic interaction parameter, p

Pr c kµ= is the Prandtl number and 

primes denote differentiation with respect toη . The transformed boundary conditions become 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0 , 0 0 , 0 , 0 1,

1, 0, 0, as ,

sF F G G H W

F G

γ ω γ θ

η η θ η η

′ ′= = + = =

→ → → → ∞
 (13) 

Where ( )2
v v

aγ σ ξ ν σ = −   is the slip factor, aω = Ω shows a rotation strength parameter, 

( )
1 2

0sW w aν= is the suction/injection parameter and 0
s

W <  corresponds to a uniform suction at 

the disk surface. 
 

3. HAM SOLUTION 
 
We choose the appropriate initial approximations, to satisfy the above boundary conditions, as 
follows: 
 

                          
( )0

,sH Wη =  (14) 

     

( )0
1 ,

1

e
F

η

η
γ

−

= −
+

  (15) 

   

( )0
,

1
G e

ηω
η

γ
−=

+
  (16) 

                       
( )0

,e ηθ η −=  (17) 
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The linear operators ( )H
H
L , ( )F

F
L , ( )G

G
L , and ( )θθL  are introduced as: 

( ) ,H

H
H

η

∂
=

∂
L  (18) 

      
( )

2

2
,F

F F
F

η η

∂ ∂
= +

∂ ∂
L  (19) 

      
( )

2

2
,G

G G
G

η η

∂ ∂
= +

∂ ∂
L  (20) 

                    
( )

2

2
,θ

θ θ
θ

η η

∂ ∂
= +

∂ ∂
L  (21) 

 
with the following properties: 
 

                     
( )1 0,H c =L  (22) 

     
( )2 3 0,F c e cη− + =L  (23) 

      
( )4 5 0,G c e cη− + =L  (24) 

      
( )6 7 0,c e cη

θ
− + =L  (25) 

Where 7ic i, = 1 − are the arbitrary constants. According to Eqns. (9)-(12), the nonlinear operators are 

defined as 
 

 
( ) ( )

( )
( )

ˆ ;
ˆ ˆ ˆ; ,  ; 2 ; ,H

H q
H q F q F q

η
η η η

η

∂
  = +  ∂

N
 

(26) 

( ) ( ) ( )
( )

( )
( )

( ) ( ) ( )( )

2

2

2 2

ˆ ˆ; ;
ˆˆ ˆ ˆ; ,  ; ,  ; ;

ˆˆ ˆ; ; ; 1 1,

F

F q F q
H q F q G q H q

F q G q M F q

η η
η η η η

η η

η η η

∂ ∂
  = −  ∂ ∂

− + − − +

N

 (27) 

( ) ( ) ( )
( )

( )
( )

( ) ( ) ( )

2

2

ˆ ˆ; ;
ˆˆ ˆ ˆ; ,  ; ,  ; ;

ˆ ˆˆ2 ; ; ; ,

G

G q G q
H q F q G q H q

G q F q M G q

η η
η η η η

η η

η η η

∂ ∂
  = −  ∂ ∂

− −

N

 (28) 

( ) ( )
( )

( )
( )2

2

ˆ ˆ; ;1ˆˆ ˆ; , ; ; ,
q q

H q q H q
Pr

θ

θ η θ η
η θ η η

η η

∂ ∂
  = −  ∂ ∂

N  
(29) 

The auxiliary functions become: 
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( ) ( ) ( ) ( )1, ,
H F G

H H H H e
η

θη η η η −= = = =   (30) 

The symbolic software MATHEMATICA is employed to solve the thm  order deformation equations 
(31)-(34). 
 

( ) ( ) ( ) ( )1 ,χ ,H m m m H H mH H Rη η η η− − =  hL H  (31) 

( ) ( ) ( ) ( )1 ,χ ,F m m m F F mF F Rη η η η− − =  hL H  (32) 

( ) ( ) ( ) ( )1 ,χ ,G m m m G G mG G Rη η η η− − =  hL H  (33) 

( ) ( ) ( ) ( )1 ,χ ,m m m mRθ θ θθ η θ η η η− − =  hL H  (34) 

where h  is the auxiliary nonzero parameter and 
 

( )
( )

( )1

, 12 ,
m

H m m

H
R F

η
η η

η
−

−

∂
= +

∂
 

           (35) 

( )
( )

( )
( )

( ) ( ) ( ) ( )

( )( )

2 1
1 1

, 1 12
0

1 1 1,

m
m m n

F m n n m n n m n

n

m

F F
R H F F G G

M F

η η
η η η η η η

η η

η

−
− − −

− − − −

=

−

 ∂ ∂
= − + − 

∂ ∂ 

− − +

∑  

(36) 
 
 
 

( )
( )

( )
( )

( ) ( ) ( )
2 1

1 1

, 1 12
0

2 ,
m

m m n

G m n n m n m

n

G G
R H F G M G

η η
η η η η η

η η

−
− − −

− − −

=

 ∂ ∂
= − + − 

∂ ∂ 
∑  

(37) 

( )
( )

( )
( )2 1

1 1

, 2
0

1
,

m
m m n

m n

n

R H
Pr

θ

θ η θ η
η η

η η

−
− − −

=

 ∂ ∂
= −  

∂ ∂ 
∑  

(38) 

 
And 
 

             
{0, 1,

χ
1, >1,m

m
m

≤=  (35) 

are the involved parameters in HAM theory. See Ref [13, 26, 27], for more information about the 
different steps of HAM. It is important to choose a proper value of auxiliary parameter to control and 
speed the convergence of the approximation series by the help of the so-called −h curve. Obviously, 
the valid regions of h correspond to the line segments nearly parallel to the horizontal axis. The −h

curves of ( )0F ′ , ( )0G ′ , ( )0H ′′′ , and ( )0θ ′  obtained by the 20th order of HAM solution are shown 

in Fig. 2a. 
 
In order to acquire the optimal values of auxiliary parameters, the averaged residual errors are 
defined as: 
 

             

( )
( )H

dH
Res F

d

η
η

η
= + 2 ,

 
(36) 

 (37) 
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( )
( )

( )
( ) ( ) ( )( )1 1F

d F dF
Res H F G M F

d d

η η
η η η η

η η

2
2 2

2
= − − + − − + ,

 
             

           

( )
( )

( )
( ) ( ) ( )G

d G dG
Res H F G M G

d d

η η
η η η η

η η

2

2
= − − 2 − ,

 

(38) 

             

           

( )
( )

( )1
,

d d
Res H

Pr d d
θ

θ η θ η
η

η η

2

2
= −

 

(39) 

 
The residual errors for 20th order of HAM solutions of Eq. (41).are illustrated in Fig. 2b, to survey the 
accuracy of the present method. 
 

a) 

 

b) 

 

Fig. 2a) The −h curves of ( )0H ′′′ , ( )0F ′ , ( )0G ′  and ( )0θ ′ and b) The residual error of Eq. 

(37) obtained by the 20
th

 order approximation of the HAM solution when 1sM Wω= = − =  and 

0.1γ =
 

 
4. RESULTS AND DISCUSSION 
 
The nonlinear ordinary differential equations (9)-
(12) subject to the boundary conditions (13) have 
been solved via HAM for some values of the 

magnetic interaction parameter ( )M , slip factor

( )γ , rotation strength parameter ( )ω , and 

suction parameter ( )sW . For the present 

investigation, the value of the Prandtl number 

( )Pr  is considered equal to 0.71. The values of 

the flow physical parameters are mentioned in 
each of the graphs and tables. Table 1 illustrates 
a comparison between the presented results and 

those reported by Turkyilmazoglu [24] for ( )0F ′  

and ( )0G ′ and different value of the magnetic 

interaction parameter. An excellent agreement 
can be observed between them. Tables 2-4 
depict numerical values of the skin friction 
coefficients and rate of heat transfer for different 
values of the suction parameter and slip factor. 
 
Fig. 3 represents the influence of magnetic 
interaction parameter on the radial, tangential 
and axial velocity components as well as 
temperature distribution. A drag-like Lorentz 
force is created by the infliction of the vertical 
magnetic field on the electrically conducting fluid. 
This drag-like force has tendency to slow down 

h

h
−

 c
u
rv

es

-1.6 -1.2 -0.8 -0.4 0

-4

0

4

8

12

H′′′ (0)

F′ (0)

G′ (0)

θ′ (0)

η

R
es

id
u
a
l 

E
rr

o
r

0 2 4 6 8 10

-0.004

-0.002

0

0.002

0.004

0.006

0.008

h = − 0.6

h = − 0.7

h = − 0.8

h = − 0.9 (Optimal Value)

h = − 1.0



 
 
 
 

Freidoonimehr et al.; PSIJ, 5(1): 34-50, 2015; Article no.PSIJ.2015.005 
 
 

 
43 

 

the flow around the disk. Therefore, all velocity 
boundary layer thicknesses decrease, as the 
magnetic field gets stronger. It is worth 

mentioning that the large resistances on the fluid 
particles apply as the vertical magnetic field 
increases. 

 
Table 1. Comparison between the results of present study with the results reported by 

Turkyilmazoglu [24] for ( )0F ′  and ( )0G ′− and different values of the magnetic interaction 

parameter when 2ω =  and 0
s

W γ= =  

 
M  

                        
( )0F ′

                      
( )0G ′−

 
Present Ref. [23] Present Ref. [23] 

0 2.295642283711 2.2956422869 2.393661963184 2.3936619498 
1 2.453325131091 2.4533251351 3.041585272826 3.0415852559 
2 2.620862841949 2.6208628461 3.601362344177 3.6013623342 
5 3.106851835286 3.1068518380 4.956835245622 4.9568352387 

 

Table 2. Numerical values of the radial skin friction coefficient ( )( )0F ′  for different values of 

the suction parameter ( )sW  and slip factor ( )γ  when 1M ω= =  

 

s
W

 
0γ =  0.5γ =  1γ =  

0 1.85378891 0.98591725 0.66338194 
−1 2.45041073 1.12259375 0.72122532 
−2 3.15845036 1.24170373 0.76749355 
−3 3.94772094 1.34041906 0.80340936 

 

Table 3. Numerical values of the tangential skin friction coefficient ( )( )0G ′−  for different 

values of the suction parameter ( )sW  and slip factor ( )γ  when 1M ω= =  

 

s
W

 
0γ =  0.5γ =  1γ =  

0 1.47013629 0.93615979 0.64949106 
−1 2.12505924 1.09603405 0.71466016 
−2 2.88698318 1.22751493 0.76430872 
−3 3.72025303 1.33258491 0.80178116 

 
The effect of slip parameter on the velocity 
components and temperature distribution is 
demonstrated in Fig. 4. In the presence of the 
slip condition, the radial velocity boundary layer 
thickness reduces. In addition, the radial velocity 
profile starts from zero only in the no slip 
condition cases. The fluid velocity boundary layer 
thicknesses in radial, tangential and axial 
directions decrease with increasing the values of 
the slip factor. In other word, the less amount of 
flow is drawn and pushed away in the velocity 
directions, as the slip gets stronger. It is also 
observed that the value of the temperature 
component reduces as the slip parameter 
increases. 
 
Fig. 5 illustrates the effect of rotation strength 
parameter on the radial, tangential and axial 

velocity components and the thermal boundary-
layer thickness. As the rotation strength 
parameter increases, the velocity profiles in 
tangential direction increases and the radial 
velocity boundary layer thickness, the axial 
velocity component and thermal boundary-layer 
thickness reduce. It is worth mentioning that as 
the rotation parameter increases the centrifugal 
force pokes the fluid particles in the radial 
direction. The enhancement in the rotation 
strength parameters leads to reduce the axial 
velocity component, whose decrease is due to 
the reason that increasing rotation augments the 
pumping of fluid particles in the radial direction. 
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a) 

 

b) 

 
 
 

c) 

 

d) 

 

 
Fig. 3. Effect of magnetic interaction parameter on a) axial b) radial c) tangential velocity 

components and d) temperature distribution when 1ω = , 1sW = −  and 0.1γ =  
 
Fig. 6 shows the effect of suction parameter on 
all velocity components and the temperature 
distribution. Applying suction at the disk surface 
causes to reduce all the fluid velocity profiles. 
This phenomenon happens because of this fact 
that applying suction leads to draw the amount of 
fluid particles into the wall and consequently the 
velocity boundary-layers decrease. In addition, 
the usual decay of temperature distribution 
occurs for larger values of the suction parameter. 
 
Figs. 7a & b present the velocity contours in 
radial and axial directions. As the radial 

coordinate increases, the primitive radial ( )u  

velocity component increases. This velocity 

component is maximized near the surface of the 
disk i.e. at low values of axial coordinate (bottom 
right hand corner of Fig. 7a. From Fig. 7b, it is 
obvious that the axial velocity component is 
maximized near the disk surface for all values of 
radial coordinate. As we depart from the surface, 
the axial velocity component decays. In order to 
have a better grasp of the fluid flow, the velocity 
vectors are shown in Fig. 7c. Fluid is clearly 
drawn in a fan like mechanism outwards along 
the radial coordinate and in the negative axial 
direction. This template characterizes the Von 
Karman swirling flow [1]. 
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a) 

 

b) 

 
 

c) 

 

d) 

 
  

Fig. 4. Effect of slip parameter on a) axial b) radial c) tangential velocity components and d) 

temperature distribution when 1M ω= =  and 1sW = −  
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a) b) 

 

c) 

 

d) 

 
 
 

Fig. 5. Effect of rotation strength parameter on a) axial b) radial c) tangential velocity 

components and d) temperature distribution when 1,M = 1sW = −   and 0.1γ =  

 

Table 4. Numerical values of the heat transfer rate ( )( )0θ ′−  for different values of the suction 

parameter ( )sW  and slip factor ( )γ  when 1M ω= =  

 

s
W  

0γ =  0.5γ =  1γ =  
0 0.70526567 0.83129079 0.87249549 
−1 1.21486195 1.34816468 1.38390410 
−2 1.80074808 1.92938227 1.95818403 
−3 2.43044518 2.54972643 2.57242006 
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a) 

 

b) 

 
c) 

 

d) 

 

 

Fig. 6. Effect of suction parameter on a) axial b) radial c) tangential velocity components 

and d) temperature distribution when 1M ω= =  and 0.1γ =  
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c) 

 
 

Fig. 7a) Radial velocity contour b) Axial velocity contour and c) Vector analysis with the vector 

variables of u  and w when 1
s

M W aω= = − = = , 0.1γ =  and ( )5 2
1.5 10 m sν −= ×

 
 

 

5. CONCLUSION 
 
In the current study, a mathematical formulation 
has been derived for an MHD stagnation flow 
due to a porous rotating disk in the presence of 
the velocity slip. HAM is used to solve the system 
of ordinary differential equations. The present 
semi numerical/analytical simulations agree 
closely with the previous studies for some 
especial cases. HAM has been shown to be a 
very strong and efficient technique in finding 
analytical solutions for nonlinear differential 
equations. The effects of the five key thermo-
physical parameters governing the flow i.e. 
magnetic interaction parameter, slip factor, 
rotation strength parameter, and suction 
parameter on the all dimensionless velocity 
components and temperature distributions as 
well as skin friction coefficient and local Nusselt 
number have been presented graphically and 
interpreted in details. These computations have 
provided some further insights into the fluid 
mechanics and thermodynamics of proposed 
rotating disk MHD systems coupled with nuclear 
space propulsion engines. 
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