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ABSTRACT

In this paper, we introduce a new method of construction called H-super subdivision of graphs
and prove that the H-super subdivision of Y -tree Yn+1 (n ≥ 2) is graceful and there by answering
the open question posed in 2009 by Arumugam and others [1]. Also we prove that the H-super
subdivision of Y -tree is odd and even graceful.
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1 INTRODUCTION

The most interesting area of research in graph
theory is graph labeling. It was introduced by
Rosa in 1967 [2]. Rosa called a function f , a
β-valuation of a graph G with q edges if f is

an injection from the vertices of G to the set
{0, 1, 2 . . . , q} such that when each edge xy is
assigned the label |f(x) − f(y)|, the resulting
edges are {1, 2, . . . , q} which are distinct. Later
on this β-valuation was renamed as graceful
labeling by Golomb [3]. The concept of odd
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graceful labeling was introduced by Gnanajothi
[4] and it is defined as an injection f : V (G) →
{0, 1, 2, . . . , 2q−1} such that when each edge xy
is assigned a label |f(x) − f(y)|, the resulting
edge labels are {1, 3, 5, . . . , 2q − 1}. A graph
which admits an odd graceful labeling is called
an odd graceful graph. The even graceful
labeling is defined as an injection f : V (G) →
{0, 1, 2, . . . , 2q} such that, when each edge xy
is assigned a label |f(x) − f(y)|, the resulting
edge labels are {2, 4, 6, . . . , 2q}. A graph which
admits an even graceful labeling is called an even
graceful graph [5].

Sethuraman and Selvaraju [6] have introduced
the concept of super subdivision of graphs. A
graph G′ is said to be super subdivision of G if
G′ is obtained from G by replacing each edge ei
by a complete bipartite graph K2,m for some m
in such a way that the ends of ei are merged
with the two vertices of the 2-vertices part of
K2,m after removing the edge ei from G. They
proved that arbitrary super subdivision of paths
and cycles are graceful [6]. They conjuctured
that “Are there any graphs different from paths
whose arbitrary super subdivision are gracedul?”
Barrientos proved this conjecture by proving that
every Y -tree is graceful [7]. A Y -tree Yn+1

(n ≥ 2) is a graph obtained from the path Pn

by appending an edge to a vertex of the path Pn

adjacent to an end vertex [8]. It is proved that
arbitrary super subdivision of stars, grid graphs
and cyclic snakes are graceful [9, 10]. In [1],
Arumugam et al. proposed the open problem
that “Are there graphs apart from K2,m which
can be used for edge replacement in defining
the super subdivision that will admit graceful
labeling or α-valuation?”. In this paper we
answer his question by introducing a new method
of construction called H-super subdivision of

graphs and prove that H-super subdivision of
Y -tree admits graceful labeling. Also we prove
that the H-super subdivision of Y -tree is odd
and even graceful. Here we consider simple
finite, connected and undirected graphs. For
all terminologies and notations one may refer to
Harary [11] and for graph labeling as in [8].

2 MAIN RESULTS

Definition 2.1. The H-graph is a tree on 6
vertices in which exactly two vertices of degree
3. we consider a H-graph obtained by adding an
edge between even degree vertices of two paths
P2 and P ′

2 each of length two.

We now introduce the H-supersubdivision of a
graph in the following definition.

Definition 2.2. Let G be a (p, q) graph. A
graph obtained from G by replacing each edge
ei by a H-graph in such a way that the ends
of ei are merged with a pendent vertex in P2

and a pendent vertex in P ′
2 is called H-super

subdivision of G and it is denoted by HSS(G).
Thus HSS(G) has p+ 4q vertices and 5q edges.

Structure of HSS(Yn+1)

Let Yn+1 be a Y -tree (n ≥ 2) with n + 2
vertices and n + 1 edges. Let the vertices of
Yn+1 be v1, v2, . . . , vn+1, u. The HSS(Yn+1) is
constructed from Yn+1 by replacing each edge by
the H-graph.

The vertex and edge sets of HSS(Yn+1) are as
follows

V (HSS(Yn+1)) =
{
{u, vnu(1), vnu

(2), uv(1)n , uv(2)n , vn+1}

∪{vi ∪ v
(1)

i(i+1) ∪ v
(2)

i(i+1) ∪ v
(1)

(i+1)i ∪ v
(2)

(i+1)i|1 ≤ i ≤ n}
}

and

E(HSS(Yn+1)) = E1 ∪ E2 where
E1 = {vn(vnu(1)), (vnu

(1))(vnu
(2)), (vnu

(1))(uv
(1)
n ), (uv

(1)
n )(uv

(2)
n ), (uv

(1)
n )(u)},

E2 = {viv(1)i(i+1), v
(1)

i(i+1)v
(2)

i(i+1), v
(1)

i(i+1)v
(1)

(i+1)i, v
(1)

(i+1)iv
(2)

(i+1)i, v
(1)

(i+1)iv(i+1)|1 ≤ i ≤ n}
Clearly this HSS(Yn+1) has 5n+ 6 vertices and 5n+ 5 edges.
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Example 2.1.

Algorithm 2.1.

Procedure: Graceful labeling of HSS(Yn+1),
n ≥ 2

Input: HSS(Yn+1) graph
V ← {u, uv(1)n , uv

(2)
n , vnu

(1), vnu
(2),

vn+1, vi, v
(1)

i(i+1), v
(2)

i(i+1),
v
(1)

(i+1)i, v
(2)

(i+1)i|1 ≤ i ≤ n}
// assignment of labels to the vertices //
for i = 1 to n do
{

if i ≡ 0 (mod 2) do
{

vi ← 5
(
n− i

2

)
+ 8;

v
(1)

i(i+1) ←
5i−4

2
;

v
(1)

(i+1)i ← 5
(
(n+ 1)− i

2

)
+ 1;

v
(2)

i(i+1) ← 5
(
(n+ 1)− i

2

)
+ 2;

v
(2)

(i+1)i ←
5i−2

2
;

}
else
{

vi ← 5
(
i−1
2

)
;

v
(1)

i(i+1) ← 5
(
(n+ 1)− (i−1)

2

)
;

v
(1)

(i+1)i ←
5i−1

2
;

v
(2)

i(i+1) ←
5i−3

2
;

v
(2)

(i+1)i ← 5
(
(n+ 1)− (i−1)

2

)
− 1;

}
end if

}

end for
if n ≡ 0 (mod 2) do

u← 5n+2
2

;
uv

(1)
n ← 5n+10

2
;

uv
(2)
n ← 5n+4

2
;

vnu
(1) ← 5n+6

2
;

vnu
(2) ← 5n+8

2
;

vn+1 ← 5n
2

;
else

u← 5n+1
2

;
uv

(1)
n ← 5n+9

2
;

uv
(2)
n ← 5n+3

2
;

vnu
(1) ← 5n+5

2
;

vnu
(2) ← 5n+7

2
;

vn+1 ← 5(n−1)
2

+ 8;
end if
end procedure
Output: The vertex labaled HSS(Yn+1).

Theorem 2.1. The H-super subdivision of Y -tree
is graceful.

Proof. Let HSS(Yn+1) be the H-super
subdivision of a Y -tree Yn+1 which has 5n + 6
vertices and 5n + 5 edges as given in the above
structure. Label the vertices of HSS(Yn+1) by
defining a function f : V → {0, 1, 2, . . . , 5n + 5}
as given in the algorithm 2.1. Clearly the vertices
of HSS(Yn+1) have distinct labels. Define an
induced function f∗ : E → {1, 2, . . . , 5n + 5} as
f∗(uv) = |f(u)− f(v)| for every u, v ∈ V . Using
this induced function the edge labels of E1 are
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calculated as follows:

For all n,
f∗(vn(vnu

(1))) = 5
f∗((vnu

(1))(vnu
(2))) = 1

f∗((vnu
(1))(uv

(1)
n )) = 2

f∗((uv
(1)
n )(uv

(2)
n )) = 3

f∗((uv
(1)
n )u) = 4

The edge labels of E2 are calculated as follows:
For 1 ≤ i ≤ n

Case (i): i ≡ 0 (mod 2)

f∗(viv
(1)

i(i+1)) = |f(vi)− f(v
(1)

i(i+1))| = |5(n− i+ 2)|

f∗(v
(1)

i(i+1)v
(2)

i(i+1)) = |f(v
(1)

i(i+1))− f(v
(2)

i(i+1))| = |5(i− n)− 9|

f∗(v
(1)

i(i+1)v
(1)

(i+1)i) = |f(v
(1)

i(i+1))− f(v
(1)

(i+1)i)| = |5(i− n)− 8|

f∗(v
(1)

(i+1)iv
(2)

(i+1)i) = |f(v
(1)

(i+1)i)− f(v
(2)

(i+1)i)| = |5(n− i) + 7|

f∗(v
(1)

(i+1)iv(i+1)) = |f(v(1)(i+1)i)− f(v(i+1))| = |5(n− i) + 6|

Case (ii): i ≡ 1 (mod 2)

f∗(viv
(1)

i(i+1)) = |f(vi)− f(v
(1)

i(i+1))| = |5(i− n− 2)|

f∗(v
(1)

i(i+1)v
(2)

i(i+1)) = |f(v
(1)

i(i+1))− f(v
(2)

i(i+1))| = |5(n− i) + 9|

f∗(v
(1)

i(i+1)v
(1)

(i+1)i) = |f(v
(1)

i(i+1))− f(v
(1)

(i+1)i)| = |5(n− i) + 8|

f∗(v
(1)

(i+1)iv
(2)

(i+1)i) = |f(v
(1)

(i+1)i)− f(v
(2)

(i+1)i)| = |5(i− n)− 7|

f∗(v
(1)

(i+1)iv(i+1)) = |f(v(1)(i+1)i)− f(v(i+1))| = |5(i− n)− 6|

Thus the edges of HSS(Yn+1) have distinct labels. Hence HSS(Yn+1) is graceful.

Example 2.2. Graceful labeling of H-super subdivision of Y5+1.
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Proposition 2.1. The H-super subdivision of path graphs is graceful.

Proof. Since HSS(Pn) is a caterpillar, it is graceful.

3 ODD AND EVEN GRACEFUL LABELINGS OF HSS(Yn+1)

Algorithm 3.1
Procedure: Odd graceful labeling of HSS(Yn+1)
Input: HSS(Yn+1) graph
V ← {u, uv(1)n , uv

(2)
n , vnu

(1), vnu
(2), vn+1} ∪ {vi, v(1)i(i+1), v

(2)

i(i+1),
v
(1)

(i+1)i, v
(2)

(i+1)i/1 ≤ i ≤ n}
// assignment of labels to the vertices //
for i = 1 to n do
{

if i ≡ 0 (mod 2)
{

vi ← 5(2n− i+ 3);
v
(1)

i(i+1) ← 5i− 4;
v
(2)

i(i+1) ← 5(2n− i+ 2) + 3;
v
(1)

(i+1)i ← 5(2n− i+ 2) + 1;
v
(2)

(i+1)i ← 5i− 2;
}
else
{

vi ← 5(i− 1);
v
(1)

i(i+1) ← 5(2n− i+ 2) + 4;
v
(2)

i(i+1) ← 5i− 3;
v
(1)

(i+1)i ← 5i− 1;
v
(2)

(i+1)i ← 5(2n− i+ 2) + 2;
}
end if

}
end for
if n ≡ 0 (mod 2)
{

vn+1 ← 5n;
u← 5n+ 2;
uv

(1)
n ← 5n+ 9;

uv
(2)
n ← 5n+ 4;

vnu
(1) ← 5n+ 6;

vnu
(2) ← 5n+ 7;

}
else
{

vn+1 ← 5(n+ 2);
u← 5n+ 8;
uv

(1)
n ← 5n+ 1;

uv
(2)
n ← 5n+ 6;
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vnu
(1) ← 5n+ 4;

vnu
(2) ← 5n+ 3;

}
end if
end procedure
Output: The vertex labeled HSS(Yn+1)

Theorem 3.1. The H-super subdivision of Y -tree is odd graceful.

Proof. Let HSS(Yn+1) be the H-super subdivision of a Y -tree Yn+1 which has 5n + 6 vertices and
5n+ 5 edges.

Label the vertices of HSS(Yn+1) by defining an injective function
f : V → {0, 1, 2, . . . , 2q − 1} as given in the algorithm 3.1. Clearly the vertices of HSS(Yn+1) have
distinct labels. Define an induced function f∗ : E → {1, 3, . . . , 2q − 1} as
f∗(uv) = |f(u) − f(v)| for every u, v ∈ V . Using this induced function the edge labels of E1 are
calculated as follows.

For all n,
f∗(vn(vnu

(1))) = 9
f∗((vnu

(1))(vnu
(2))) = 1

f∗((vnu
(1))(uv

(1)
n )) = 3

f∗((uv
(1)
n )(uv

(2)
n )) = 5

f∗((uv
(1)
n )u) = 7

The edge labels of E2 are calculated as follows.
For 1 ≤ i ≤ n,

Case (i): i ≡ 0 (mod 2)

f∗(vi(v
(1)

i(i+1))) = |10(n− i) + 19|
f∗(v

(1)

i(i+1)v
(2)

i(i+1))) = |10(i− n)− 17|
f∗(v

(1)

i(i+1)v
(1)

(i+1)1)) = |10(i− n)− 15|
f∗(v

(1)

(i+1)iv
(2)

(i+1)i)) = |10(n− i) + 13|
f∗(v

(1)

(i+1)ivi+1) = |10(n− i) + 11|

Case (ii): i ≡ 1 (mod 2)

f∗(vi(v
(1)

i(i+1))) = |10(i− n)− 19|
f∗(v

(1)

i(i+1)v
(2)

i(i+1))) = |10(n− i) + 17|
f∗(v

(1)

i(i+1)v
(1)

(i+1)1)) = |10(n− i) + 15|
f∗(v

(1)

(i+1)iv
(2)

(i+1)i)) = |10(i− n)− 13|
f∗(v

(1)

(i+1)ivi+1) = |10(i− n)− 11|
Thus the edges of HSS(Yn+1) have distinct odd labels.
Hence HSS(Yn+1) is odd graceful.

Example 3.1. Odd graceful labeling of H-super subdivision of Y5+1.
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Algorithm 3.2
Procedure: Even graceful labeling of HSS(Yn+1) graph
Input: HSS(Yn+1) graph
V ← {u, uv(1)n , uv

(2)
n , vnu

(1), vnu
(2), vn+1} ∪ {vi, v(1)i(i+1), v

(2)

i(i+1),
v
(1)

(i+1)i, v
(2)

(i+1)i/1 ≤ i ≤ n}
// assignment of labels to the vertices //
for i = 1 to n do
{

if i ≡ 0 (mod 2)
{

vi ← 5(2n− i+ 3) + 1;
v
(1)

i(i+1) ← 5i− 4;
v
(2)

i(i+1) ← 5(2n− i+ 3)− 1;
v
(1)

(i+1)i ← 5(2n− i+ 2) + 2;
v
(2)

(i+1)i ← 5i− 2;
}
else
{

vi ← 5(i− 1);
v
(1)

i(i+1) ← 5(2n− i+ 3);
v
(2)

i(i+1) ← 5i− 3;
v
(1)

(i+1)i ← 5i− 1;
v
(2)

(i+1)i ← 5(2n− i+ 2) + 3;
}
end if

}
end for
if n ≡ 0 (mod 2)
{

vn+1 ← 5n;
u← 5(n+ 2);
uv

(1)
n ← 5n+ 2;

uv
(2)
n ← 5n+ 8;

vnu
(1) ← 5n+ 6;
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vnu
(2) ← 5n+ 4;

}
else
{

vn+1 ← 5(n+ 2) + 1;
u← 5n+ 1;
uv

(1)
n ← 5n+ 9;

uv
(2)
n ← 5n+ 3;

vnu
(1) ← 5n+ 5;

vnu
(2) ← 5n+ 7;

}
end if
end procedure
Output: The vertex labeled HSS(Yn+1)

Theorem 3.2. The H-super subdivision of Y -tree is even graceful.

Proof. Let HSS(Yn+1) be the H-super subdivision of a Y -tree Yn+1 which has 5n + 6 vertices and
5n+ 5 edges.

Label the vertices of HSS(Yn+1) by defining an injective function
f : V → {0, 1, 2, . . . , 2q} as given in the algorithm 3.2.

Clearly the vertices of HSS(Yn+1) have distinct labels.

Define an induced function f∗ : E → {2, 4, . . . , 2q} as
f∗(uv) = |f(u)− f(v)| for every u, v ∈ V .

Using this induced function the edge labels of E1 are calculated as follows.
For all n,

f∗(vn(vnu
(1))) = 10

f∗((vnu
(1))(vnu

(2))) = 2

f∗((vnu
(1))(uv

(1)
n )) = 4

f∗((uv
(1)
n )(uv

(2)
n )) = 6

f∗((uv
(1)
n )u) = 8

The edge labels of E2 are calculated as follows.

For 1 ≤ i ≤ n,
Case (i): i ≡ 0 (mod 2)

f∗(vi(v
(1)

i(i+1))) = |10(n− i+ 2)|
f∗(v

(1)

i(i+1)v
(2)

i(i+1))) = |10(i− n)− 18|
f∗(v

(1)

i(i+1)v
(1)

(i+1)1)) = |10(i− n)− 16|
f∗(v

(1)

(i+1)iv
(2)

(i+1)i)) = |10(n− i) + 14|
f∗(v

(1)

(i+1)ivi+1) = |10(n− i) + 12|

Case (ii): i ≡ 1 (mod 2)

f∗(vi(v
(1)

i(i+1))) = |10(i− n− 2)|
f∗(v

(1)

i(i+1)v
(2)

i(i+1))) = |10(n− i) + 18|

8
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f∗(v
(1)

i(i+1)v
(1)

(i+1)1)) = |10(n− i) + 16|
f∗(v

(1)

(i+1)iv
(2)

(i+1)i)) = |10(i− n)− 14|
f∗(v

(1)

(i+1)ivi+1) = |10(i− n)− 12|

Thus the edges of HSS(Yn+1) have distinct even labels.

Hence HSS(Yn+1) is even graceful.

Example 3.2. Even graceful labeling of H-super subdivision of Y5+1.

4 CONCLUSION

We defined H-super subdivision of a graph and
proved that H-super subdivision Y -tree admits
graceful, odd and even graceful labelings.
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