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Abstract: Machine learning techniques play an increasingly prominent role in medical diagnosis.
With the use of these techniques, patients’ data can be analyzed to find patterns or facts that are
difficult to explain, making diagnoses more reliable and convenient. The purpose of this research was
to compare the efficiency of diabetic classification models using four machine learning techniques:
decision trees, random forests, support vector machines, and K-nearest neighbors. In addition, new
diabetic classification models are proposed that incorporate hyperparameter tuning and the addition
of some interaction terms into the models. These models were evaluated based on accuracy, precision,
recall, and the F1-score. The results of this study show that the proposed models with interaction
terms have better classification performance than those without interaction terms for all four machine
learning techniques. Among the proposed models with interaction terms, random forest classifiers
had the best performance, with 97.5% accuracy, 97.4% precision, 96.6% recall, and a 97% F1-score.
The findings from this study can be further developed into a program that can effectively screen
potential diabetes patients.

Keywords: machine learning; diabetes; decision tree; random forest; support vector machine;
k-nearest neighbor

1. Introduction

Diabetes is a chronic disease characterized by high blood sugar levels either due to
insulin deficiency (type 1 diabetes) or inefficient use of insulin (type 2 diabetes). Over time,
uncontrolled diabetes can cause severe problems within the body’s systems, including
the heart, blood vessels, eyes, kidneys, and nerves. In 2019, 1.5 million people died from
diabetes, and 48% of these deaths occurred before the age of 70 years. Between 2000 and
2019, age-standardized mortality rates from diabetes increased by 3% worldwide and by
13% in lower and middle-income countries [1].

Based on hospital statistics collected by the Medical Service Department of Bangkok,
Thailand, the number of diabetes cases in government hospitals in Bangkok continuously
increased from 27,927 (8.81% of total hospital cases) in 2011 to 72,958 (68.07% of total cases)
in 2021, as shown in Figure 1. In addition, a Thailand health survey report conducted by
the Heath Systems Research Institute (HSRI) in 2019/2020 revealed that 30.6% of people
with diabetes did not know they had it, and 13.9% were undiagnosed.

Although there is no cure for diabetes, early diagnosis can help people with both types
of diabetes manage it and its health complications. People with prediabetes can take charge
to help prevent it from becoming type II diabetes [2]. The chances of developing each
type of diabetes depends on a combination of risk factors. Until now, it has not been clear
what causes type 1 diabetes, and how to prevent it is still unknown. One of the known
risk factors is having a parent, brother, or sister with type 1 diabetes [3]. Although people
can be diagnosed with type 1 diabetes at any age, it is usually found in children, teens,
or young adults. Unlike type 1 diabetes, there is more information about the risk factors
for type 2 diabetes. They include having prediabetes, overweight or obesity, being aged
45 years or older, having a family history of diabetes, and being physically active less than
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three times a week [4]. As a result, the earlier people know they are at risk for diabetes, the
more likely they can mitigate it. For prediabetes and type 2 diabetes especially, people can
prevent or delay it by maintaining a healthy weight or by being physically active [5].
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Figure 1. The number of diabetes cases in government hospitals in Bangkok under the Medical
Service Department of Bangkok, Thailand, from 2011 to 2021.

In many research studies, well-known machine learning techniques, including the
Naïve Bayes classifier, support vector machines, decision trees, random forests, K-nearest
neighbors, and logistic regression, have been widely used in diabetes classification [6].
The performance of these machine learning algorithms is mainly evaluated based on a
benchmark PIMA Indian Diabetes dataset [6]. Most researchers provide a few steps of
data preprocessing and hyperparameter tuning to increase the accuracy of their promising
classifiers. For example, Zhao and Miao (2018) [7] conducted a comprehensive experiment
to compare the accuracy of five popular machine learning techniques, namely, logistic
regression, DNNs (deep neural networks), SVMs (support vector machines), decision trees,
and the Naïve Bayes classifier, using the PIMA Indian dataset across several methods of
data preprocessing, including imputation, scaling, and normalization, among others. In
addition, the authors performed parameter optimization for each classifier and analyzed
the features’ effect to verify the relevance of features used in diabetes identification. This
study revealed that scaling should be conducted for preprocessing. Although DNNs are
the most accurate technique, they require a much longer run time and have more pa-
rameters to modify than SVMs and decision trees, which have a less reduced accuracy.
Zou et al. (2018) [8] used five-fold cross-validation based on the PIMA Indian data and
another dataset from a local hospital in Luzhou, China, to examine the accuracy of three
classification methods (decision tree, random forest, and neural network). Principal com-
ponent analysis (PCA) and minimum redundancy maximum relevance (mRMR) were
also employed to reduce dimensionality. It was found that there was not much difference
between the three algorithms. Nonetheless, the random forest was better than the others
in some dimension-reduction methods as it uses all features, and mRMR was better than
PCA. Nandhini A and Dharmarajan (2022) [9] focused on the accuracy of random forest
(RF) algorithms in terms of various feature selection methods. Compared to other feature
selection methods, the exhaustive feature selection with the random forest classifier and
hyperparameter tuning using the grid search view gave the best result.

Several feature selection and construction methods can be used to identify interac-
tions among important risk factors that improve the performance of diabetic classification
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models. Cheng et al. (2023) conducted regression tree analysis to identify the interactions
among risk factors that contribute to glycated hemoglobin (HbA1c) values in type 2 diabe-
tes mellitus. They found evidence suggesting that depression can be an important factor
in certain subgroups of type 2 diabetes mellitus (T2DM). Using regression tree analysis,
three pathways of multiple risk factors associated with poor glycemic control in T2DM
patients were identified. Compared to other machine learning methods, the random forest
algorithm was the best-performing method with a small set of features. In particular, the
random forest algorithm achieved 84% accuracy, 95% area under the curve (AUC), 77%
sensitivity, and 91% specificity.

In this study, we propose diabetic classification models using various machine learn-
ing techniques (support vector machines, decision trees, random forests, and K-nearest
neighbors) along with hyperparameter tuning and feature construction. In addition, we
evaluate the performance of these machine learning methods based on classification ac-
curacy, sensitivity, and specificity using a real dataset obtained from the Department of
Medical Services, Bangkok, Thailand, between 2019 and 2021.

2. Materials and Methods

In this section, we propose the steps necessary to obtain new classification models
with optimized hyperparameter values and interaction terms, as well as to compare the
performance of the proposed classification models to models without interaction terms.

Step 1. After cleaning the data, 80% of the total 20,227 samples are randomly selected
for data training and the remaining 20% are used for testing.

Step 2. Grid search and five-fold cross-validation are applied to the training dataset to
determine the hyperparameters for the machine learning techniques.

Step 3. Feature selection using gain ratio is applied to construct the interaction terms
based on the training dataset.

Step 4. The hyperparameters obtained from Step 2 are used to build the classification
models without interaction terms and with interaction terms constructed in Step 3 using
the training dataset.

Step 5. The four classification models are evaluated with and without interactions
using the test dataset based on accuracy, precision, recall, and the F1-score calculated from
the values in the confusion matrix as shown in Table 1 using Equations (1)–(4).

Table 1. The confusion matrix.

Predicted

No Yes

Actual No
Yes

TN
FN

FP
TP

The flowchart of the process of creating classification models is shown in Figure 2.
Here, FP = false positive, FN = false negative, TN = true negative, and TP = true positive.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1− score = 2×
(

Precision × Recall
Precision + Recall

)
(4)
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2.1. Data Collection

The diabetes dataset used in this study was obtained from the Department of Medical
Services, Bangkok, between 2019 and 2021 and was desensitized.

The dataset consists of 20,227 records and 10 attributes related to diabetes risk. These
attributes were not only selected by considering the diabetes risk assessment form created
by the Diabetes Association of Thailand under the patronage of Her Royal Highness
Princess Maha Chakri Sirindhorn, but also the completeness of hospital database. These
10 attributes are: sex; age; weight; height; body mass index (BMI); diastolic blood pressure
(DIA); systolic blood pressure (SYS); resting heart rate (RHR); family history of diabetes;
and diabetes diagnosis results. The outcome variable is the diabetes diagnosis result,
which has two values: 0 for non-diabetes and 1 for diabetes (both Type 1 and Type 2).
Those patients with diabetes were identified by their doctor according to a diagnostic code
for diabetes (International Classification of Diseases: E10–E14) [10]. The description of
the dataset and the results of the univariate data analysis for each group of the diabetes
diagnosis result are shown in Tables 2 and 3.
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Table 2. The attributes of the diabetes dataset.

Attribute Measure

Diabetes diagnosis results 0 = non-diabetes
1 = diabetes

Sex 0 = male
1 = female

Age year
Weight kg
Height cm.

Body mass index kg/m2

Diastolic blood pressure mmHg
Systolic blood pressure mmHg

Resting heart rate bpm

Family history of diabetes 0 = no
1 = yes

Table 3. The results of the univariate data analysis based on the diagnosis of diabetes.

Attribute
Diabetes Non-Diabetes

Mean ± S.D. Min Max Mean ± S.D. Min Max

Age 64 ± 10.96 31 94 62 ± 12.33 31 97

Weight 67 ± 14.71 31 167 62 ± 13.69 30 167

Height 159 ± 8.46 136 195 158 ± 8.49 100 195

Body mass index 26.16 ± 4.97 12.66 45.79 24.69 ± 4.75 12.49 45.18

Diastolic blood
pressure 71.83 ± 12.49 35 150 73.90 ± 11.86 37 128

Systolic blood
pressure 135.56 ± 18.33 80 237 132.51 ± 17.70 77 198

Resting heart rate 83.20 ± 14.09 36 151 82.43 ± 13.59 36 161

2.2. Data Preprocessing

Preprocessing helps transform data so that a better machine learning model can be
built, thereby providing higher accuracy. In this study, we replaced missing values with
the mean values of the available data.

To put all the variables on the same scale, we normalized the data to a range of 0–1
using Equation (5).

x∗ =
X−min(x)

max(x)−min(x)
(5)

Here, x* = the normalized value, X = original value, min(x) = the lowest value of the
dataset, and max(x) = the highest value of the dataset.

2.3. Feature Selection and Construction

Feature selection and construction is an important step in classification modeling. It
could not only help increase the classification accuracy but also improve the efficiency of
practical operations. In this study, we applied a feature selection technique (gain ratio) to
rank the features based on their importance in the classification of diabetes. To calculate
gain ratio, split information is required, which can be calculated as follows [11]

Information gain(S,a) = H(S) − H(S|a) (6)

(S) = −∑y
j=1 P(S) log2 P(S) (7)
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H(S|a) = −∑y
j=1 P(S|a) log2 P(S|a) (8)

where Information gain(S,a) is the information for the dataset S for the attribute a, H(S) is
the entropy for the dataset S, H(S|a) is the conditional entropy for the dataset S given the
attribute a, P(S) is the probability of the dataset S, and P(S|a) is the conditional probability
of the dataset S given the attribute a.

SplitInformationa(S) = −∑y
j=1

Sj

S
log2

(
Sj

S

)
(9)

where SplitInformationa(S) represents the amount of data considered by dividing the data
in the dataset S into y subsets based on the values in attribute a, and Sj being the number of
times that j occurs divided by the total count of events S.

Next the gain ratio is calculated by

Gain ratio(S, a) =
Information gain(S, a)
SplitInformationa(S)

(10)

where Gain ratio(S,a) represents the information gain achieved by dividing the dataset S
into subsets based on the attribute a. The feature with maximum gain ratio is chosen as the
best classification feature.

According to a relevant research study, classification models with interaction terms
are shown to be more efficient than the models without interaction terms [12]. Based on the
results from the gain ratio method, it was found that family history of diabetes and body
mass index were the most important to predict diabetes, as shown in Figure 3. Therefore, in
this study, we included the interactions of these two most important risk factors affecting
diabetes and the other factors into the models as shown in Tables 4 and 5.

Table 4. Determination of attributes used to create interactions.

Attribute Details

Sex
(X1)

X1 = 0 if sex = male
X1 = 1 if sex = female

Age
(X2)

X2 = 0 if age < 60
X2 = 1 if age ≥ 60

Body mass index
(X3)

X3 = 0 if body mass index < 23
X3 = 1 if body mass index ≥ 23

Diastolic blood pressure
(X4)

X4 = 0 if diastolic blood pressure < 90
X4 = 1 if diastolic blood pressure ≥ 90

Systolic blood pressure
(X5)

X5 = 0 if systolic blood pressure < 140
X5 = 1 if systolic blood pressure ≥ 140

Resting heart rate
(X6)

X6 = 0 if 60 ≤ resting heart rate ≤ 100
X6 = 1 if resting heart rate < 140 or resting heart rate > 100

Family history of diabetes
(X7)

X7 = 0 if family history of diabetes = no
X7 = 1 if family history of diabetes = yes
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Table 5. The attributes of interaction variables.

Interaction Variable Generated Interactions

X3 = 0 and X1 = 0, then Y = 1 X3(0)X1(0) = 1 if X3 = 0 and X1 = 0
X3(0)X1(0) = 0, otherwise

X3 = 0 and X1 = 1, then Y = 1 X3(0)X1(1) = 1 if X3 = 0 and X1 = 1
X3(0)X1(1) = 0, otherwise

X3 = 1 and X1 = 0, then Y = 1 X3(1)X1(0) = 1 if X3 = 1 and X1 = 0
X3(1)X1(0) = 0, otherwise

X3 = 1 and X1 = 1, then Y = 1 X3(1)X1(1) = 1 if X3 = 1 and X1 = 1
X3(1)X2(1) = 0, otherwise

X3 = 0 and X2 = 0, then Y = 1 X3(0)X2(0) = 1 if X3 = 0 and X2 = 0
X3(0)X2(0) = 0, otherwise

X3 = 0 and X2 = 1, then Y = 1 X3(0)X2(1) = 1 if X3 = 0 and X2 = 1
X3(0)X2(1) = 0, otherwise

X3 = 1 and X2 = 0, then Y = 1 X3(1)X2(0) = 1 if X3 = 1 and X2 = 0
X3(1)X2(0) = 0, otherwise

X3 = 1 and X2 = 1, then Y = 1 X3(1)X2(1) = 1 if X3 = 1 and X2 = 1
X3(1)X2(1) = 0, otherwise

X3 = 0 and X4 = 0, then Y = 1 X3(0)X4(0) = 1 if X3 = 0 and X4 = 0
X3(0)X4(0) = 0, otherwise

X3 = 0 and X4 = 1, then Y = 1 X3(0)X4(1) = 1 if X3 = 0 and X4 = 1
X3(0)X4(1) = 0, otherwise

X3 = 1 and X4 = 0, then Y = 1 X3(1)X4(0) = 1 if X3 = 1 and X4 = 0
X3(1)X4(0) = 0, otherwise

X3 = 1 and X4 = 1, then Y = 1 X3(1)X4(1) = 1 if X3 = 1 and X4 = 1
X3(1)X4(1) = 0, otherwise

X3 = 0 and X5 = 0, then Y = 1 X3(0)X5(0) = 1 if X3 = 0 and X5 = 0
X3(0)X5(0) = 0, otherwise

X3 = 0 and X5 = 1, then Y = 1 X3(0)X5(1) = 1 if X3 = 0 and X5 = 1
X3(0)X5(1) = 0, otherwise

X3 = 1 and X5 = 0, then Y = 1 X3(1)X5(0) = 1 if X3 = 1 and X5 = 0
X3(1)X5(0) = 0, otherwise
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Table 5. Cont.

Interaction Variable Generated Interactions

X3 = 1 and X5 = 1, then Y = 1 X3(1)X5(1) = 1 if X3 = 1 and X5 = 1
X3(1)X5(1) = 0, otherwise

X3 = 0 and X6 = 0, then Y = 1 X3(0)X6(0) = 1 if X3 = 0 and X6 = 0
X3(0)X6(0) = 0, otherwise

X3 = 0 and X6 = 1, then Y = 1 X3(0)X6(1) = 1 if X3 = 0 and X6 = 1
X3(0)X6(1) = 0, otherwise

X3 = 1 and X6 = 0, then Y = 1 X3(1)X6(0) = 1 if X3 = 1 and X6 = 0
X3(1)X6(0) = 0, otherwise

X3 = 1 and X6 = 1, then Y = 1 X3(1)X6(1) = 1 if X3 = 1 and X6 = 1
X3(1)X6(1) = 0, otherwise

X3 = 0 and X7 = 0, then Y = 1 X3(0)X7(0) = 1 if X3 = 0 and X7 = 0
X3(0)X7(0) = 0, otherwise

X3 = 0 and X7 = 1, then Y = 1 X3(0)X7(1) = 1 if X3 = 0 and X7 = 1
X3(0)X7(1) = 0, otherwise

X3 = 1 and X7 = 0, then Y = 1 X3(1)X7(0) = 1 if X3 = 1 and X7 = 0
X3(1)X7(0) = 0, otherwise

X3 = 1 and X7 = 1, then Y = 1 X3(1)X7(1) = 1 if X3 = 1 and X7 = 1
X3(1)X7(1) = 0, otherwise

X7 = 0 and X1 = 0, then Y = 1 X7(0)X1(0) = 1 if X7 = 0 and X1 = 0
X7(0)X1(0) = 0, otherwise

X7 = 0 and X1 = 1, then Y = 1 X7(0)X1(1) = 1 if X7 = 0 and X1 = 1
X7(0)X1(1) = 0, otherwise

X7 = 1 and X1 = 0, then Y = 1 X7(1)X1(0) = 1 if X7 = 1 and X1 = 0
X7(1)X1(0) = 0, otherwise

X7 = 1 and X1 = 1, then Y = 1 X7(1)X1(1) = 1 if X7 = 1 and X1 = 1
X7(1)X2(1) = 0, otherwise

X7 = 0 and X2 = 0, then Y = 1 X7(0)X2(0) = 1 if X7 = 0 and X2 = 0
X7(0)X2(0) = 0, otherwise

X7 = 0 and X2 = 1, then Y = 1 X7(0)X2(1) = 1 if X7 = 0 and X2 = 1
X7(0)X2(1) = 0, otherwise

X7 = 1 and X2 = 0, then Y = 1 X7(1)X2(0) = 1 if X7 = 1 and X2 = 0
X7(1)X2(0) = 0, otherwise

X7 = 1 and X2 = 1, then Y = 1 X7(1)X2(1) = 1 if X7 = 1 and X2 = 1
X7(1)X2(1) = 0, otherwise

X7 = 0 and X4 = 0, then Y = 1 X7(0)X4(0) = 1 if X7 = 0 and X4 = 0
X7(0)X4(0) = 0, otherwise

X7 = 0 and X4 = 1, then Y = 1 X7(0)X4(1) = 1 if X7 = 0 and X4 = 1
X7(0)X4(1) = 0, otherwise

X7 = 1 and X4 = 0, then Y = 1 X7(1)X4(0) = 1 if X7 = 1 and X4 = 0
X7(1)X4(0) = 0, otherwise

X7 = 1 and X4 = 1, then Y = 1 X7(1)X4(1) = 1 if X7 = 1 and X4 = 1
X7(1)X4(1) = 0, otherwise

X7 = 0 and X5 = 0, then Y = 1 X7(0)X5(0) = 1 if X7 = 0 and X5 = 0
X7(0)X5(0) = 0, otherwise

X7 = 0 and X5 = 1, then Y = 1 X7(0)X5(1) = 1 if X7 = 0 and X5 = 1
X7(0)X5(1) = 0, otherwise
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Table 5. Cont.

Interaction Variable Generated Interactions

X7 = 1 and X5 = 0, then Y = 1 X7(1)X5(0) = 1 if X7 = 1 and X5 = 0
X7(1)X5(0) = 0, otherwise

X7 = 1 and X5 = 1, then Y = 1 X7(1)X5(1) = 1 if X7 = 1 and X5 = 1
X7(1)X5(1) = 0, otherwise

X7 = 0 and X6 = 0, then Y = 1 X7(0)X6(0) = 1 if X7 = 0 and X6 = 0
X7(0)X6(0) = 0, otherwise

X7 = 0 and X6 = 1, then Y = 1 X7(0)X6(1) = 1 if X7 = 0 and X6 = 1
X7(0)X6(1) = 0, otherwise

X7 = 1 and X6 = 0, then Y = 1 X7(1)X6(0) = 1 if X7 = 1 and X6 = 0
X7(1)X6(0) = 0, otherwise

X7 = 1 and X6 = 1, then Y = 1 X7(1)X6(1) = 1 if X7 = 1 and X6 = 1
X7(1)X6(1) = 0, otherwise

In this study, we determine thresholds for feature interactions based on the following
literature reviews. From the Kaiser Permanente Northern California Diabetes Registry, it
was found that 96% of adults age≥ 60 years had diabetes [13]. The U.S. Preventive Services
Task Force (USPSTF) and the American Diabetes Association (ADA) recommend screening
for diabetes and prediabetes based on a body mass index ≥ 23 kg/m2 [14].

We selected three attributes in the form of “If Xi = xi and Xj = xj, then Y = y ”,
where xi is the level of attribute; Xi, xj is the level of attribute Xj; and y is the level of
response Y”. We generated the interactions between Xi and Xj by labeling each interaction
as 1 if Xi = xi and Xj = xj and labeling each interaction as 0 otherwise. This interaction is
denoted by Xi(xi)Xj

(
xj
)
. For example, according to “If X1 = 0 and X2 = 1, then Y = 1 ”,

we created an interaction between X1 and X2, denoted by X1(0)X2(1). The level of Y does
not play any role in generating the variables.

2.4. Classification Methods
2.4.1. Decision Tree

Decision tree is a supervised machine learning algorithm used to solve classification
problems. It uses decision nodes to classify the instances with different features [15]. A
representation of a decision tree is shown in Figure 4.
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2.4.2. Random Forest

The random forest classifier creates multiple decision trees by randomly selecting
subsets of the training dataset. Then, it aggregates the votes from different decision trees to
decide the final class of test objects [9]. The steps in which this occurs are given below [9].

Step 1. Random samples are selected from a given training dataset.
Step 2. This algorithm constructs a decision tree for all training data.
Step 3. Voting takes place by averaging the decision tree.
Step 4. Finally, the prediction result with the most votes is selected as the final

prediction result.

2.4.3. Support Vector Machine

The concept of classification using the support vector machine algorithm is simply an
attempt to find the best hyperplane that functions as a separator of two classes of data in
the input space [17].

2.4.4. K-Nearest Neighbor

K-NN is a supervised algorithm applied to classify a set of data based on the nearest
neighbors whose class is known. The steps for K-NN are given below [17]:

Step 1. Based on the definition of the K value, determine the optimum K value by
finding the accuracy value in the training data using K-fold cross-validation.

Step 2. Calculate the distance between the test data and the training data using
distance measures.

Step 3. Sort the results of the Euclidean distance calculation from the test data group
in ascending order.

Step 4. Take K-nearest neighbors from the results that have been sorted for each set of
test data. The test data class is taken from the majority vote among the K-nearest neighbors.

2.5. Software Tool

We used Weka, an open-source machine learning software tool used for diabetes
classification analysis [18]. Weka contains algorithms for data processing, clustering,
classification, regression, visualization, and feature selection. The algorithms used for
classification via decision tree, support vector machine, and K-nearest neighbor are J48,
SMO, and IBk, respectively.

3. Results
3.1. Hyperparameters for Machine Learning Techniques

In order to determine the hyperparameters for all machine learning techniques, we
applied a grid search technique and five-fold cross-validation to the training dataset and
compared the classification results based on accuracy, precision, recall, and the F1-score.

3.1.1. Decision Tree

The hyperparameters used in the decision tree are as follows:

• ConfidenceFactor refers to the confidence intervals used in branching.
• MinNumObj refers to the minimum amount of learned information in the leaf node.

The hyperparameters for the models with and without interaction terms are shown
in Table 6.

Table 6. The hyperparameters for the decision tree model.

Hyperparameter Hyperparameter Value

confidenceFactor 0.25, 0.5, 0.75

minNumObj 1, 3, 5, 7, 9
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Based on the result of five-fold cross-validation of the models without interaction,
the hyperparameters that yielded the highest accuracy were confidenceFactor = 0.5 and
minNumObj = 1, which provided an accuracy of 83.02%. Regarding the proposed models
with interaction, the values were confidenceFactor = 0.25 and minNumObj = 1, which
provided an accuracy of 84.08%, as shown in Figure 5.
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Figure 5. The accuracy of the models with and without interaction versus the hyperparameters of the
decision tree.

3.1.2. Random Forest

The hyperparameters used in the random forest are as follows:

• NumIterations refers to the total number of trees to be built.
• MaxDepth refers to the maximum depth of the trees.

The hyperparameters for the models with and without interaction are shown in Table 7.

Table 7. The hyperparameters for the random forest model.

Hyperparameter Hyperparameter Value

numIterations 10, 20, ..., 100

maxDepth 3, 5, 10, 20, none

Based on the results of the five-fold cross-validation of the models without interac-
tion, the hyperparameters that yielded the highest accuracy were numIterations = 60 and
maxDepth = 30, which provided an accuracy of 85.76%. Regarding the proposed models
with interaction, the values were numIterations = 60 and maxDepth = 20, which provided
an accuracy of 86.72%, as shown in Figure 6.
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Figure 6. The accuracy of the models with and without interaction terms versus the hyperparameters
of the random forest model.

3.1.3. Support Vector Machine

The hyperparameters used in the support vector machine are as follows:

• C refers to the regularization parameter.
• Kernel refers to the different types of mathematical functions, such as linear, polyno-

mial, and RBF (radial basis function).
• Exponent refers to the exponent of the polykernel.
• Gamma refers to the hyperparameter that influences the learning dataset of the RBF

kernel.

The hyperparameters for the models with and without interaction terms are shown
in Table 8.

Table 8. The hyperparameters for the support vector machine model.

Hyperparameter Hyperparameter Value

C 5, 10, 15, ..., 50

kernel
polykernel (exponent = 1),

polykernel (exponent = 2, . . . , 5),
RBF

exponent 2, 3, 4, 5

gamma 0.05, 0.1, 0.2, 0.5, 1

According to the grid search, different kernels yield different optimal C values
as follows:

• kernel = polykernel (exponent = 1); C = 5.
• kernel = polykernel (exponent = 2); C = 5.
• kernel = RBF, C = 10, gamma = 0.1.

Based on the five-fold cross-validation results of the models with and without interac-
tion terms, the hyperparameters that yield the highest accuracy were kernel = polykernel
(exponent = 2) and C = 5. The case in which the proposed models with interaction terms
provided an accuracy of 78.11% and the models without interaction terms provided an
accuracy of 77.79% is shown in Figure 7.
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Figure 7. The accuracy of the models with and without interaction terms versus the hyperparameters
of the support vector machine.

3.1.4. K-Nearest Neighbor

The hyperparameters used in K-nearest neighbor are as follows:

• K refers to the number of neighbor points used.
• distanceFunction refers to the distance function for finding neighbors. DistanceWeight-

ing refers to the weighting function.

The hyperparameters for the models with and without interaction terms are shown in
Table 9 and Figure 8.

Table 9. The hyperparameters for the K-nearest neighbor model.

Hyperparameter Hyperparameter Value

K 1, 3, ..., 31

distanceFunction Euclidean, Manhattan

DistanceWeighting No distance weighting,
Weight by 1/distance

According to the grid search, different distanceFunctions yield different optimal
DistanceWeighting and K values, as follows:

The models without interaction terms:

• distanceFunction = Euclidean, DistanceWeighting = Weight by 1/distance, K = 17.
• distanceFunction = Manhattan, DistanceWeighting = Weight by 1/distance, K = 21.

The proposed models with interaction terms:

• distanceFunction = Euclidean, DistanceWeighting = Weight by 1/distance, K = 11.
• distanceFunction = Manhattan, DistanceWeighting = Weight by 1/distance, K = 13.
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Figure 8. The accuracy of the models with and without interaction terms versus the hyperparameters
of K-nearest neighbor.

Based on the five-fold cross-validation results of the models without interaction terms,
the hyperparameters that yielded the highest accuracy were distanceFunction = Manhattan,
DistanceWeighting = Weight by 1/distance, and K = 21, which provided an accuracy
of 80.49%. Regarding the proposed models with interaction terms, the values were
distanceFunction = Manhattan, DistanceWeighting = Weight by 1/distance, and K = 13,
which provided an accuracy of 81.12%, as shown in Figure 9.
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Figure 9. The accuracy of the models with and without interaction terms versus K values when
distanceFunction = Manhattan and DistanceWeighting = Weight by 1/distance.

3.2. Comparison of the Efficiency of the Four Techniques

A comparison of the four techniques with and without interaction terms is shown in
Table 10. The performance was based on accuracy, precision, recall, and the F1-score.
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Table 10. The efficiency of the four techniques used in machine learning modeling for diabetic
classification in cases with and without interaction terms.

Model Technique Accuracy Precision Recall F1-Score

The models
without interaction

terms

Decision tree 0.813 0.797 0.777 0.783
Random forest 0.882 0.922 0.893 0.907

Support vector machine 0.811 0.764 0.774 0.769
K-nearest neighbor 0.817 0.784 0.781 0.787

The proposed
models with

interaction terms

Decision tree 0.957 0.949 0.945 0.949
Random forest 0.975 0.974 0.966 0.970

Support vector machine 0.897 0.870 0.895 0.882
K-nearest neighbor 0.964 0.962 0.949 0.956

As shown in Table 10, the proposed models with interaction terms had better classifi-
cation performance than those without interaction terms across all four techniques.

As shown in Figure 10, among the proposed models with interaction terms, random
forest performed the best, with 97.5% accuracy, 97.4% precision, 96.6% recall, and a 97%
F1-score. In addition, according to the t-test results in Table 11, the accuracy of the proposed
model with interaction terms using random forest is significantly higher than that of the
other three techniques at a significance level of 0.05. The top 10 attribute importance
evaluation with random forest is shown in Figure 11.
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Figure 10. Classification results for the proposed models with interaction terms.

Table 11. Performance testing of the diabetes classification models with interaction terms.

Hypotheses t Sig.
H0 : No difference in accuracy b/w random forest and decision tree.
H1 : Random forest has more accuracy than decision tree. −14.797 0.001 *

H0 : No difference in accuracy b/w random forest and support vector machine.
H1 : Random forest has more accuracy than support vector machine. −11.911 0.001 *

H0 : No difference in accuracy b/w random forest and K-nearest neighbor.
H1 : Random forest has more accuracy than K-nearest neighbor. −10.205 0.02 *

* A statistically significant test result at 0.05 level.
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4. Discussion and Conclusions

In conclusion, this research presents new classification models that incorporate op-
timized hyperparameters and include the interaction of important risk factors affecting
diabetes. The results reveal that, upon tuning the hyperparameters and including the inter-
action terms, the proposed models have better performance than those without interaction
terms for all four techniques (decision tree, random forest, support vector machine, and
K-nearest neighbor). Among the proposed models with interaction terms, random forest
had the best performance classification, with 97.5% accuracy, 97.4% precision, 96.6% recall,
and a 97% F1-score.

The proposed models with interaction terms are more efficient than the models without
interaction terms because we included interaction with important risk factors affecting
diabetes, body mass index, and a family history of diabetes in the models. The findings
from this research can be further developed into a program to effectively screen potential
diabetes patients in the future.

Nevertheless, other attributes related to exercise, lifestyle (such as waist-to-height
ratio), and dietary management (including protein, fat, and sugar intake control) have also
been identified as important risk factors for diabetes [19]. Moreover, certain metabolites
have been associated with prediabetes and diabetes [20]. Therefore, future research may
consider including these risk factors into consideration when creating classification models
for diabetes.
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