Contactless and robust dielectric microspheres-assisted surface-enhanced Raman scattering sensitivity improvement for anthrax biomarker detection

Ge, Mengyi and Zhao, Wenfen and Han, Yue and Gai, Hongwei and Zong, Chenghua (2022) Contactless and robust dielectric microspheres-assisted surface-enhanced Raman scattering sensitivity improvement for anthrax biomarker detection. Frontiers in Chemistry, 10. ISSN 2296-2646

[thumbnail of pubmed-zip/versions/2/package-entries/fchem-10-1057241-r1/fchem-10-1057241.pdf] Text
pubmed-zip/versions/2/package-entries/fchem-10-1057241-r1/fchem-10-1057241.pdf - Published Version

Download (1MB)

Abstract

This report presents a contactless and robust dielectric microspheres (DMs)-assisted surface enhanced Raman scattering (SERS) enhancement method to improve SERS detection sensitivity detection sensitivity. DMs that could focus and collect light were embedded within the polydimethylsiloxane (PDMS) film to avoid direct contact with the analytical solution and improve detection reliability. The as prepared DMs embedded PDMS DMs PD MS film was integrated with a microfluidic technique to enhance the SERS signal of a liquid substrate. Detection in microfluidic systems can reduce reagent consumption, shorten assay time, and avoid evaporation of the colloid substrate solution. The robustness and potential influencing factors of DMs PDMS film assisted SERS enhancement (DERS) were evaluated using 4-aminothiophenol (4-ATP) as the Raman probe. The sensing performance of the proposed method toward dipicolinic acid (DPA) was evaluated, and an evident signal intensification was obtained. Remarkably, the DMs PDMS film can also be implemented on solid substrates. A proof-of-concept experiment was performed by covering the DMs PDMS film directly over an AgNPs@Si solid substrate wherein a 5.7-fold sensitivity improvement was achieved.

Item Type: Article
Subjects: Academic Digital Library > Chemical Science
Depositing User: Unnamed user with email info@academicdigitallibrary.org
Date Deposited: 03 Jan 2023 08:07
Last Modified: 10 Feb 2024 03:58
URI: http://publications.article4sub.com/id/eprint/140

Actions (login required)

View Item
View Item