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Abstract 
There are a large number of papers that claim that there are problems that 
once solved lead to an efficient solution of a wide range of problems, classi-
fied as NP. In this paper we will not only question the existence of this class of 
NP-co problems, but we will also explain their limitations in engineering and 
give a polynomial-time solution to SAT, one of these emblematic problems. 
The resolution will be so trivial that it will even be possible to practice it on 
paper. 
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1. Introduction 

One of the most publicised problems is the problem of Boolean satisfiability, also 
called SAT (satisfiability boolean problem). The problem will be described in 
more detail below. Computer security that allows the confidentiality of e-mail 
and messages is often based on protocols which must be easily verified. It was 
claimed that the class of problems that was quickly verifiable was called NP 
(Nondeterministic Turing Machine Polynomial Time Problems), i.e., that there 
would exist a Turing machine configured in a non-deterministic way capable of 
solving the problem in polynomial time. That is why when Cook warned that by 
solving SAT all the problems of the NP class would be solvable in polynomial 
time [1], many people were shocked. 

To prove it, Cook set up a Turing machine so that it generated a SAT input 
deterministically in polynomial time. Thus, if SAT was solved in polynomial 
time that would mean that any problem that is set up in the Turing machine in a 
non-deterministic way [2] (such as “posing the product of two numbers” as the 
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result of a “number to be factored”) would be solved polynomially (the “factori-
sation of any number” would be solved quickly). 

Now, what does fast mean? It means that in the face of the small, even the 
most expensive resolutions can work, but when the inputs are large, a poorly 
constructed algorithm would make it impossible to budget for a machine capa-
ble of solving the problem. In other words, to understand this, we must go back 
to the origins of the creator of Turing’s machine: when British intelligence hired 
this mathematician to create a machine capable of deciphering German codes. In 
other words, the first question to ask is: is it feasible to build such a machine? 
Would it work well for the money invested? The answer would be yes: as long as 
the time required for it to give an answer is expressible within an O(nk) with n 
the size of the input and k some constant. And also if for any practicable size n 
nk < 2309, which corresponds to a transcomputational limit that is too many 
combinations even for the fastest machines [3]. 

Even so, when considering the complexity of the problems, the possibility that 
they could be solved in polynomial time by a deterministic Turing machine be-
gan to be raised, and this class of problems was called P (Deterministic Turing 
Machine in Polynomial Time). Thus the question of whether NP = P was post-
ulated. 

This same approach was also considered important by the American secret 
services when they asked John Nash whether their protocols could be breached 
[4]. The question remained open [5], and it has been considered important to 
assess to what extent computer security could be compromised by solving a sin-
gle problem. 

This problem, because of its similarities to other problems, and the relevance 
of the whole community knowing how to solve it, has come to be attempted with 
the most easily recognisable puzzles. An example of this is the n-queen problem, 
which results in a large reward when solved [6]. This problem consists of guess-
ing how to place n queens on a board of nxn knowing that they cannot threaten 
each other according to the rules of chess and that there are already some queens 
in place. 

However, the purpose of this article will be to show not only that the problem 
in question can be solved in polynomial time and not transcomputational time, 
but also that this will not be a problem for the most of the NP that are used for 
encryption. But for this we will have to use an unpredictable tool: philosophy. 
That is to say, does it make sense to say that when faced with the question of 
whether NP = P we can assert a double answer depending on which mathemati-
cal philosophy we choose? 

To understand this, we note that in fact the idea that the world of ideas is di-
vided into different worlds was already defended by Popper [7], when he distin-
guished world 2 (the cultural one, which depends on the formalisms we choose 
and is developed by analysing our choices) and world 3 (the discoverable one, 
which is the result of synthesising all the findings about the natural numbers). 
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As there are two worlds, could we not find two ways of expressing the same 
question? 

There have been authors who have considered these approaches as if they 
were contradictory, and have denied as contradictory that the classes P and NP 
are independent. However, these authors do not seem to remember that when 
the Turing machine is defined more loosely then it is already capable of solving 
undecidable problems [8]; so the decidable class would be the same as the unde-
cidable one if we change the Turing machine. In the same way, is it possible that 
the Turing machine can be expressed in a more rigorous way so that it offers 
another possible answer? And, of course, once the notation is rethought, what 
practical effects could it have on technology? 

All this and more will be the subject of this article. 

2. Problem Statement 

A Turing machine is a mathematical model of computation that defines an ab-
stract machine that manipulates symbols on a strip of tape according to a table 
of rules. It is considered that in that machine it is possible to denote any enu-
merable problem, and when each of the intermediate states are exactly deter-
mined Alan Turing designated that as an automatic Turing Machine [9] (a-TM, 
deterministic TM), if, on the contrary, it is always possible that the next state can 
be a finite number of possible states then that machine is denoted a choice Tur-
ing Machine (c-TM, non-deterministic TM, NDTM). 

The Boolean satisfiability problem (sometimes called propositional satisfiabil-
ity problem and abbreviated SATISFIABILITY or SAT) is the problem of deter-
mining if there exists an interpretation that satisfies a given Boolean formula. 
That problem is usually reduced to formulas which are a Boolean product of 
sum of literals. Where a literal is a Boolean variable negated or not, and a sum of 
literals is called a clause. 

If we write on a tape the expression of a product of clauses and ask what val-
ues the variables must take to satisfy the formula, if we had those values we 
would only need polynomial time to determine if the formula is satisfied. That is 
why in a NDTM it is considered to be bounded in polynomial time, because in 
the absence of determining a finite set of values proportional to the input it 
would be solvable in polynomial time. Therefore, the SAT problem is considered 
trivially within the NP class. Having a mechanism that allows us to know what 
values the variables should take in polynomial time would convert SAT to the 
class P. 

3. Method Used 

The objective to be achieved in the following methods is, starting from a product 
of clauses, to get a minterm (product of literals) containing one of the cases, or 
starting from a boolean addition of minterms, to find the clause containing the 
negated literals that contradict it. 
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Therefore, the only operation to be applied is the distributive operation. In 
consideration of the large number of cases that could be involved, proceeding to 
change a sum of products into a product of additions or vice versa may end up 
in a combinatorial explosion O(2n) with n the number of clauses or minterms. 

So our next algorithms consist of giving us only one case without succumbing 
to the combinatorial explosion or to a transcomputational load, or preparing the 
structure to give us each of the cases. 

The interesting contribution Dijkstra gave us was the idea of the expanded 
graph, thanks to the principle of optimality we could grow the structure without 
having to restructure the whole container. Let’s say that this time we will also 
need a guiding principle, although it is based on the idea that it can be shown 
that it has been verified which decisions are as hard as the formula itself. That is, 
it is considered that if the decision taken fails, it is because the formula is not sa-
tisfied. 

The above property is written as follows: 

( ) ( )( )
{ }

xA R  B h Boolean : x XOR h A x XOR h B

z B : z x ,  x z A

≡ ∃ ∈ ∈ ∧ ∉

∧∀ ∈ ∉ ¬ → ∈
 

Considering A and B set of literals, and x a variable, this type of relation is 
similar to the content relation where we will say that B is contained in A except 
for the element x when all its elements are contained in A and the element x is 
found in both sets but in one affirmed and in the other negated. 

When this property occurs between two clauses, we will say that the literals of 
the second one are in the first one, so it will not be of interest to compute the 
version of the literal of the first one because the second one is more urgent in 
order to satisfy the formula. 

Let us study some examples: 
{−1, 2, 3} R1 {1, 2, 3, 4} = true 
{1, 2, 3} R1 {−1, 2, 3, 4} = true 

{1, 2, 3, 4} R1 {−1, 2, 3, 4} = true 
{1, 2, 3, 4} R1 {−1, 2, 3} = false 

{1} R1 {−1} = true 
{1} R1 {1} = false 

{1} R2 {−1} = false 
{1, −2} R2 {1, 2} = true 

Now we can elaborate a little on what it means for two clauses (one long and 
one short) that satisfy this property in one of their literals to be multiplied: 

( )( )i i i i i i X A X A B  X A  X B X A A  X B¬ ∨ ∨ ∨ = ¬ ∧ ∨¬ ∧ ∨ ∧ = ∨¬ ∧  

As we can see from the previous formula, only the term of the literal appears 
expressed with the same sign as in the short. So it follows that if this property 
were given in a literal we will know the expression of the literal cannot be found 
in the long clause. Even if this happens for each clause (to be the long one), with 
the same literal, then the literal would be independent of the formula. 
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( )j i k j iji j k C R C I C ,X∀ ∀ ∃ → ∏  

The idea is to study each variable and determine which literal of that variable 
in a clause is necessarily associated with a solution. That way, if the clause in 
question is not found, the formula will be considered not to depend on that va-
riable. 

Having part of the solution, the next step will be to project it onto the input to 
continue with another literal and find once again the clause that depends on the 
formula. 

3.1. Method 1 

Given a product of clauses, we will say that V is the number of variables and n is 
the number of clauses. 

Input: P = set of clauses; Each clause a set of boolean literals. 
Output: S = set of literals; where ∏S = 1→∏P = 1 

 

 
 

If the result of Algorithm 1 is the empty set, then if the input is a product of 
clauses it returns that the formula is unsatisfiable, while if the input is the union 
of minterms the empty set means that the formula is a tautology. 

Examples: 
In the following tables Table 1 and Table 2 we will analyze the formula: 
(x + y + z + t)(x + ¬y + z)(x + y + z)(¬x + ¬y + z)(¬x + z + t)(¬x + y + z + u) 
while in the tables Table 3 and Table 4 we will study: 
(x + y + z)(¬x + z + ¬t)(x + ¬y + t)(x + ¬y + ¬t)(y + z + t) 
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Table 1. Example from (x + y + z + t)(x + ¬y + z)(x + y + z)(¬x + ¬y + z)(¬x + z + t)(¬x + 
y + z + u) = 1. 

1 x x·¬y x·¬y·z 

(¬x + ¬y + z) Rx (x + y + z + t) 
(¬x + ¬y + z) Rx (x + ¬y + z) 
┴ Rx (x + y + z) 
(x + ¬y + z) Rx (¬x + ¬y + z) 
┴ Rx (¬x + z + t) 
(x + y + z) Rx (¬x + y + z + u) 

┴ Ry (¬y + z) 
┴ Ry (z + t) 
(¬y + z) Ry (y + z + u) 

┴ Rz (z + t) 
┴ Rz (z + u) 

 

 
Table 2. Example from (x + y + z + t)(x + ¬y + z)(x + y + z)(¬x + ¬y + z)(¬x + z + t)(¬x 
+ y + z + u) = 1. 

1 ¬x ¬x ¬x·z 

(¬x + ¬y + z) Rx (x + y + z + t) 
(¬x + ¬y + z) Rx (x + ¬y + z) 
┴ Rx (x + y + z) 
(x + ¬y + z) Rx (¬x + ¬y + z) 
┴ Rx (¬x + z + t) 
(x + y + z) Rx (¬x + y + z + u) 

(¬y + z) Ry (y + z + t) 
(y + z) Ry (¬y + z) 
(¬y + z) Ry (y + z) 

┴ Rz (y + z + t) 
┴ Rz (¬y + z) 
┴ Rz (y + z) 

 

 
Table 3. Example from (x + y + z)(¬x + z + ¬t)(x + ¬y + t)(x + ¬y + ¬t)(y + z + t) = 1. 

1 x xz 

┴ Rx (x + y + z) 
┴ Rx (¬x + z + ¬t) 
┴ Rx (x + ¬y + t) 
┴ Rx (x + ¬y + ¬t) 
┴ Rx (y + z + t) 

┴ Rz (z + ¬t) 
┴ Rz (y + z + t) 

 

 
Table 4. Example from (x + y + z)(¬x + z + ¬t)(x + ¬y + t)(x + ¬y + ¬t)(y + z + t) = 1. 

1 ¬x ¬xy ¬x¬y ¬x¬yz 

┴ Rx (x + y + z) 
┴ Rx (¬x + z + ¬t) 
┴ Rx (x + ¬y + t) 
┴ Rx (x + ¬y + ¬t) 
┴ Rx (y + z + t) 

┴ Ry (y + z) 
┴ Ry (¬y + t) 
┴ Ry (¬y + ¬t) 
(¬y + t) Ry (y + z + t) 

(¬t) Rt (t) 
(t) Rt (¬t) 

┴ Rz z 
┴ Rz (z + t) 

 

 
Thesis. Algorithm 1 works well for formulae where literals do not change sign 

in the same clause. 
COR: If thesis is true, Method 1 works with n-queens problem [Annex 8]. 
COR: For n queens algorithm is DTIME ~O(n14) 
Dem. variables V~O(n2), clauses x ~O(n3) 
DTIME (SAT) ~O(x2V4)) 
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DTIME (n-queens) ~O(n2·3+2·4) = O(n14) 

3.2. Method 2 

Based on our understanding of how the method 1 works, it can be versioned for 
a Turing machine whose cursor is not sequential, but random: that is, it can be 
used to work with machines that look a bit more like today’s computers. 

To do this, we create a data structure that will help us predict which literals 
are likely to be avoided when a valid minterm is found. That is, the algorithm 
will end up generating the structure that we will use later to find various cases. 

So we will use a new operator that will be applied on each pair of clauses: 

{ }xA / B z | z A Z B z x z x= ¬ ∈ ∧ ∉ ∧ ≠ ∧ ≠ ¬  

{ }A : B x | x A x B x A x B= ∈ ∧¬ ∈ ∨¬ ∈ ∧ ∈  

A:BA B {(A : B,A / B) | A : B | 1}∼ = ← =  

Examples: 
{1, 2, 3, −4}~ {1, 2, 4} = (4, {−3}) 
{3, −4} ~ {1, 2, 4} = (4, {−3}) 
{1, 2, 4} ~ {1, 2, 3, −4} = (4, Ø) 
{1, 2, 3, −4}~ {−1, 2, 4} = Ø 
{1, 2, 3, −4}~ {−1, 2} = (1, {−3, 4}) 
Another possible representation that can be chosen considering certain abuses 

of notation would be to use Boolean expressions: 
(x + y + z + ¬ t) ~ (x + y + t) = (t, ¬z) 
(z + ¬ t) ~ (x + y + t) = (t, ¬z) 
(x + y + t) ~ (x + y + z + ¬ t) = (t, 1) 
(x + y + z + ¬ t) ~ (¬ x + y + t) = Ø 
(x + y + z + ¬ t) ~ (¬ x + y) = (x, ¬z·t) 
This operator is the one that will allow us to go through the whole list of 

clauses and indexes to keep them updated. 
Algorithm 2.1 Preparation of clauses to extract minterms efficiently. 
Input: P = set of clauses; Each clause a set of boolean literals. 
Output: <C, I> = list of clauses and indexes; the indexes is a dictionary whose 

keys are the literals of the associated clause and the value mapping each key is a 
boolean function that triggers the prohibition to use that literal of the clause. 
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Once the two lists have been generated, the following algorithm must be ap-

plied to extract the k-th minterm: 
Algorithm 2.2. 
Input: S = <C, I>, integer k 
Output: M, minterm where ∏M = 1 → ∏C =1 or not if it were not possible. 
 

 
 
To understand Algorithm 2.2 the term “A activates B” has been used, it is 
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understood that if A is a minterm and B a Boolean function then “A activates B” 
if A → B; i.e. A is a sufficient solution of B. 

The following examples will be used to examine Algorithm 2.2. 
Example 1. 
In Table 5 we see which conditions must be fulfilled for the literals of each 

clause not to be chosen. For example, if q = 1 then clause 1 does not support the 
literal ¬p. Note how if the solution incorporates sp = 1 then clause 3 will not give 
a solution or that if the solution incorporates q = 0 then clause 4 won’t do it ei-
ther. 

So we will execute Algorithm 2.2 in Table 6. 
In clause 2 r is deactivated because ¬s was chosen in clause 0, and q because 

¬p. So, is it enough to finish the algorithm? We have to consider that clause 2 
probably has more information than the rest in the case K = 0. Under an index-
ing there is an ideal order which is fixed to get a solution. So, if it is so, the 
clauses that succumb to an exception need to be put at the beginning. 

That is why we will consider varying Algorithm 2.2 by permuting some 
clauses as shown in Table 7. 

After executing the step in Table 7, we can continue permuting in Table 8 
and Table 9. 

At this point, in Table 10, we notice that clause 2 cannot be moved again: so it 
is enough to understand that the formula has no solution. 
 
Table 5. Example of a formula without solution. 

0 1 2 3 4 5 6 7 

(¬s + p) (s + ¬p) (¬r + q) (r+ ¬q) (s + r) (p + ¬q) (¬s + q) (¬p + ¬r) 

s: ¬r s: ¬q r: ¬s r: p s: ¬p + ¬q p: ¬s + r s: p + ¬r p: s + q 

p: r p: q q: ¬p q: s r: p + ¬q q: r + s q: ¬r + ¬p r: q + ¬s 

 
Table 6. Studying Table 5 in case K = 0 (the first literal in each clause if possible). 

0 1 2 3 4 5 6 7 

(¬s + p) (s + ¬p) (¬r + q) (r+ ¬q) (s + r) (p + ¬q) (¬s + q) (¬p + ¬r) 

s: ¬r s: ¬q r: ¬s r: p s: ¬p + ¬q p: ¬s + r s: p + ¬r p: s + q 

p: r p: q q: ¬p q: s r: p + ¬q q: r + s q: ¬r + ¬p r: q + ¬s 

¬s ¬p ┴      

 
Table 7. Permuting Table 6 in case K = 0. 

2$ 0 1 3 4 5 6 7 

(¬r + q) (¬s + p) (s + ¬p) (r+ ¬q) (s + r) (p + ¬q) (¬s + q) (¬p + ¬r) 

r: ¬s s: ¬r s: ¬q r: p s: ¬p + ¬q p: ¬s + r s: p + ¬r p: s + q 

q: ¬p p: r p: q q: s r: p + ¬q q: r + s q: ¬r + ¬p r: q + ¬s 

¬r p s ┴     
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Table 8. Step from Table 7 in case K = 0. 

3 2$ 0 1 4 5 6 7 

(r + ¬q) (¬r + q) (¬s + p) (s + ¬p) (s + r) (p + ¬q) (¬s + q) (¬p + ¬r) 

r: p r: ¬s s: ¬r s: ¬q s: ¬p + ¬q p: ¬s + r s: p + ¬r p: s + q 

q: s q: ¬p p: r p: q r: p + ¬q q: r + s q: ¬r + ¬p r: q + ¬s 

r q ¬s ┴     

 
Table 9. Step from Table 8 in case K = 0. 

1 3 2$ 0 4 5 6 7 

(s + ¬p) (r + ¬q) (¬r + q) (¬s + p) (s + r) (p + ¬q) (¬s + q) (¬p + ¬r) 

s: ¬q r: p r: ¬s s: ¬r s: ¬p + ¬q p: ¬s + r s: p + ¬r p: s + q 

p: q q: s q: ¬p p: r r: p + ¬q q: r + s q: ¬r + ¬p r: q + ¬s 

s r q ┴     

 
Table 10. Step from Table 9 in case K = 0. 

0 1 3 2$ 4 5 6 7 

(¬s + p) (s + ¬p) (r + ¬q) (¬r + q) (s + r) (p + ¬q) (¬s + q) (¬p + ¬r) 

s: ¬r s: ¬q r: p r: ¬s s: ¬p + ¬q p: ¬s + r s: p + ¬r p: s + q 

p: r p: q q: s q: ¬p r: p + ¬q q: r + s q: ¬r + ¬p r: q + ¬s 

¬s ¬p r ┴     

 
This algorithm can be called Algorithm 2.3, that is an iterative version of Al-

gorithm 2.2. 
Example 2. Table 11 will be the same example 1 but without clause 3. That is 

for incorporating a solution. 
From Table 11 we will study how Algorithm 2.2 works in Table 12 and Al-

gorithm 2.3 in Table 13. 
So from Table 13 we see now the solution is: ¬r·p·s·q. 
Example 3. 
For the next example in Table 14 we will consider a formula of 3 literals. 
Notice that clause 0 can be substituted by (x + z) or clause 2 by (x + ¬y). So 

after using Algorithm 2.2 for different K. 
0: xz, 1: zx, 2: x¬ty, 3: z¬y, 4: xz, 5: zx... 
We get these minimal solutions: xz + xy¬t + ¬yz. 
Thesis. Algorithm 2.3 only succumbs to an exception when the formula is 

unsatisfiable. 
COR: If the thesis is true, Method 2 solves any boolean formula in polynomial 

time. 
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Table 11. Example of formula with a solution. 

0 1 2 3 4 5 6 

(¬s + p) (s + ¬p) (¬r + q) (s + r) (p + ¬q) (¬s + q) (¬p + ¬r) 

s: ¬r s: ¬q r: ¬s s: ¬p + ¬q p: ¬s + r s: p + ¬r p: s + q 

p: r p: q q: ¬p r: p + ¬q q: r + s q: ¬p r: ¬s 

 
Table 12. Studying Table 11 in case K = 0. 

0 1 2 3 4 5 6 

(¬s + p) (s + ¬p) (¬r + q) (s + r) (p + ¬q) (¬s + q) (¬p + ¬r) 

s: ¬r s: ¬q r: ¬s s: ¬p + ¬q p: ¬s + r s: p + ¬r p: s + q 

p: r p: q q: ¬p r: p + ¬q q: r + s q: ¬p r: ¬s 

¬s ¬p ┴     

 
Table 13. Permuting Table 12 in case K = 0. 

2$ 0 1 3 4 5 6 

(¬r + q) (¬s + p) (s + ¬p) (s + r) (p + ¬q) (¬s + q) (¬p + ¬r) 

r: ¬s s: ¬r s: ¬q s: ¬p + ¬q p: ¬s + r s: p + ¬r p: s + q 

q: ¬p p: r p: q r: p + ¬q q: r + s q: ¬p r: ¬s 

¬r p s 1 1 q 1 

 
Table 14. Example with a formula of 3 literals. 

0 1 2 3 4 

(x + y + z) (¬x + z + ¬t) (x + ¬y + t) (x + ¬y + ¬t) (y + z + t) 

x: t x: ¬y + y y: ¬z x: ¬z y: ¬x 

y: ¬t + t t: ¬y t: 1 y: ¬z t: x 

   t: 1  

3.3. Method 3 

It is possible to speak of a third method whose complexity is lower, provided 
that it takes advantage of having several machines running in parallel. Using 
matrix notation, n machines on an input of n clauses can distribute the work of 
multiplying the matrix by itself and go from having a cost of O (n2 log n) to be-
ing O (n log n) for large inputs. 

To do this, the following rules must be available: 
1) Two clauses of size n and m generate a submatrix of 1’s of nxm. 
2) Every literal i and j that are opposites becomes 0 in (i, j). 
3) Every literal i and j that are the same becomes 0 in k ≠ i (i, k) and k ≠ j (k, 

j). 
In this way a matrix is formed as in Table 15 with the submatrices relating all 

clauses to themselves to form a square matrix of size mxm where m is the sum of  
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Table 15. Matrix T0. 

T0 (x +y +¬z) (¬x +¬y +z) (¬x +y +z) 

(x 1 0 0 0 1 1 0 0 1 

+y 0 1 0 1 0 1 0 1 0 

+¬z) 0 0 1 1 1 0 1 0 0 

(¬x 0 1 1 1 0 0 1 0 0 

+¬y) 1 0 1 0 1 0 0 0 0 

+z) 1 1 0 0 0 1 0 0 1 

(¬x 0 0 1 1 0 0 1 0 0 

+y 0 1 0 0 0 0 0 1 0 

+z) 1 0 0 0 0 1 0 0 1 

 
all literals along the input, or the product of the number of literals per clause 
times the number of clauses if it was the same. 

The matrix product consists of calculating the scalar product of row and col-
umn and returning 1 if the result is greater than or equal to n; n is the number of 
clauses. 

When the matrix multiplied in this way with itself gives the same matrix we 
will say that it has reached a Noetherian ideal, and if it maintains the main di-
agonal then we will proceed to find a k-th solution. To find the k-th solution we 
only have to choose a pair of clauses whose submatrix has more than one 1 and 
we select only one 1, then we calculate its noetherian ideal and if the result is 0 
then it was inconsistent, if on the contrary we repeat the procedure until the 
matrix reflects a single minterm. 

For the next formula. 

1
0

k mm m m m
ij ij ik kjkT T T T n=+

=
∧ ⋅ = ≥ ∑  

0 0 0 0 0 0 0
12 11 12 12 22 13 32 3T T T T T T T∧ ⋅  ≥ ⋅ ⋅ + +  

0 1 1 1 0 0 0 1 1 0 1 1 1 0 0
1 0 1 0 1 0 1 0 1 1 0 1 0 1 0
1 1 0 0 0 1 1 1 0 1 1 0 0 0 1

0 0 1 1 0 0
0 1 0 0 0 0
1 0 0 0

3
0 1

       
       ∧ +       

              
  
  +   

    

≥



 

0 1 1 0 1 1 0 1 1 0 0 1
1 0 1 1 0 1 1 0 1 0 0 0
1 1 0 1 1 0 1 1 0 1

3
0 0

        
        ∧ + +        

               

≥



 

0 1 1 0 0 1 0 0 1
1 0 1 0 0 0 0 0 0 x z x z
1 1 0 1 0 0 1 0 0

     
     ∧ = = ¬ ∧¬ ∨ ∧     
     
     
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What this algorithm should induce us is that it is still possible to find methods 
that on the most powerful machines can give us more efficient results than the 
quadratic one. 

It is easy to see this algorithm will work because this little lemma: 
( ) ( )1 0i i i iA A A u n A− = ⇒ = − +∑∏ , where u(x) = 1 iff x is not negative, 

else 0. 
Considering a matrix is formed by subtables, each table with only one solution 

is enough to be a sufficient condition to ensure the satisfiability of the complete 
formula under a Noetherian ideal, as it is exposed in Table 16, because every 
solution will get catched. 

So after finding a solution if there is noone f is unsatisfiable. 

4. Correctness and Efficiency of Methods 

The engine that solves methods 1 and 2 are the same, and the motivation that 
justifies the results of methods 2 and 3 are also based on the same. The first me-
thod expects an input whose literals in each clause do not complicate the results. 
The second method, however, works optimally if the clauses are available in the 
right order, which can be evaluated by pre-calculating their structure. In fact, the 
superstructure of method 3, even if it incorporates new solutions in its ideal, 
these will be eliminated by collapsing them to the search for a single case. 
Therefore, at least in method 3, we can be absolutely certain that the method 
works. 

In all three methods, if the input of the algorithm is a set of clauses the result 
is a minterm that solves the formula, while if it is a set of minterms the result is a 
clause that contradicts the formula. So the objective is to calculate a term not 
neutral after applying the distributive operation of sums and products. 

Method 1 works on a sequential machine, while method 2 works on a random 
access machine. Method 3 works on a random access machine, and is easily dis-
tributable on machines working in parallel. 

The Outer Loop of Algorithm 1 

Attention should be drawn to the outer loop of the algorithm, as it traverses the 
variables of the formula; which must be a constant value with respect to the size 
of the input. It is still possible that for some problems the number of variables 
may be made variable, in which case it should be studied to what extent the most 
likely performance of the algorithm can be studied. 
 
Table 16. Relationship between the original formula and the Noetherian Ideal of its ma-
trix. 

SAT (f) → Noetherian (f) 

1 1 1 

0 1 1 

0 1 0 
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To begin with, the outer loop runs through all variables as long as it finds any 
pair of clauses containing both affirmed and negated variables. So if only one 
contains it, it will automatically correspond to the elimination of that clause. 
That is, the loop expects to delete clauses as it recognises variables. So if the va-
riable expression were larger than the clause expression, the loop could be rein-
terpreted as O (n3V3) where n is the number of clauses and V the number of va-
riables. Although, essentially, in reality the algorithm is quadratic. 

5. Discussions 

After reading the conclusions of Section 4, it follows that SAT is in P and more-
over it is not transcomputational. Furthermore, it follows that there is poly-
nomial resolution also in the n-queens problem by taking the number of queens 
as a variable value [Annex 8]. If we combine this result with the Levin-Cook 
theorem, as well as with Fagin’s papers [10] or Karp’s conclusions [11], it follows 
that the class NP = P because they believe they have proved that SAT is part of 
NP-completeness, which means that if this problem is solvable in polynomial 
time then any NP-problem will be solvable in polynomial time. 

However, does that mean that any cryptographic algorithm that is expressed 
as an NDTM configuration will quickly have an TM that decrypts it? If so, why 
is there no library that implements the formula posed by Cook’s theorem? 

On the other hand, Fagin considers that an NDTM can be expressed through 
second-order logic; knowing that PROLOG is an example of a programming 
language that can work under these conditions. However, it can be proved that if 
the formulas could be expressed in Horn clauses [12], then the resolution would 
be in P time.   

Now, isn’t there some equivalence between a product of clauses and a product 
of Horn clauses? Well, there is a probabilistic equivalence that makes the prob-
lem reduce to class R, which is the class of problems that are solved under high 
probability. That is, if cryptographic problems could be solved probabilistically 
high, as this reference states, then it would not matter that their resolution is 
exponential in the worst case, because from a practical point of view it would be 
easy to break most cryptographic systems. In fact, from the way the Annex 7 is 
developed, we see that equivalence between clauses is a trivial process, which 
anyone could try. However, there is no library in PROLOG, or in CAML, that 
develops any problem. The reason is that the world designed from a formal log-
ical theory is not comparable in intelligibility with the operations that take place 
within an unrestricted grammar. Second-order logic will not help predict what is 
decidable, as Turing claimed. 

On the other hand, in Matiyasevich’s words [13], Julia Robinson failed to find 
a polynomial formula to replace an exponential, but she found sufficient condi-
tions. That is to say, given a formula expressed exponentially, as corresponds to 
the limit established by Turing as the number of demonstrations that an a-TM 
needs to simulate a c-TM, it is possible to find a polynomial expression that 
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represents the same limit. So formally, there will always be a polynomial coordi-
nate linking NP with P, as a corollary. However, neither has it been seen that the 
Matiyasevich formulation was developed to represent any diophantine equation. 
Note, for example, that elliptic equations are amenable to representation within 
the polynomial coordinate, but there is no technology to develop it. Another 
formalism?   

6. Discrepancies 

A recurring theme in my rebuttals will be to say that we do not see libraries, 
code, structures, etc., created from these theoretical concepts. However, the rea-
son we do not see them is not because the statements do not link to technologi-
cal reality, but because the way the statements are answered is incompatible with 
the technology. That is, with a different technology the demonstrations will go 
hand in hand. 

So we need a more correct philosophy, namely more rigorous than mathe-
matical formalisms. And Cook’s theorem is perfect to understand what I mean. 

6.1. Refutation of Cook’s Theorem and Relatives 

Cook’s theorem tells us that given a configuration of a TM that is classified as an 
NP-problem (it ends up in two possible states QY or QN after a number of steps 
no greater than a polynomial expression whose variable is the size of the input) 
this configuration can be transformed into a product expression of disjunctions 
of logical literals. Where a literal is an affirmed or negated variable, and a varia-
ble is a value between true or false. 

The formalism we are going to focus on is the fact that we do not have an ex-
act expression of how long it will take for NDTM to determine the final state. At 
all times we will have an expression in [2] of the form p(n), where n is not the 
input, but the size of the input and where p is a polynomial function that can be 
determined, as long as it is an expression of maxima. That is, the intended value 
is always less than p(n). 

But can we attribute to a NDTM configuration a polynomial expression from 
the size of the input that delimits the termination time? No. In fact, a bound less 
than infinity cannot be assured, as Turing’s conclusion established by decidabil-
ity [9], so a polynomial bound is even more impossible. 

That is why Cook’s theorem is not constructible, the input to be passed to the 
machine that generates the input to SAT is also a polynomial expression with 
respect to the size of the input. 

Given a computer security protocol based on a one-way function, we confi-
gure a NDTM to evaluate whether a certificate results in the value given in the 
input and we have a maximum limitation on the size of the certificate to estab-
lish that it is an NP problem. That is, as with the halt algorithm, the existence of 
a correspondence does not imply that the configuration can actually be con-
structed; the correspondence may be a formalism that does not fit with a partic-
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ular TM configuration. This paradox is further developed in the annexes [Annex 
3]. 

6.2. The Complementary of an NP Problem Should Not Be a  
Difficult Concept to Calculate 

It is striking what Fagin does when he develops the idea of taking the expression 
of a problem and calculating its complementary [10]. When a language is ex-
pressed in such a way that we want to determine its complementary, here we see 
how Cook and Fagin provide us with comments that are very lacking in rigor: 
how do we determine the complementary of a problem? 

On the one hand, we see how Cook tells us that the complementary of the 
SAT problem is to determine whether a formula is a tautology. In the appendices 
we see that the tautology is trivially SAT [Annex 5], so hasn’t Cook noticed? 

Fagin, however, is more mystical when it comes to determining a comple-
mentary. One would expect that if a set of inputs (such as prime numbers) we 
want to extract its complementary (such as composite numbers) then there must 
be a unique correspondence in a clear-cut way. However, the real numbers are 
contained within the complementary of the naturals, which encompasses the 
prime numbers, so presupposing that composite numbers is the complementary 
of the primes forces us to reject the real numbers as numbers. 

Even so, in the annexes [Annex 4] I provide an objective mechanism for de-
termining the complementary of a problem; specifically an NP-co according to 
Fagin. The resolution of that annex tells us that its complementary is an NP, so 
according to Fagin’s theorem 15 in [10] coNP = NP. 

The problem with this statement is that it is easy to determine the comple-
mentary of SAT. However, if we create an NP-problem full of very heterogene-
ous variables and domains, the definition of the complementary can lead us to 
structures that could be defined in a non-rigorous way. That is, it is possible to 
define NP-problems where co-NPs are not decidable. 

For example, 
1) calculate the result of a diophantine equation where the variables are 

bounded by a fixed value. 
2) solve Post’s problem for inputs not greater than a certain length. 
3) determine the halt of algorithms that do not exceed a certain computation 

time. 
It must be understood that the existence of NP-co contradicts the existence of 

complementary NPs. 

6.3. Formalism Cannot Statically Represent a Dynamic Problem 

When a problem is posed, the input x corresponds to a resolution of acceptance 
or rejection. If there were a mechanism to speed up the decision process in the 
decision making of the possible bifurcations the same decision process is dem-
onstrated in the annexes [Annex 6] which is actually another way of expressing 
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the input. 
The annex shows that it is not possible to work with a static decision maker 

that works for all inputs, but that the decision maker is specific to each input. 
This leads to the fact that it is not possible to work with NP-co problems. 

6.4. Fagin Works with Second-Order Logic and Forgets  
Horn’s Clauses 

Another striking detail is how easy it is to convert a second-order logic (SO) 
problem that is very close to Horn clauses. In the appendix [Annex 7] it is 
shown that for practical purposes, not so much formal ones, Horn clauses simu-
late any SO formula as do current algorithms that calculate the primality of a 
number: with all the probabilistic precision we want. 

That is, Fagin claims in his paper [10] that second-order logical formalisms 
are equivalent to the NP class. That belief would lead us to believe that for prac-
tically any NP problem we will always have a representation that can be easily 
validated in polynomial time and that, with all the probability we need, will end 
up returning a practical result. 

However, nobody uses PROLOG or CAML to crack security protocols. It is a 
practical absurdity. Fagin has not helped at all to predict how technology works 
with this strange dogma. 

6.5. By Mathematical Formalisms We Will Always Say NP = P 

In an unappealable way, we see in the appendices [Annex 9] that Julia Robinson 
found a way to express any expression that uses the variable in the exponential 
to put it in the base of the power function. However, Matiyasevich correctly ex-
plained how this result should be interpreted: Julia Robinson failed in the con-
structive proof, but not in the formalism of the necessary condition. 

That is, a value needs to be incorporated which has not been established and 
which connects the problem to the transcomputational. However, formally one 
could already say, if a TM were defined with mathematical formalisms, that NP = 
P. For that would be the most accurate and, at the same time, the most useless 
for engineering. 

7. Conclusions 

When Cantor presented his idea that there are many infinites, Poincaré consi-
dered these ideas to be a disease for mathematics. Cantor’s formalisms led to the 
development of differential equations, and these led to the development of the 
theory of relativity, among other things. Therefore, even if formalisms are a 
looser mathematics, this does not mean that they are of no practical use. 

Just as we have shown that mathematical formalisms cannot describe the 
complexity of the notation of a TM, what they can define allows us to work un-
der the assumption that NP = P. As long as the inputs comply with a certain 
continuity that does not exploit the lack of rigor of the formal version of the TM. 
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However, when we work with cryptographic data, the inputs will be too variable 
to assert that the same thing will continue to be true. 

That is, depending on what you are going to use the Turing machine for, it is 
better to define it in one way or another. And that is the meaning of this essay: 
mathematical formalisms are neither better nor worse than constructivism. They 
develop in different areas. And after reading this essay one has to accept that any 
problem that is polynomially reduced constructively with SAT will have a poly-
nomial, non-transcomputational and probably trivial resolution. 

The Conspiracy Theorists 

Finally, it would seem legitimate, at least, to consider whether it is not possible 
that all this technology was already known and expressly hidden. What is in it 
for the various authors who claimed to be unaware of this possibility, as well as 
university professors, lecturers, etc. What is in it for all these huge numbers of 
people repeating something they knew was nothing but propaganda? One has to 
think of influencers and foundations offering rewards, can one therefore expect 
that all the rewards were placed in the hope that no one could solve such prob-
lems? If so, it would confirm the belief that this technology is really a milestone 
for technology. 

One has to think of so many blog articles and Youtube videos that have been 
written under the assumption of the non-existence of the technology in this test, 
and that they could become obsolete as soon as someone would figure out how 
to solve these puzzles. 

Moreover, how could companies that depend on delivering breakthrough re-
sults and depend on operational research to the point of seeing their revenues 
multiply by reducing management costs on any of the 300 problems associated 
with this article pretend to ignore the existence of this technology? Is there a 
two-tier capitalism, as in companies that have a right to know about the exis-
tence of this technology and companies that don’t? 

The same has happened with the pharmaceutical industry or all governments 
in general when it comes to COVID: when it comes to creating vaccines, storing 
and distributing them, it could well be done in the most efficient way by a very 
close mathematical problem. However, admitting that such a technology already 
exists, where would that put the executive branch—wasn’t it said that we need a 
democratically imposed policy by a human being to choose how best to run the 
administration? If in the end a mathematical model is the dictator telling us 
what is the most efficient resolution, then is that our conspiracy, that they will 
not want to admit the existence of this technology because it might displace the 
executive from its beneficent role? 

But not only that, whenever there is an innovation that brings about a radical 
change in thinking, the more senior people tend to try to crush the newer ones 
in the field. This unionization could be multiplied if a person who is not part of 
the official world ends up solving a major problem; as if it had happened over-
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night, because nobody knew about it until that moment. It is clear that the refus-
als could reach the point where peers will respond in a highly dastardly and 
overt manner. All for the sake of maintaining the guild and the corporation. 

So we are left with the hacker world. Did they have access to this technology? 
What is really undeniable is that if this publication does not reach the official 
eyes of all, that world will benefit the most of all, and then the only reason why 
this technology will pose a security risk is because those working in these fields 
have decided to do so. 
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9. Appendix 
9.1. Annex 1. Factoring Is P-Reducible to SAT 

We will give an example of how some protocols are susceptible to find a SAT 
formula. The purpose of this annex is to encourage cryptographers to better se-
lect their security protocols. 

To begin with, let us define a logical operation of Boolean propositions: 
(A|B|C): returns true if one and only one of the propositions is true. 
Therefore: 
(A|B|C) = A¬B¬C + ¬AB¬C + A¬B¬C. 
Likewise, it is easy to deduce that: 
(A|B|C) = (¬A + ¬B + ¬C)(A + ¬B + ¬C)(¬A + B + ¬C)(¬A + ¬B + C)(A + 

B + C) 
Corollary: A formula written with operators | and products is proportional in 

space to a formula written with or and products. 
Now we incorporate the following theorem: 
Theorem: (¬A|AB|Z1)(¬B|AB|Z2)(Z1|Z2|¬A XOR B) = 1, given A, B Boolean 

propositions. 
What the above theorem tells us is that it is equivalent to work with problems 

within SAT than with problems expressed with | and products. Therefore, when 
we see a well-formed formula that uses XOR operators we can trivially transform 
it to an expression of products of | or products of or easily. 

Given a natural number we are interested in knowing which two natural 
numbers multiplied together give the same number. It is possible to incorporate 
the restriction that both be greater than 1, but here we will simply study how 
easy it is to find the SAT expression constructively. 

N = A × B, we ask ourselves about the values of A and B 
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To relate the coefficients of the unknowns to the expected result, we create a 
table that will help us to know how the logic gates will be organized. 

In the following Table, I will use three types of logic gates: 
Gate A takes the top value u and the left value I as inputs and returns right u 

XOR I, while returning down u AND I. 
Gate + takes the value of up and returns down and the value of left returns 

right. 
Gate L takes the value from below and returns it to the right. 
In Table 17 you can see how to connect the gates. 
We note that the number of gates A is quadratic with respect to the input size. 

When the remaining gates have no impact on the complexity of the formula. 
Therefore the factorisation of numbers is polynomially reducible to SAT con-

structively. 
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Table 17. Distribution of the gates. 

 a0 a1 a2  

b0 A + + h0 

b1 A A + h1 

b2 A A A h2 

 L A A h3 

  L A h4 

   L h5 

9.2. Annex 2. Strict Implication 

According to [14]. Given A, B propositions of logic are given: (A → B) OR (B → 
A) = True se can see its demonstration in Table 18. 

As a corollary it follows that it will always be true: (A → ¬A) OR (¬A → A), 
from which it follows that the implication is not very similar to a precedence 
operator. That is, it does not work very well to say that the implicant is guaran-
teed by the implicant. 

9.3. Annex 3. Formalisms Do Not Fit Transformation Operations 

We are going to have a Turing machine that transforms states over time thanks 
to a configuration σ. The logical formalism tells us that Qa Qb if and only if there 
exists an integer K where Qa, k → Qb, k+1, where → is the logical implicator. More-
over we know that the fact that Qa Qb in the Turing machine implies a that the 
transition (a, b) is described in σ. Being a and b two indices to complete states of 
a Turing machine, not only its register. 

So we start from a Turing machine that intends to solve a problem that will 
end in two possible final states: QY, T or QN, T at some T for each input. 

1) We define Qz, k a state through which the input to which we submit the 
machine in time k does not pass and which leads to the rejection QN, k+1 directly. 

2) (z, N) is transition described in σ according to 1. 
3) For all k: Qz, k → QN, k+1 [It follows from 2 and 1, leads to rejection]. 
4) (Qz, k → QY, k+1) OR (QY, k+1 → Qz, k) [theorem to be taken from Annex 2]. 
a) Sup Qz, k → QY, k+1 

b) Formally we deduce that Qz, k implies two different states in a deterministic 
machine.  

Both QY, k+1 and QN, k+1. 
5) QY, k+1 → Qz, k [It follows from the previous branch, by contradiction]. 
6) QY, k+1 → QN, k+1 [Combining steps 3 and 5]. 
7) So if a state is recognised it is also not recognised at the same time. 
Therefore the formalisms are too lax to represent machines. 

9.4. Annex 4. The Complementary of SAT Is SAT 

Thus, every problem that reduces to SAT has as its complementary an NP. 
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Table 18. Demonstration (A → B) OR (B → A) is a Theorem. 

A → B OR B → A 

0 1 0 1 0 1 0 

0 1 1 1 1 0 0 

1 0 0 1 0 1 1 

1 1 1 1 1 1 1 

 
When determining the complementary of a language L, we will say that if w є 

L then LC is the complementary and ¬(w є LC). So if we say that L belongs to a 
class that is closed by its complementary then LC will also belong to the class. 

We start from the expression we use to represent an entry in SAT 
SAT: Ǝxi: xi є Boolean → f(xi) = 1 
SATc: ¬(Ǝxi: xi є Boolean → f(xi) = 1) 
To determine the complementary we must first extract the quantifier 
SATc: xi: ¬(xi є Boolean → f(xi) = 1) 
The next is to negate the implicator 
SATc: xi: xi є Boolean & ¬( f(xi) = 1) 
It only remains to recognise that if the variables are Boolean and a Boolean 

formula is negated then the result is the complementary: 
SATc: xi: xi є Boolean & f(xi) = 0. 
Therefore, SATc consists exactly of: 
1) Determine if the variables in the input are boolean. If they are not, return 

QN. 
2) Assign to R the result of SAT for that input. 
3) If R is QY then return QN; otherwise return QY. 
As can be seen trivially SATc reduces trivially from SAT. 

9.5. Annex 5. Tautology Is SAT 

We are going to show that finding the tautology of an expression is finding SAT. 
To do this we are going to do a series of automatic and equivalent transforma-
tions: 

SAT: Ǝxi: xi є Boolean → f(xi) = 1. 
TAU: xi: xi є Boolean → f(xi) = 1 
We will develop TAU to see how we reduce it from SAT by the double nega-

tion theorem: 
TAU: ¬¬(xi: xi є Boolean → f(xi) = 1) 
TAU: ¬Ǝxi: ¬(xi є Boolean → f(xi) = 1) 
TAU: ¬Ǝxi: xi є Boolean & ¬(f(xi) = 1) 
The expression of f is Boolean and the TAU problem works with Booleans, so 

the complementary will be the Boolean complementary: 
TAU: ¬(Ǝxi: xi є Boolean & ¬f(xi) = 1) 
TAU is to ensure that we will not find boolean variables that return 1 in the 

complementary boolean expression put in the input. However, as can be seen in 
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the appendix, the Boolean complementary of SAT constructively forms part of 
SAT and reduces polynomially. So ¬f = fc. 

TAU : ¬(Ǝxi: xi є Boolean & fc(xi) = 1) 
That is,  
1) We determine what the complementary function of the input is [Annex 1]. 
2) We assign to R the final state of SAT over the complementary function. 
3) If R = QY, then TAU must end in QN. If R = QN, then TAU ends in QY. 

9.6. Annex 6. When NP-Complete Problems Are Not Possible 

Let us start from an expression formulated with diophantine equations, whose 
variables are bounded by a constant K: 

Ǝxi: xi < K → D(xi) = 0.                    (1) 

We ask ourselves if it is possible to find some integers that satisfy a diophan-
tine equation. If we make a simple transformation, we can transform Eq1 into 
another equation by converting the constant into a variable: 

Ǝxi, Ǝz: xi < z → D(xi) = 0.                  (2) 

Equation (1) covers the whole spectrum of NP-problems according to Cook, 
since it is not the concern of formalists to ensure the existence of a machine, but 
that its variables are bounded so that there is a verification in polynomial time. 
However, Equation (2) corresponds to the spectrum of all TMs, and is the set of 
all enumerable problems, because for each diophantine equation an additional 
variable can always be defined a posteriori whose value is greater than that of all 
the variables without any change in the number of solutions, nor any complica-
tion in computing it. 

However, we can change Equation (2) for another equation which we will see 
is equivalent: 

Ǝxi, Ǝz: xi < K < z < 2K → D(x i) = 0            (3) 

At this point we have defined the new variable z as having to be at a value be-
tween a value supremum to all variables and its exponential of two. This can also 
be assumed, for example:   

z = Σxi
2 

That is, without having to define a K value as a constant, a diophantine equa-
tion can be extended to have a polynomial coordinate with respect to the values 
of the variables that would solve the input.  

Let’s say that z is the certificate that an NDTM needs to give a solution to a 
diophantine equation D. So z = f(D), and it is given that the number of decisions 
that must be made in the machine to make it deterministic will be K. So the 
question is whether the function f that creates the certificate for any diophantine 
equation is decidable. 

We must understand that D has a constant value with respect to the size of the 
input, so if f exists then z will also be a constant value.  
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Ǝxi: xi < K < f(D) < 2K → D(xi) = 0               (4) 

And this leads us to the fact that Equation (4) is equivalent to Equation (2) 
and Equation (1) at the same time. So when in Equation (2) or Equation (1) a 
correspondence is established between the configuration of a Turing machine 
and its input-independent certificate then that leads us to an inconsistency. 

Corollary 1: The certificate is an expression of the input. 
Corollary 2: NP-complete problems are not possible. 
Dem. An NP-complete implies that solving that problem independently of the 

input directly generates the certificate. This is inconsistent. 
Corollary 3: There can be specific MT definitions for which NP-co exists. 
Dem. An MT with restricted inputs does not generate the merging of Equa-

tion (2) and Equation (4), so an MT could be defined from a set of constraints 
that the input will have and not cause the inconsistency. 

9.7. Annex 7. There Is a Formula in Horn Clauses Practically  
Equal to Any Fbf 

Under a practical computer science philosophy, it is possible to create algo-
rithms that are sufficiently accurate to work well in average cases [15]. An ex-
ample of this will be presented here: For any probability value p > 0 and f 
second-order logical formula, we will say that there exists a formula h expressed 
in Horn clauses whose satisfaction will coincide with f under probability greater 
than p. 

To achieve this we will start from an expression of the form 3-SAT for sim-
plicity, where all the clauses are formed by the sum of three literals (affirmed or 
negated propositions) and that multiplied gives us the formula to be satisfied. 

The exercise to be carried out in this annex will be to establish a link between 
3-SAT and HORN. To do so, we will recognise all the clauses that are in SAT 
and cannot be in HORN, these are of the form:  

1) (x1 + x2 + x3) 
2) (x1 + x2 + ¬x3) 
3) (x1 + x2)  
In the sense that there must not be more than one asserted literal. So we col-

lect all the variables V that have an asserted literal in these clauses. 
We start from the clauses of R a copy of the clauses of SAT and determine a k 

large enough to comply: 

2 1
2

Vk

kp
 −

>  
 

 

where |V| is the number of variables and p is the value set as the minimum 
probability that HORN will solve SAT. 

For each of these variables V we proceed as follows: 
1) K new variables associated with V are created, called V1, ···, Vk. 
2) The clauses (¬V + ¬Vi) for each i between 1 and k are incorporated into the 

formula R. 
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3) For each clause where V appears in R, V is replaced by ¬Vi, for each i, pro-
ceeding to version the clause for each i from 1 to k.   

The result R will be an expression of HORN clauses to which spurious solu-
tions have been added which, in proportion to the large number of valid solu-
tions, will not represent more faults than you want to assume. 

If the algorithm is well programmed, the size of the input will have been ex-
tended by no more than O (k2). 

9.8. Annex 8. Transformation of the n-Queens into SAT 

The n-queens problem consists in the fact that we have a board of nxn and we 
must place n queens on it without any of them threatening each other according 
to the rules of chess. 

The peculiarity of the n-queens problem is that as n increases, the number of 
variables in the formula will increase. However, since our methods work inde-
pendently of the number of variables because it is not a formalism, this will not 
be relevant. 

To determine how large the input will be we can recognise a quadratic num-
ber of variables with respect to the number of queens, where each variable will 
recognise four coordinates: (f, c, a, b). Where f is the row number, c is the col-
umn number, a is the secondary diagonal number and b is the main diagonal 
number. 

If we choose an example representation it would be as shown in Table 19. 
It can be seen that from the row and column coordinates the values of a and b 

can be deduced. Trivially: a = f + c − 1; b = f − c + n 
When it comes to creating the clauses, we will have two types: on the one 

hand there will be the clauses formed by the restriction that they must not 
threaten each other 

1) By rows: (¬Tfcab + ¬Tfc'a'b') O(n3) clauses are incorporated. 
2) By columns: (¬Tfcab + ¬Tf'ca'b') O(n3) clauses are inserted 
3) By diagonal a: (¬Tfcab + ¬Tf'c'ab') O(n3) clauses are inserted 
4) By diagonal b: (¬Tfcab + ¬Tf'c'a'b) O(n3) clauses are incorporated. 
With these clauses we avoid putting extra checkers, but at least we have to 

count n checkers. To impose the restriction of placing n draughts, the following 
clauses are incorporated: (Tf1a1b1 + ··· + Tfnanbn). n clauses are incorporated. 

Therefore, all conditions covered we observe that the n-queens problem is 
solvable by means of an input with O (n3) clauses. Partially incorporating the 
solution of the problem will not lead to an increase in complexity. 
 
Table 19. Example of naming the positions in the n-Queens. 

1 1 1 5 1 2 2 4 1 3 3 3 1 4 4 2 1 5 5 1 
2 1 2 6 2 2 3 5 2 3 4 4 2 4 5 3 2 5 6 2 
3 1 3 7 3 2 4 6 3 3 5 5 3 4 6 4 3 5 7 3 
4 1 4 8 4 2 5 7 4 3 6 6 4 4 7 5 4 5 8 4 
5 1 5 9 5 2 6 8 5 3 7 7 5 4 8 6 5 5 9 5 
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9.9. Annex 9. Every Exponential Expression Has a  
Polynomial Expression  

In this annex I will demonstrate that, without using a constructivist philosophy 
of the processes of mathematical demonstrations, every exponential expression 
has a polynomial expression, so the maximum bound is polynomial in both 
space and time. 

Alan Turing showed that a NDTM (choice TM in [9]) requires a cost O(2x) 
with x the size of the input to simulate a deterministic TM (automatic TM). 

However, given the work of Julia Robinson [13], the expression 2x = t can be 
expressed by diophantine equations with polynomial expressions of the form 
t~O(xk) for k constant, independent of x. 

One must work with a sufficiently large M so that it satisfies: M > 2·x·2x , i.e. is 
there a sufficiently large number that meets this requirement? Considering that x 
is less than infinity there will always be such a number, so formally NP = P. 
However, M must be determined from a supreme input size, so since there will 
always be inputs whose size is larger than M then constructively equality is not 
assured.  

On the other hand, working with large M means that the constant by which 
the polynomial expression multiplies will end up being a transcomputational 
number. So this would not be a practicable statement in principle either. Which 
is another example of why formalisms do not fit the requirements of machines. 
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