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ABSTRACT 
 

Cosmic rays is composed of charged particles, created and possibly accelerated in the remains of 
supernovas. The measurement of cosmic ray fluxes allows to put constraints on their sources and 
their transport, but also to consider the problem of these radiations in the terrestrial environment. It 
is to answer these questions, that a numerical simulation code is established through the equations 
of HEAPS (1978) to evaluate this galactic flux in the upper atmosphere. The work proposed in this 
article is to estimate the production of galactic radiation at the equator and magnetic poles at the 
minimum and maximum of solar activity. 
On the other hand, the Sun emits a plasma which interacts with the particles of the cosmic radiation, 
modifying the fluxes resulting from the propagation in the galaxy. This modification evolves in time 
following the solar activity cycle and is called solar modulation. 
From this work, it appears that the magnetospheric geoefficiency depends on the geomagnetic 
latitude, and a high production at the magnetic poles. Since the cosmic ray intensity is affected by 
the interplanetary magnetic field, the galactic production is small during maximum solar activity and 
large at minimum solar activity. 
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1.  INTRODUCTION 
 

Life on Earth was made possible by the 
atmosphere and the Earth's magnetic field. 
Indeed, without these two, the earth's soil would 

be bombarded by an enormous quantity of high-
energy particles and radiation, making any form 
of life impossible [1-8]. Irradiance can 
nevertheless be detected at ground level where 

the contribution to population exposure is 
small [9]. On the other hand, astronauts going 
into space are exposed to a higher dose of 
radiation. Airplanes and their occupants are also 
exposed [10-17]. Cosmic radiation is one of the 

major health hazards during space flight. The 
strength and turbulence of the interplanetary 
magnetic field vary with the solar activity cycle 
[18-22]. The cosmic radiation intensity has a 

minimum during periods of high solar activity and 
a maximum around the minimum of solar cycle 
[23]. The variations of the solar magnetic field 
are certainly a major factor in the perturbations 
affecting the Earth, but they also constitute a 

screen against the charged particles coming from 
outside the solar system [24-29]. The present 
work consists in assessing the Galactic cosmic 
irradiance at the magnetic equator and poles 

during the minimum and maximum of solar 
activity in the Earth's environment. This raises 
important questions that are still open about 
these effects on the atmosphere and also on 
human health. Since solar activity is known to 

follow an average cycle of eleven years, it is 
possible to predict the exposure to galactic 
radiation in the atmosphere over several years. 
 

2. MATERIALS AND METHODOLOGY 
 

Parameterized relations for the calculation of the 
Galactic cosmic ray production given by HEAPS 
were used to characterize the non-solar radiation 

[30-31]. Before determining the Galactic 
production in the atmosphere, we have defined a 
key parameter to translate the magnetospheric 
geo-efficiency. This parameter is called the 

geomagnetic cutoff strength and is given 
by equation 1 [30]. 
 

                                                            1 
                                                                          

This parameter reflects the state of the Earth's 
geomagnetic field lines where Rc is the magnetic 
stiffness expressed in GeV and phi is the 
geomagnetic latitude expressed in degrees. 

For the production of radiation, a numerical 
calculation through some equations of HEAPS 
(1978) allowed quantifying this radiation in the 
lower ionosphere. Equation 2 allows for the 
calculation of the cosmic radiation as a function 
of the solar activity, the density of the air, and the 
magnetic latitude [30]. 
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  is the air density expressed at (1/cm
3
); phi is 

the geomagnetic latitude and        expressed by 
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The relation allowing the calculation of the 
production of cosmic radiation in the polar zones 

is given by equation 3 [30]. 
 
                                                           3 

 
Through these equations, a program was 
established that we simulated in the software for 

data acquisition. 

 

3. RESULTS AND DISCUSSION  
 
3.1 Geomagnetic cut-off rigidity 
 

The Fig. 3.a shows the progression of stiffness 
as a function of geomagnetic latitude. 

 
Cosmic rays that have not been deviated from 

their trajectory by the solar wind must now 
penetrate the Earth's magnetosphere in order to 
reach the upper layers the Earth's atmosphere. 
For any point of the magnetosphere and for any 

direction of arrival at this point, there is a value of 
magnetic stiffness below which the cosmic 
particle will not reach this point called the 
geomagnetic stiffness cutoff. The figure shows a 

total decrease in the magnetic cutoff. The level of 
rigidity is very important at the magnetic equator

2
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Fig. 3.a. Geomagnetic stiffness as a function of magnetic latitude 

 
than at the magnetic poles. At the magnetic 

equator, the geomagnetic cutoff stiffness reaches 
its maximum. This means that in this part the 
magnetic field lines are resistant. At the Earth's 
poles, the geomagnetic cutoff strength 
decreases, resulting in weak magnetic field lines. 

The geomagnetic cutoff stiffnesses for particles 
with a non-vertical arrival direction depend the 
angle incidence of these particles. 
 

3.2 Influence the Solar Activity (SA) on 
Galactic Radiation Production  

 

Fig. 3.b illustrates the progression of galactic 
cosmic ray (GCR) production during the 
minimum and maximum of solar activity as a 
function of air density at the equator and 

magnetic poles. 
 
During the minimum of solar activity, the 
magnetic field and the solar wind become weak, 
and therefore the extension of the Earth's 

magnetic field is reduced. In this case, galactic 
cosmic rays with medium and high energy can 
pass through the atmosphere without 
energetically degrading, reaching an altitude of 

about 50 km. During the maximum of the SA, the 
atmosphere of the Sun lets escape permanently 
a flow of particles that fills all the interplanetary 
medium, which is called the solar wind. The 
characteristics, especially magnetic, of the solar 

wind vary with the solar activity and induce a field 

that keeps the cosmic rays away from the Earth. 
For this reason, cosmic rays of galactic origin 
have more difficulty propagating in the solar 
system. At the magnetic equator, the magnetic 
field lines are parallel to the surface of the Earth 

and reflect the incident particles vertically. 
Because of the state of the magnetic field lines at 
this level, the particles that can cross the 
magnetosphere are fewer. At the level of the 

poles, the state of the field lines weakens or even 
disappears and these field lines are practically 
vertical and let the maximum number of cosmic 
particles through, which explains the high 
production of the GCR at this level.  Other 

particles then tend to follow the magnetic field 
lines of force, with all the more "ease" as they 
have less energy and thus reach the poles. This 
is why the areas near the poles (zero stiffness 

cut-off) are more irradiated than the Equator, 
which is better protected by the Earth's magnetic 
field. 
 

3.3 Comparaison of the Galactic 
Production According to the Solar 
Activity (SA) 

 

The Fig. 3, we present a comparative study of 

the production of Galactic cosmic-rays at the 
equator and at the magnetic poles during the 
minimum and maximum of the SA.  
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Production of the GCR at minimum SA 
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Fig. 3.b. Galactic cosmic-ray production at the equator and magnetic poles 
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Fig. 3.c. Profiles of cosmic-ray production during the two phases 
 
We observe a higher production of the GCR at 
the minimum of the solar activity than at the 
maximum of the solar activity. It should be noted 

that at the maximum of the solar activity, the sun 
induces a magnetic field carried by the solar wind 
whose intensity varies with the solar activity. The 
strength and turbulence of the interplanetary 
magnetic field vary with the solar activity cycle. 

The intensity of the cosmic radiation has a 

minimum during the period of strong solar activity 
and a maximum during the minimum of the cycle. 
This is why we have a higher production at a 

minimum than at a maximum. The variations of 
the solar magnetic field are certainly a major 
factor in the disturbances affecting the Earth, but 
they also constitute a screen against the charged 
particles coming from outside the solar system. 

So the solar activity cycle disturbs the global flux 
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of cosmic rays. At solar minimum due to a 

weaker solar magnetic field shielding, the cosmic 
radiation fluence is significantly higher than at 
solar maximum. 

 
The results found in this part of our study are 
consistent with those found by Reitz et al, 1993 
using an AMS-02 detector located on the 
International Space Station since May 2011 and 

allows to measure the cosmic rays fluxes [32, 
33]. The work carried out by J. Marc et al, 1977 
also showed that this extrasolar radiation is 
responsible for the electronic and ionic 

production in the lower ionosphere (D layer) 
below 70 Km [34]. Cosmic rays with a very high 
energy can pass through the atmosphere without 
energetically degrading to an altitude of about 50 
km. Therefore the ionization rate can be 

considered as being proportional to the 
atmospheric density. The intensity of galactic 
cosmic rays depends on the geomagnetic 
latitude, so the ionization rate also depends on 

the geomagnetic latitude. 

 
4. CONCLUSION 

 
More than a century after the discovery of  

cosmic rays, many questions remain open about 
their nature, their origins, and their propagation in 
the interstellar medium. To try to answer these 
questions, particle fluxes have been measured 
since the 1950s. The detectors are inside the 

solar cavity, the zone of influence of the Sun, 
which modifies the fluxes coming from the 
sources and from the galactic propagation. The 
understanding of this phenomenon, variable in 

time, is thus a necessary step to putting 
constraints on the galactic propagation models of 
the CR. This part of my work consisted in 
contributing to the estimation of the Galactic 
radiation flux through a numerical code             

executed under MATLAB. This allowed me to 
quantify the cosmic ray production at the equator 
and at the magnetic poles at the minimum and at 
the maximum of the solar activity. It appears  

from this study that the production is maximum at 
the magnetic poles whatever the nature of the 
solar activity. The cosmic-rays galactic 
production has a maximum at the minimum of 
the solar activity and a minimum at the maximum 

of the solar activity. It should also be noted that 
the production depends on the geomagnetic 
latitude, air density, and also on solar activity. 
We can conclude by saying that the transpolar 

routes are more exposed than the 
transequatorial routes. 
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