

Archives of Current Research International

19(1): 1-4, 2019; Article no.ACRI.52346 ISSN: 2454-7077

Amply Cofinitely Essential Supplemented Modules

Berna Koşar¹ and Celil Nebiyev^{2*}

¹ Faculty of Health Sciences, Üsküdar University, Turkey. ² Department of Mathematics, Ondokuz Mayıs University, Kurupelit-Atakum/Samsun/Türkİye, Turkey.

Authors' contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/ACRI/2019/v19i130146 <u>Editor(s)</u>: (1) Dr. Sanjeev Kumar, Professor, Department of Physics, Medical Physics Research Laboratory, D.A.V College, India. <u>Reviewers</u>: (1) Naresh Kumar, Mewar University, India. (2) Pasupuleti Venkata Siva Kumar, Vallurupalli Nageswara Rao Vignana Jyothi Institute of Engineering & Technology, India. (3) Ricardo Lus Lima Vitria, Universidade Federal do Esprito Santo, Brazil. Complete Peer review History: http://www.sdiarticle4.com/review-history/52346

Original Research Article

Received 16 August 2019 Accepted 30 October 2019 Published 05 November 2019

ABSTRACT

Let M be an R-module. If every cofinite essential submodule of M has ample supplements in M then M is called an amply cofinitely essential supplemented module. In this work some properties of these modules are investigated. Let M be a projective and cofinitely essential supplemented R-module. Then every M-generated R-module is amply cofinitely essential supplemented.

Keywords: Essential submodules; cofinite submodules; small submodules; supplemented modules.

2010 Mathematics Subject Classification: 16D10; 16D70.

*Corresponding author: E-mail: cnebiyev@omu.edu.tr;

1 INTRODUCTION

In this paper all rings are associative with identity and all modules are unital left modules.

Let R be a ring and M be an R-module. It is denoted a submodule N of M by $N \leq M$. Let Mbe an R-module and $N \leq M$. If L = M for every submodule L of M with M = N + L, then N is called a *small* (or *superfluous*) submodule of M and denoted by $N \ll M$. A submodule N of an R -module M is called an *essential* submodule of M and denoted by $N \leq M$ if $K \cap N \neq 0$ for every submodule $K \neq 0$, or equivalently, $N \cap L = 0$ for $L \leq M$ implies that L = 0. N is called a *cofinite* submodule of M if M/N is finitely generated. Let M be an R-module and $U, V \leq M$. If M = U + V and V is minimal with respect to this property, or equivalently, M = U + V and $U \cap V \ll V$, then V is called a supplement of U in M. M is said to be supplemented if every submodule of M has a supplement in M. M is said to be essential supplemented (or briefly, e-supplemented) if every essential submodule of M has a supplement in M. M is called a *cofinitely supplemented* module if every cofinite submodule of M has a supplement in M. Let M be an R-module and $U \leq M$. If for every $V \leq M$ such that M = U + V, U has a supplement V' with $V' \leq V$, we say U has ample supplements in M. If every submodule of M has ample supplements in M, then Mis called an *amply supplemented* module. M is said to be amply essential supplemented (or briefly, amply e-supplemented) if every essential submodule of M has ample supplements in M. If every cofinite submodule of M has ample supplements in M, then M is called an amply cofinitely supplemented module. The intersection of maximal submodules of an Rmodule M is called the *radical* of M and denoted by RadM. If M have no maximal submodules, then we denote RadM = M.

Some properties of supplemented modules are in [1] and [2]. Some information about cofinitely supplemented modules are in [3]. The definition of e-supplemented module and some properties of this module are in [4]. Some properties of amply essential supplemented modules are in [5]. **Definition 1.1** Let M be an R-module. If every cofinite essential submodule of M has a supplement in M, then M is called a cofinitely essential supplemented (or briefly, cofinitely esupplemented) module. (See [6])

Definition 1.2 Let M be an R-module and $X \leq M$. If X is a supplement of a cofinite essential submodule of M, then X is called a ce-supplement submodule in M. (See [6])

Lemma 1.3 Let M be an cofinitely essential supplemented module. Then every M-generated R-module is cofinitely essential supplemented. (See [6])

2 AMPLY COFINITELY ESSEN-TIAL SUPPLEMENTED MODULES

Definition 2.1 Let M be an R-module. If every cofinite essential submodule of M has ample supplements in M, then M is called an amply cofinitely essential supplemented (or briefly, amply ce-supplemented) module.

Clearly, every amply ce-supplemented module is cofinitely essential supplemented.

Proposition 2.2 Let M be an amply cesupplemented module. Then M/RadM have no proper cofinite essential submodules.

Proof. Since M is amply ce-supplemented, then M is cofinitely essential supplemented. Then by [6, Proposition 2.4], M/RadM have no proper cofinite essential submodules.

Lemma 2.3 Let M be an amply ce-supplemented module. Then every factor module of M is amply ce-supplemented.

Proof. Let $\frac{M}{K}$ be any factor module of M. Let $\frac{U}{K}$ be a cofinite essential submodule of $\frac{M}{K}$ and $\frac{M}{K} = \frac{U}{K} + \frac{V}{K}$. Then U is a cofinite essential submodule of M and M = U + V. Since M is amply cesupplemented, U has a supplement X in M with $X \leq V$. Since $K \leq U$, by [2, 41.1 (7)], $\frac{X+K}{K}$ is a supplement of $\frac{U}{K}$ in $\frac{M}{K}$. Moreover, $\frac{X+K}{K} \leq \frac{V}{K}$. Hence $\frac{M}{K}$ is amply ce-supplemented.

Corollary 2.4 Every homomorphic image of an amply ce-supplemented module is amply ce-supplemented.

Proof. Clear from Lemma 2.3.

Definition 2.5 Let M be an R-module. If every proper cofinite essential submodules of M is small in M or M has not proper cofinite essential submodules, then M is called an cehollow module.

Lemma 2.6 Every ce-hollow module is amply cesupplemented.

Proof. Clear from definitions.

Corollary 2.7 Every ce-hollow module is cofinitely essential supplemented.

Proof. Clear from Lemma 2.6, since every amply ce-supplemented module is cofinitely essential supplemented. \Box

Lemma 2.8 If M is a π -projective and cofinitely essential supplemented module, then M is an amply ce-supplemented module.

Proof. Let U be a cofinite essential submodule of M, M = U + V and X be a supplement of U in M. Since M is π -projective and M = U + V, there exists an R -module homomorphism f : $M \to M$ such that $Imf \subset V$ and $Im(1-f) \subset$ U. So, we have M = f(M) + (1-f)(M) =f(U) + f(X) + U = U + f(X). Suppose that $a \in U \cap f(X)$. Since $a \in f(X)$, then there exists $x \in X$ such that a = f(x). Since a = f(x) =f(x)-x+x = x-(1-f)(x) and $(1-f)(x) \in U$, we have $x = a + (1 - f)(x) \in U$. Thus $x \in U \cap X$ and so, $a = f(x) \in f(U \cap X)$. Therefore we have $U \cap f(X) \leq f(U \cap X) \ll f(X)$. This means that f(X) is a supplement of U in M. Moreover, $f(X) \subset V$. Therefore M is amply cesupplemented.

Corollary 2.9 If M is a projective and cofinitely essential supplemented module, then M is an amply ce-supplemented module.

Proof. Clear from Lemma 2.8.

Lemma 2.10 Let M be a π -projective R-module. If every cofinite essential submodule of M is β^* equivalent to a ce-supplement submodule in M, then M is amply ce-supplemented. The definition of β^* relation and some properties of this relation are in [7].

Proof. By [6, Lemma 2.13], M is cofinitely essential supplemented. Since M is π -projective, by Lemma 2, M is amply ce-supplemented.

Corollary 2.11 Let *M* be a projective *R*-module. If every cofinite essential submodule of *M* is β^* equivalent to a ce-supplement submodule in *M*, then *M* is amply ce-supplemented.

Proof. Clear from Lemma 2.10.

Lemma 2.12 Let Λ be any index set and $\{M_{\lambda}\}_{\Lambda}$ be a family of projective R-modules. If M_{λ} is cofinitely essential supplemented for every $\lambda \in \Lambda$, then $\underset{\lambda \in \Lambda}{\oplus} M_{\lambda}$ is amply ce-supplemented.

Proof. Since M_{λ} is cofinitely essential supplemented for every $\lambda \in \Lambda$, by [6, Lemma 2.7], $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ is cofinitely essential supplemented. Since M_{λ} is projective for every $\lambda \in \Lambda$, by [2, 18.1], $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ is projective. Since $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ is projective and cofinitely essential supplemented, by Corollary 2.9,, $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ is amply ce-supplemented.

Corollary 2.13 Let M be a projective and cofinitely essential supplemented R-module. Then $M^{(\Lambda)}$ is amply ce-supplemented for every index set Λ .

Proof. Clear from Lemma 2.12.

Corollary 2.14 Let M be a projective R-module. If M is cofinitely essential supplemented, then every M-generated R-module is amply cesupplemented.

Proof. Let *N* be a *M*-generated *R*-module. Then there exist an index set Λ and an *R*-module epimorphism $f : M^{(\Lambda)} \longrightarrow N$. Since *M* is projective and cofinitely essential supplemented, by Corollary 2, $M^{(\Lambda)}$ is amply ce-supplemented. Then by Corollary 2, *N* is amply ce-supplemented.

Lemma 2.15 Let M be an R-module. If every submodule of M is cofinitely essential supplemented, then M is amply ce-supplemented.

Proof. Let *U* be a cofinite essential submodule of *M* and M = U + V with $V \leq M$. Since $U \leq M, U \cap V \leq V$. Since $\frac{M}{U} = \frac{U+V}{U} \cong \frac{V}{U \cap V}$ and M/U finitely generated, $\frac{V}{U \cap V}$ also finitely generated and $U \cap V$ is a cofinite submodule of *V*. By hypothesis, *V* is cofinitely essential supplemented. Then $U \cap V$ has a supplement *X* in *V*. By this, $V = U \cap V + X$ and $U \cap X =$ $U \cap V \cap X \ll X$. Then M = U + V = $U + U \cap V + X = U + X$ and $U \cap X \ll X$. Hence *M* is amply ce-supplemented. \Box

Corollary 2.16 Let M be an R-module. If every submodule of M is cofinitely essential supplemented, then every submodule of M is amply ce-supplemented.

Proof. Clear from Lemma 2.15.

Lemma 2.17Let R be any ring. The following assertions are equivalent.

(*i*) Every *R*-module is cofinitely essential supplemented.

(ii) Every R-module is amply cesupplemented.

Proof. $(i) \implies (ii)$ Let A be any R-module and $K \leq A$. By hypothesis, K is cofinitely essential supplemented. hence every submodule of A is cofinitely essential supplemented and by Lemma 2, A is amply ce-supplemented. $(ii) \implies (i)$ Clear, since every amply ce-supplemented module is cofinitely essential supplemented. \Box

Proposition 2.18 Let R be a ring. The following assertions are equivalent.

 $(i)_R R$ is essential supplemented.

 $(ii)_{R}$ R is amply essential supplemented.

(iii) Every finitely generated R-module is essential supplemented.

(iv) Every finitely generated R-module is amply essential supplemented.

 $\left(v\right)$ Every $R-{\rm module}$ is cofinitely essential supplemented.

(vi) Every R-module is amply ce-supplemented.

$$\begin{array}{l} \textit{Proof.} \hspace{0.2cm} (i) \Longleftrightarrow (ii) \Longleftrightarrow (iii) \Longleftrightarrow (iv) \text{ are in [5].} \\ (i) \Longleftrightarrow (v) \text{ See [6, Proposition 2.11].} \\ (v) \Longleftrightarrow (vi) \text{ Clear from Lemma 2.} \\ \end{array}$$

3 CONCLUSION

Let R be a ring. Then $_RR$ is essential supplemented if and only if every R-module is amply ce-supplemented.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

 \square

- Clark J, Lomp C, Vanaja N, Wisbauer R. Lifting modules supplements and projectivity in module theory. Frontiers in Mathematics, Birkhauser, Basel; 2006.
- [2] Wisbauer R. Foundations of module and ring Theory. Gordon and Breach, Philadelphia; 1991.
- [3] Alizade R, Bilhan G, Smith PF. Modules whose maximal submodules have supplements. Communications in Algebra. 2001;29(6):2389-2405.
 [4] Nebiyev C, Ökten HH, Pekin A. Essential
- [4] Nebiyev C, Okten HH, Pekin A. Essential supplemented modules. International Journal of Pure and Applied Mathematics. 2018;120(2):253-257.
- [5] Nebiyev C, Ökten HH, Pekin A. Amply essential supplemented modules. Journal of Scientific Research & Reports. 2018;21(4):1-4.
- [6] Berna Koşar, Celil Nebiyev. Cofinitely essential supplemented modules. Turkish Studies, Information Technologies & Applied Sciences. 2018;13(29):83-88.
- [7] Birkenmeier GF, Mutlu FT, Nebiyev C, Sokmez N, Tercan A. Goldie*-supplemented modules. Glasgow Mathematical Journal. 2010;52A:41-52.

©2019 Kosar and Nebiyev; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: http://www.sdiarticle4.com/review-history/52346