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Abstract: Sugar beet is a potential source of pectin, competitive with traditional sources, that has
recently acquired great relevance for its interesting covalent gelling and applications in food and
biomedical industries. Pectins from three Sugar beet (Beta vulgaris L.) commercial cultivars (Cadet,
Coronado large, and SV MEI) were grown under irrigated desertic conditions and the influence of
cultivar, on pectin yield, composition, physicochemical and gelling characteristics was investigated.
The composition and chemical properties of pectin from the three cultivars were in general, statisti-
cally different, especially in the Syngenta Cadet cultivar, presenting higher protein (10.3%), neutral
sugars (21.6%), galacturonic acid (55%) and ferulic acid (5.5 mg/g) content, which are important
parameters for gel formation. All pectins gelled via oxidative coupling and the main ferulic acid
dimers found were 8-5′ and 8-O-4′. Pectin from Cadet cultivar formed gels with higher hardness
(6.65 N) and adhesiveness (12.2 N) values than the other two varieties. The results indicate that pectin
composition is affected by the sugar beet cultivars reported herein, especially in ferulic acid content,
which confer the covalent gelling capability. Sugar beet cultivars grown under desert conditions
could be a source of gelling ferulated pectins for the food industry, as valuable as those obtained in
temperate conditions.
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1. Introduction

Sugar beet (Beta vulgaris L.) is an herbaceous plant, belonging to the Chenopodaceae
family, and traditionally cultivated in temperate countries such as Germany, France, Turkey,
Russia, among others, for sugar production [1]. This process generates high percentages of
by-products like sugar beet pulp, which contains considerable amounts of polysaccharides
such as cellulose, hemicellulose and pectins. The amount of pectin present in the sugar
beet pulp can be compared to those obtained from traditional sources like apple pomace
or citric peel that are widely used in the food industry as texturizers, emulsifiers, and
thickeners [2]. In this regard, pectins are complex polysaccharides from plants primary
cell wall and middle lamella. This molecule is formed by a linear chain of 1,4-linked α-D-
galacturonic acid (homogalacturonan) and two hairy regions named rhamnogalacturonan I
(RGI) and rhamnogalacturonan II (RGII), presenting a high content of neutral sugars in the
lateral chains [3]. In addition, sugar beet pectins (SBP) also contain ferulic acid (FA) in their
rhamnogalacturonan I region, on position O-2 of arabinans or O-6 of galactans, that allows
them to form gels by oxidative coupling [4]. However, weak gels can be formed due to the
acetyl groups, lower molecular weight, and side chains [5]. In addition, the presence of FA,
high levels of protein and higher content of methyl and acetyl groups confers SBP excellent
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emulsifying properties [6,7]. On the contrary, neutral sugars in the side chains and lower
molecular weight have shown prebiotic and anticancer activity [8,9]. Also, the presence of
FA gives SBP antioxidant activity [10] and pectin structure has shown immunomodulatory
properties [11,12].

Eventually, ferulated pectin gels might also be used as a texturizer for low sugar
food products, non-sugar added products or as a fat replacer, since SBP do not require the
presence of solutes as sugars nor divalent ions to gel. In fact, its gelling mechanism is carried
out by the action of oxidative agents such as enzymes like laccase, triggering the formation
of covalent bonds between FA residues in RG I region; a process referred as oxidative
coupling [13]. Moreover, the latter mechanism does not exclude other mechanisms and may
as well combine with low or high methoxy pectins gelling mechanism, as the methylation
degree of HG region structure allows.

Due the abovementioned characteristics, different varieties have been grown in North-
west México Sonoran Desert for bioethanol production. Previously, agronomic evaluation
of the three sugar beet cultivars studied in this work was reported for the region, mostly
focused on sugar yield and bioethanol production potential. Although the studied varieties
have not been previously reported under optimal growing conditions, in terms of tempera-
ture, Jimenez-Leon et al. inferred that the cultivation and growth of the studied varieties
is feasible under desertic conditions of Northwest Mexico [14]. In this regard, the obtain-
ment of pectin from sugar beet and its physicochemical characteristics has not been fully
assessed under the conditions of Northwest México as a function of cultivar. The influence
of cultivar on the pectin content and its physicochemical parameters in diverse fruits and
vegetables has already been reported [15–17]; following the study, this work hypothesized
that pectin content and its physicochemical features are affected by the sugar beet cultivar
under the high temperatures of Northwest México. Therefore, the aim of this study is to
evaluate the influence of sugar beet cultivar, grown under the Sonoran Desert conditions,
on the content of pectin, its physicochemical characteristics, and gelling properties.

2. Materials and Methods
2.1. Plant Material

Fresh Sugar beet (Beta vulgaris) was grown in the experimental field of the Facultad
de Agronomia (Universidad de Sonora) (Coordinates: 29◦00′48” NL, 111◦08′07” WL and
151 masl) under planting and harvesting conditions established by Jimenez-Leon et al. [14].
Three cultivars were used: Cadet, Coronado large (Cor), and SV MEI, obtained by commer-
cial companies. The roots were washed with tap water and soap to remove dirt, and then
were cut into 1 cm thick slices in a slicer machine 1612 (Hobart, Troy, OH, USA) and dried
in an oven MP500 (Enviro-Pak Inc., Clackamas, OR, USA) at 50 ◦C with a forced airflow
of 2.5 m3 s−1 for 20 h. Finally, the samples were kept frozen at −40 ◦C, until use. All the
reagents used in this investigation were analytical grade.

2.2. Pectin Extraction and Purification

Pectins were extracted from dried sugar beet roots (B. vulgaris), based on the method-
ology reported by Li et al. [18], with minor variations. Briefly, 150 g of dried beet were
suspended in 1.5 L of 0.1 M hydrochloric acid (1:10 w/v) and pH was adjusted to 1.5. The
mixture was homogenized, heated on a plate with stirring at 85 ◦C for 1 h and allowed to
cool at room temperature. Next, the mixture was filtered through a nylon cloth (pore size
60 µm), centrifuged at 10,000× g for 20 min in a centrifuge (Thermo Scientific™, Waltham,
MA, USA). The samples were ethanol precipitated (2:1 v/v) and dried by the solvent
exchange to acetone. Once dry, the samples were grinded in a coffee grinder (Hamilton
Beach®, Glen Allen, VA, USA) to a fine powder.

The extracted pectins were then purified following the procedure described by
Yapo et al. [19] with some modifications. In brief, extracted pectins were dissolved in
ultrapure water (1:200 w/w) for 24 h with stirring; afterward, centrifuged at 10,000× g for
20 min and filtered through 3, 1.2, 0.8 and 0.45 µm membrane filters, respectively. The
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samples were ethanol precipitated (2:1 v/v) and dried by the solvent exchange to acetone
and stored in the dark at room temperature until use.

2.3. Pectin Yield

The pectin yield was determined by the proportion of the weight of the extracted
pectin after drying with respect to the original weight of dry sugar beet (g/100 g) [18].
Recovery was calculated as follows,

Pectin yield (%) =
m0

m
× 100 (1)

where m0 (g): dry pectin weight; m (g): dry beet weight.

2.4. Pectin Characterization

The galacturonic acid (GalA) content was determined by high performance liquid
chromatography (Varian 500, Palo Alto, CA, USA), after hydrolysis of pectin samples with
4 N trifluoroacetic acid for 2 h at 120 ◦C. Samples were suspended in 0.001 N sulfuric acid
and filtered with a 0.45 µm membrane prior to injection in a MetaCarb H Plus column
(Agilent, Santa Clara, CA, USA; 300 mm × 7.8 mm) set at 70 ◦C [20].

The neutral sugar composition was performed in agreement with the procedure
reported by Wang et al. [21]. Pectin samples were hydrolyzed with 4 M trifluoroacetic acid
for 4 h at 120 ◦C and converted to alditol acetate. Derivatized samples were quantified
by gas chromatography (Clarus 580, PerkinElmer Inc., Waltham, MA, USA) using a high-
performance capillary column Elite 225 (PerkinElmer Inc., 30 mL × 0.32 mm i.d., 0.15 µm
film thickness). Samples were filtered in a 0.45 µm membrane prior to injection. The total
neutral sugar content was calculated as the sum of the total composition of individual
neutral sugars.

The FA and dimer content were analyzed by high performance liquid chromatography.
Pectin samples were subjected to saponification, acidification, and extraction with diethyl
ether. Samples were injected in a chromatograph e2695 (Waters™, Milford, MA, USA),
equipped with a C18 column (Alltech Inc., Lexington, KY, USA; 250 mm × 2.6 mm),
previously filtered in a 0.45 µm membrane [22]. The ash content was determined by the
incineration of samples at 600 ◦C in a muffle for 4 h [23]. The soluble protein content was
determined according to the Bradford method [24].

The degree of methylation and acetylation were performed following the methodology
proposed by Levigne et al. [25], with some modifications. Briefly, 20 mg of pectin were
suspended in 250 µL of 10 mM copper sulphate (CuSO4) and 250 µL of 200 mM isopropanol
as internal standard, then, 500 µL of 1 M NaOH were added to carry out the saponification
(final volume 1 mL). The reaction mixture was left at 4 ◦C for 1 h. The samples were
then centrifuged at 8000× g for 10 min. Supernatants were neutralized with a syringe
equipped with a Maxi-clean IC-H device (S*pure Pte. Ltd., Singapore), prior to injection.
The samples were injected on a liquid chromatography equipment (Varian 500) equipped
with a C18 column (Merck™, Darmstadt, Germany; 250 mm × 4 mm) and a guard column
LiChroCART (Merck; 4 mm × 4 mm), with refractometric detection.

The intrinsic viscosity was inferred from the specific viscosity determined by the flow
time of pectin solutions at different concentrations in an Ubbelohde capillary viscometer
AVS 400® (Schott Geräte, Hofheim, Germany) at 25 ◦C. The pectin solution was dissolved
in 0.09 M NaCl and filtered in a 0.45 µm membrane before the measurements. Intrinsic vis-
cosity ([η]) was determined from the relative viscosity of pectin solutions by extrapolation
of Huggins and Kraemer curves to “zero” concentration [26].

The molecular weight of pectin samples of the three cultivars of sugar beet was
determined by high-performance size exclusion chromatography. One milliliter of a pectin
solution (0.1% w/v) was dissolved in 0.1 M lithium nitrate. The samples were filtered
with a 0.45 µm membrane and injected in a high-performance liquid chromatography
equipment e2695 (Waters™), at 38 ◦C equipped with an Ultra hydrogel 1000 column
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(Waters™; 300 mm × 7.8 mm), using pullulan as standard with molecular weight within
the range of 50 to 800 kDa [27].

Attenuated total reflection Fourier-transform infrared (ATF-FTIR), was used to ana-
lyze the samples, using a spectrometer (NICOLET IS-50, ThermoScientific™, Waltham, MA,
USA) in a wavenumber range of 400–4000 cm−1. The conditions for the sample were com-
pletely dry powder samples and absorbance graphs were obtained against the frequency
expressed as wavenumber [28].

2.5. Ferulated Pectin Gel Casting

Pectin solutions at 2% (w/v) were prepared in 0.1 M sodium acetate buffer pH 5.5
and set on stirring overnight for dissolution. The buffer was previously filtered through
0.45 µm (Whatman®, Maidstone, UK) to prevent microbial contamination. Laccase from
Trametes versicolor (13.6 U/mg) was used as cross-linking agent at 1.675 nkat laccase/mg
pectin. Gels settled at 25 ◦C for 2 h.

2.6. Texture Profile Analysis

The texture profile analysis (TPA) of ferulated pectin gels at 2% (w/v), freshly made
(2 h @ 25 ◦C), was performed in glass beakers of 50 mL with 55 mm of height and 35 mm
of internal diameter, using a TA.XT2 Texture Analyzer (Texture Analyzer Stable Micro Sys-
tems, Surrey, UK). The gels were deformed by compression at a constant speed of 1.0 mm/s
to 4 mm from the gel surface using a cylindrical plunger (diameter 25.4 mm). The pa-
rameters evaluated were hardness, fracturability, adhesiveness, springiness, cohesiveness,
gumminess, and chewiness [29].

2.7. Statistical Analysis

All measurements were performed by triplicate and expressed as mean values with
standard deviation. To determine significant differences between the three cultivars, a
one-way analysis of variance (ANOVA) was performed and the mean values were then
compared by Tuckey-Kramer multiple test (* p ≤ 0.05), using NCSS 12 software.

3. Results and Discussion
3.1. Pectin Yield

The recovery percentages of pectin were 5.0, 5.8 and 6.3%, for the cultivars Cadet,
Cor, and SV MEI, respectively (Table 1). No significant differences (p > 0.05) were found
between the three cultivars. The pectin yield obtained in this investigation was lower
than previously reported by Guo et al. [30], who found a yield of 9.6% for pectins in sugar
beet pulp, not fresh samples. Several authors report that the extraction conditions have
important effects on the quantity, as well as the quality of the extracted pectins. Among
the main affecting parameters are temperature, pH, extraction time and the nature of the
acid [31], being probably, pH the main factor influencing yield, rather than cultivar.

Although, time, pH and temperature were comparable to those reported by
Guo et al. [30], the extraction solvent differs from these authors, which probably explains
the lower yields in this investigation. Li et al. [18] established that an adequate solvent in
the extraction process could effectively hydrolyze the insoluble pectin to soluble. Also, the
start material impact directly on the pectin quantity extracted, being a parameter of great
interest for future applications.

3.2. Pectin Composition

The content of pectin in GalA, neutral sugars and FA was assessed for all three
cultivars. The GalA percentage was 62.7, 55.0 and 47.0% for SV MEI, Cadet and Cor,
respectively. The results are shown in Table 1 below. These values were higher than those
obtained by Chen et al. [7], who reported a percentage of ≈44 of GalA in sugar beet pulp
under similar extraction conditions. This difference can probably be due to the starting
materials as the present study uses plant material as harvested, for pectin extraction. Within
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the samples, the content of GalA was higher for the SV MEI and Cadet cultivars, though
statistically similar.

Table 1. Yield and physicochemical composition of pectins extracted from three cultivars of sugar
beet roots #.

Cadet SV MEI Cor

Yield (%) 5.0 ± 0.6 a 6.3 ± 0.8 a 5.8 ± 0.7 a

Galacturonic acid (%) 55.0 ± 3 ab 62.7 ± 0.4 b 47.0 ± 4 a

Neutral sugars:
Rhamnose (%) 6.3 ± 0.5 b 4.4 ± 0.3 a 3.5 ± 0.3 a

Fucose (%) 1.2 ± 0.1 b 0.63 ± 0.05 a 0.74 ± 0.07 a

Arabinose (%) 3.3 ± 0.4 a 6.2 ± 0.6 b 7.1 ± 0.7 b

Xylose (%) 1.4 ± 0.2 a 1.1 ± 0.1 a 1.2 ± 0.1 a

Mannose (%) 1.3 ± 0.2 b 1.0 ± 0.1 a 1.0 ± 0.1 a

Galactose(%) 7.1 ± 0.5 b 5.1 ± 0.7 a 6.3 ± 0.6 ab

Glucose (%) 1.00 ± 0.01 b 1.18 ± 0.05 c 0.62 ± 0.05 a

Total neutral sugars (%) 21.6 ± 0.9 a 19.6 ± 1.0 a 20.5 ± 1.0 a

FA (mg/g) 5.5 ± 0.1 c 3.5 ± 0.1 a 4.7 ± 0.2 b

Feruloyl dimers (mg/g) 0.26 ± 0.03 b 0.16 ± 0.02 a 0.25 ± 0.04 b

Ash (%) 2.13 ± 0.06 b 2.2 ± 0.2 b 1.8 ± 0.1 a

Protein (%) 10.3 ± 0.5 b 8.7 ± 0.7 a 8.6 ± 0.8 a

DM (%) 57.4 ± 4.1 b 50.8 ± 1.1 a 55.5 ± 2.3 ab

DA (%) 26.1 ± 2.4 b 19.64 ± 0.81 a 23.1 ± 1.6 b

[η] (mL/g) 225 ± 14 a 255 ± 18 a 202 ± 4 a

Mw * (KDa) 616 665 642
DM, Degree of methylation; DA, Degree of acetylation; [η], intrinsic viscosity; Mw, average molecular weight.
# Values are presented as means ± standard deviations (n = 3); Mean values in the same row with different letters
are significantly different (* p ≤ 0.05). * Single estimation.

Homogalacturonans (GalA) represents the main component in the pectin structure,
and it has been demonstrated that the presence of GalA confers pectin immunomod-
ulatory activity. In general, the activity will depend on the number of GalA residues
content and its structure, specifically, the degree of methylation, branching and molecu-
lar weight of the fraction [32]. So, pectin polysaccharides hydrolysates can activate the
function of macrophages, promote the production of cytokines and phagocytic activity,
thus, regulate the immune system in multiple levels [33,34]. In theory, pectins obtained
here are likely candidates for potential immunomodulatory effect when ingested and fer-
mented by colon microbiota, or previously hydrolyzed by enzymatic, chemical, or physical
means. Research on these processes and products obtained are of great interest for human
health applications.

The total neutral sugar percentage ranged from 19.6 up to 21.6%, according to beet
cultivar. These results agree with previous reports, where the total neutral sugar percentage
was around 22.0% for SBP [35]. The total neutral sugar percentage was statistically similar
for the three cultivars. The main neutral sugars present in beet pectins were rhamnose
(3.5–6.3%), galactose (5.1–7.1%) and arabinose (3.3–7.1%), suggesting the presence of galac-
tans and arabinogalactans in the branched regions. Galactose and arabinose were the main
neutral sugars in the lateral chains of the structure of pectin; followed by other neutral
sugars, such as, glucose, mannose, and xylose in lower amounts (Table 1). It has been
reported that galactose and arabinose are the main neutral sugars in the lateral chains of
the RGI region [36], which suggest that the three pectins obtained in this work present RGI
regions high in Galactose, Rhamnose and arabinose.

The relevance of these structural aspects is that neutral sugars, mainly arabinans
or arabino/galacto-oligosaccharides, have been shown prebiotic to humans [8,37]. This
feature has been shown of interest for biomedical applications. Gullón et al. [38] estab-
lished that the prebiotic effect of ferulated pectins depends on the physical and chemical
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characteristics. Also, the pectin source has an important impact on the prebiotic activity
due to its determined chemical structure [39]. Our chemical evidence suggests that the
pectins obtained may be interesting for prebiotic effect ulterior research.

Furthermore, modified sugar beet pectin has shown anticancer and antiproliferative
activity [9]. The mechanism of action of pectin is still under discussion, but apparently,
structural features and forms of pectin such as pH modified pectin, RGI rich pectin, heat
modified pectin and dietary fiber play an important role in performing these properties [40].
In this context, the RGI region, specifically shorter, low branched, galactose rich fractions in
pectin have shown to have the ability to interact with galectin-3, a protein that is strongly
related with metastasis in cancer, acting as a binder for the galectin-3 receptor site [41,42].
In this regard, the percentages of neutral sugars such as galactose (galactans), arabinose
(arabinans), or arabinogalactans obtained from SBP of the three cultivars can be suitable to
further studies on their prebiotic and anticancer activity, when similar features have been
related to such activities on human health.

The FA content for pectin from each cultivar is shown in Table 1. This compound
was significantly higher in the Cadet cultivar with a concentration of 5.5 mg/g of pectin,
which represents 0.55% of FA in this study. Nevertheless, this result was lower than values
reported by other authors for pectins extracted from sugar beet (1.12%; 1.2%) [7,43]. The
importance of FA content not only resides in its antioxidant activity but also for its role
on covalent gelling mechanism by oxidative coupling. It is well-established that FA is
linked to pectic polysaccharides, and it is an important component of the cell wall [44];
however, the reason for lower content of FA in this research are still unclear. Evidently,
the samples were expected to show more FA as they were not subjected to any industrial
processing; nevertheless, several factors as cultivar and extraction conditions can lower
the final content for this compound. In terms of extraction conditions, the method used
in this investigation differs lightly from those reported by the cited studies. Apparently,
the more aggressive extraction conditions used in this investigation caused the release of
neutral sugars like galactose or arabinose were FA is bonded to. Also, a larger molecular
size may as well have played a role in the FA proportion reported in the present work. On
the other hand, oven drying may also have diminished FA content.

In addition, some FA may be present in the form of dimers. In this regard, the total
feruloyl dimers are shown in Table 1 and were statistically higher (p < 0.05) for the Cor
and Cadet cultivars, while SV MEI had the lower content. The values ranged between 0.16
to 0.26 mg/g of pectin. The main dimers of FA determined in our samples were 8-5′, 8-5′

benzo, 8-O-4′ and 5-5′ dimers, where dimers 8-5′ and 8-O-4′ were the major dimers found.
The latter agrees with previous reports where 8-5′ and 8-O-4′ are the main dimers found in
sugar beet pectins and related to intercatenary binding. [45].

The ash content for three cultivars of SBP ranged between 1.8–2.2%. As shown in
Table 1, a significant difference was found in the Cor cultivar. The results obtained in
this investigation were lower than the reported on SBP, submitted to a similar extraction
process, obtaining an ash value of 3.8% [46]. The marked difference between the reported
study and this work may lie in the purification process carried out in this investigation
to reduce the non-pectin compounds like ash, oxalate salts, protein, and neutral sugars,
which can interfere with the gelling process. Also, as food additive pectin must satisfy
certain standards in terms of purity and quality. In relation to food safety, for example, the
oral intake of insoluble oxalate salts can represent a risk for human health [35,47].

The protein content ranged between 8.6–10.3% being statistically higher for the Cadet
cultivar. The results obtained in this investigation were almost two-fold higher than the
reported in other investigations with percentages between 4 and 5% [7,48]. Some authors
suggest that the extraction conditions (weak or strong acids) could significantly influence
the covalent linkages between pectin and protein [18]. Therefore, in this investigation,
hydrochloric acid was used as an extracting agent and is considered a strong acid in
contrast to citric acid. Also, the protein content is strongly affected by the increment
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of temperature, extraction time and decrease of pH value, so aggressive conditions can
contribute to the hydrolysis of protein [49].

The high protein content in these sugar beet pectins confers an advantage as is widely
reported that protein confers excellent emulsifying properties [48,50]. This property renders
quality pectin with wide potential uses for the food industry as an additive for desserts,
fat incorporation, and texture development. Also, SBP was shown to be a promising
emulsifying material for the microencapsulation of lipophilic food ingredients like orange
and rapeseed oils [51], as well as fish oil [52].

On the other hand, the degree of methylation (DM) of the three cultivars of SBP
ranged from 50.8 to 57.4%, showing significant differences (p < 0.05) between beet cultivar
(Table 1). The data obtained by chromatography for the degree of esterification presented in
Table 1 is in concordance to the analysis by Fourier Transform infrared spectroscopy (FT-IR)
observing a greater absorbance at wavelength of 1750 cm−1 than at 1650 cm−1, which
correlates to high methoxyl pectins structural features. Several authors reported degrees
of esterification for high methoxyl pectins with values between 50 and 60% [53], which
agrees with the reported values in the present work. High methyl esterified pectins can
also act as a food emulsifier or texturizing in food products, specifically for its proportion
of ester groups [6]. Although the content of protein and FA make the main contribution to
the emulsifying capacity of SBP [7].

In contrast, the degree of acetylation (DA) ranged from 19.6 to 26.1%, being statisti-
cally higher for the Cadet cultivar (Table 1). The degrees of acetylation obtained in this
investigation agree with previous publications reporting a percentage of 23.8% [30]. Sugar
beet pectins have higher degrees of acetylation compared to pectins obtained from tradi-
tional sources. The presence of acetyl groups in the structure of pectin confers an excellent
emulsifying property, also, as mentioned above, for the presence of protein complexes
and FA [7].

The intrinsic viscosity was 255, 225 and 202 mL/g for SV MEI, Cadet and Cor, respec-
tively, being statistically similar between the three cultivars. Huang et al. [54] obtained
similar results with an intrinsic viscosity of 170.5 to 218.3 mL/g in pectin extracted from
sugar beet pulp, under similar extraction conditions. Levigne et al. [25] assumed that
parameters like pH, temperature and pH-temperature interaction have an important effect
over the viscosity of molecules. In addition, Huang et al. [54] found that particle size
influences intrinsic viscosity of pectin, as well.

The average molecular weights estimated for main pectins were 616, 642 and 665 kDa
for Cadet, Cor and SV MEI, respectively (Table 1). These results were higher than reported
for SBP by Karnik et al. [55] with molecular weights of 399 to 544 kDa, but lower than
those reported in other investigations (890 KDa) [56]. The small shoulder above 800 kDa
is a secondary smaller fraction with superior molecular weights, but the most abundant
chains of pectin range from 616 up to 665 kDa. In this work, no difference was appreciated
among the beet cultivars. The elution profiles of pectin extracted from three cultivars of
sugar beet roots are shown in Figure 1. These patterns exhibited a wide molecular weight
distribution, which is characteristic of sugar beet pectins, being heterogeneous between the
three varieties. Polydispersity is a common feature for this method of extraction.

Intrinsic viscosity and average molecular weight are parameters of great importance in
terms of technological applications and gelling capacity of pectin. A higher molecular mass
and viscosity allows intermolecular interactions between polysaccharide chains, facilitating
the formation of the three-dimensional network. Accordingly, pectin with low molecular
weight form weak gels but present several benefits to human health, so, the functionality of
pectin depends on its structural and chemical parameters. Also, diverse authors stablished
that these physical features can be directly affected by the plant source and extraction
conditions [57,58].
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Another aspect of SBP characterization is exploration of main groups present in its
structure by infrared spectroscopy. For molecular identity of pectins, infrared spectra
from three cultivars of sugar beet pectins were obtained. Figure 2 shows the FTIR spectra
profiles. The wavelength range of 950–1200 cm−1 corresponds to the so-called “fingerprint”
region of carbohydrates and is specific for each polysaccharide. In this spectral area, the
wavelength numbers of 964, 1020, 1095 and 1130 cm−1 show the characteristic bands
corresponding to the profile of polygalacturonic acid, the main component of pectins,
represented by the C–OH stretching vibrations of side groups and a C–O–C stretching
corresponding to the glycosidic bond. In the 1015 cm−1 wavelength are shown the C–O
stretching bonds associated with sugars [55].

At the wavenumber of 1518 cm−1 approximately, an absorption band can be observed
in the SBP profiles, which corresponds to the C=C stretching. However inconclusive, the
pattern is in accordance to the presence of feruloyl groups and/or protein attached to the
pectin structure [59]. The absorption band at 1650 cm−1 in the pectins spectra was due to
the COO– stretching that may correspond to the free carboxyl groups and the OH bending
vibration of water; in the wavenumber of 1750 cm−1 corresponds to the C=O stretching
corresponding to the esterified carboxyl groups [60]. The three cultivars studied presented
higher intensity in the band corresponding to the esterified carboxyl groups. Therefore, the
comparison of the intensities of the 1650 and 1750 cm−1 absorption bands strongly suggest
the high degree of esterification of pectins, as previously stated in the above sections.

The studied pectins also presented an absorption band in the region of 2800 to
3000 cm−1 corresponding to C-H bonds, mostly from the methyl ester groups present. The
absorbance bands from 3200 to 3600 cm−1 correspond to OH groups of the carbohydrate
backbone, in the case of our pectin samples, this absorption was attributed to inter and
intramolecular hydrogen bonding of the galacturonic acid backbone [15]. The absorption
bands shown are in agreement with the known bands for commercial pectin, and several
reports for SBP molecular identity [28,35].
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3.3. Ferulated Pectin Gelling Capability and Texture Profile Analysis

Several authors have extensively reported that sugar beet pectins have poor gelling
properties under current conditions (presence of co solutes or divalent ions), the latter
due to its high content of acetyl groups and the number of side chains. Nevertheless, the
presence of FA in its structure allows the formation of gels by oxidative coupling through
the establishment of interchain dimers of FA [6,49,61]. Although the FA percentage (0.55%)
obtained in SBP structure was lower than previously reported in other investigations,
with values within1.12; and 1.2%; still it was enough to allow the formation of gels. This
process was achieved efficiently using laccase enzyme as a crosslinking agent. Factors like
polysaccharide concentration, gelling time and enzyme concentration directly affects the
gelling capability of pectins [61]. The physical properties of the gels obtained for pectins
from three sugar beet cultivars were evaluated through a texture profile as TPA. The results
obtained are shown in Table 2.

The parameters of hardness, adhesiveness, gumminess, and chewiness were statis-
tically higher for the Cadet cultivar (6.65 ± 0.42, −12.2 ± 1.4, 1.91 ± 0.23, 1.76 ± 0.23,
respectively); while cohesiveness was statistically higher for SV MEI cultivar (0.58 ± 0.05).
No significant difference was found for fracturability in the three cultivars. The springiness
was significantly smaller for the Cadet cultivar (0.92 ± 0.01). Pectin from Cadet cultivar
presented higher texture values, mainly in hardness and adhesiveness.

Pectin from this cultivar presented the highest content of FA and protein content
(Table 1), which can explain the higher hardness value, since the number of cross-links
between FA residues present in the polysaccharide chains influences the gelling capacity;
thus, the higher the number of cross-links, the higher the gel hardness. Also, the relative
arabinose/galacturonic acid ratio was lower for the Cadet cultivar (data not shown) as
compared to the other two cultivars, which suggest a less branched structure that could
allow the enzyme access to FA residues. Nevertheless, further research is needed to attain
more conclusive results.
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Table 2. Texture profile analysis for pectin hydrogels from three sugar beet cultivars.

Cultivar Hardness
(N)

Fracturability
(N)

Adhesiveness
(N/s)

Springiness
(mm) Cohesiveness Gumminess

(N)
Chewiness

(N)

Cadet 6.65 ± 0.42 a 2.03 ± 0.27 a −12.2 ± 1.4 a 0.92 ± 0.01 b 0.29 ± 0.02 b 1.91 ± 0.23 a 1.76 ± 0.23 a

SV MEI 1.12 ± 0.09 b 1.55 ± 0.81 a −7.21 ± 0.76 b 0.95 ± 0.01 a 0.58 ± 0.05 a 0.68 ± 0.18 b 0.64 ± 0.16 b

Cor 1.04 ± 0.14 b 2.26 ± 0.17 a −5.47 ± 0.28 b 0.95 ± 0.006 a 0.27 ± 0.03 b 0.47 ± 0.11 b 0.57 ± 0.12 b

Values are presented as means± standard deviation (n = 3); Mean values in the same column with different letters are significantly different
(p ≤ 0.05).

The information available on texture profile analysis of SBP gels is still limited, and
most investigations are focused on the use of sugar beet fiber (SBF) for food applications in
products like frankfurters [62], Turkish-type salami [63], cook meat emulsions [64], among
others. In this context, Berrin et al. [64] reported texture values in terms of springiness of
0.943 mm, a gumminess of 0.505 N and a cohesiveness of 0.510 in cook meat emulsions
added with SBF (2%), which agreed to those found for SBP gels from the three cultivars
at the same concentration. These authors also inferred that as the SBF concentration was
increased, the textural properties were improved.

In relation to the study of sugar beet pectin gels, Norsker et al. [65] evaluated the
gelation of sugar beet pectin using two types of laccase as crosslinking agents and reported
values of hardness of 11.2 and 10.0 N and a chewiness of 3.7 and 1.9 N/s being both higher
than the obtained in this investigation. Nevertheless, these authors also evaluated the
gelling capacity of pectin in food products as semi-skimmed milk, obtaining a firm gel with
hardness values of 7 N, which is consistent with the obtained in pectin gels, specifically
from Cadet cultivar (6.65 N).

On the other hand, Kuuva et al. [13] evaluated two types of sugar beet pectin from
different regions, inferring that pectin with a higher content of acetyl and methyl groups
was less effective to gel. Also, these authors established that the texture properties, in terms
of hardness of gel, can be increased by the addition of calcium (Ca2+) ions along with the
enzyme (laccase) at high enzyme activities, to establish both covalent and ionic bonds. pH
was also a parameter that directly affected the hardness properties of pectin gels with or
without Ca2+ addition.

The TPA results obtained in this investigation indicated that pectins evaluated, par-
ticularly pectin from Cadet cultivar, showed apparently adequate physical characteristics
to be potentially used as a gelling or texturizing agent for food industry, although future
investigations on food products added with sugar beet pectins acting as gelling/texturizing
agents should be conducted. Additionally, nowadays, the search and demand for safe
and healthy food additives have been increasing. Sugar beet pectin has acquired great
relevance as a food additive since ferulated pectins do not require co solutes, such as sugar
or divalent ions, such as calcium to gel and this represents an advantage over traditional
pectins since they gel by the action of enzymes through covalent bonds, providing stability
to changes in pH and temperature. Said features have been proved valuable for food
industry developing low sugar foods or without added sugar, as well as a fat substitute.

Water is a scarce and high value commodity in the desert and the efficient use of water
for these cultivars reported by Jimenez-León et al. [14], supports the diversification of crop
production and commercial transformation of produce in desertic Northwest Mexico. Table
sugar, bioethanol and now pectins could be products of interest for the region agricultural
landscape.

4. Conclusions

The results obtained in this investigation support that the composition and physico-
chemical features of pectin extracted from sugar beet were affected lightly by the cultivars
tested. This study provides an overview on varieties suitable for cultivation under desert
conditions. The sugar beet cultivars studied contained pectins with properties comparable
to those grown in temperate conditions and commercially available, giving a value-addition
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for future applications in food and biomedical/pharmaceutical industries. The mechani-
cal properties and structural characteristics, mainly, the presence of ferulic acid and rich
fractions of galactose and/or arabinose in the RGI regions suggest that prebiotic, and
antioxidant activity could be worth considering for future research. Storage and extraction
conditions are also an opportunity to further knowledge on the topic.
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