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Abstract: This paper aims to develop an optimal guidance law for exo-atmospheric interception,
in which impact-angle constraint and acceleration limit are considered. Firstly, an optimal control
problem with constraints on terminal miss and impact-angle is formulated, in which the control en-
ergy performance index is weighted by a power function of the time-to-go. The closed-loop guidance
command, which is expressed as a linear combination of zero-effort miss distance and the zero-effort
angle error, is derived using a traditional order reduction transformation. Then, an analytical solution
to the maximal acceleration during the flight is obtained by analyzing the boundary points and
critical points of the guidance command curve. It is found that the maximal acceleration is a function
of the weighted gain in the performance index. Therefore, the maximal acceleration can be efficiently
limited by using the variable weighted gain. Furthermore, the relationship between the total control
energy and the weighted gain is studied. As a result, a systematic method is proposed for selecting
the weighted gain so as to meet the constraint of the acceleration while the total control energy
is minimal. Nonlinear simulations have been carried out to test the performance of the proposed
method. The results show that this method performs well in intercepting the maneuvering target
with a negligible miss distance and intercept angle error. And it can tolerate a stricter acceleration
limit in comparison with the typical method.

Keywords: optimal guidance law; time-to-go weighted guidance; impact-angle constraint; accelera-
tion limit

1. Introduction

The terminal guidance law, which has direct influence on kill efficiency, is immensely
important for the weapon system. During terminal attack, the achievement of a proper im-
pact angle is an important goal of homing systems. Using impact-angle-control, the missile
is capable of attacking a weak spot of the target to maximize warhead effectiveness and
ensure a high kill probability [1,2]. In addition, the acceleration limit is another crucial
constraint on homing missiles, which will lead to large miss-distance and impact angle
error if the acceleration saturation occurs near the target.

Guidance law design with specific impact direction has been a hot topic during the
past four decades. As an application of optimal control theory, Bryson and Ho [3] have
proposed the optimal solution to the simple rendezvous problem with terminal constraints
on the lateral position and velocity. In [4], a similar formulation was used to derive a linear
quadratic optimal guidance law and linear quadratic differential game-based laws for
maneuvering target scenarios. These two formulations can be utilized to impose a terminal
intercept angle by selecting the ratio between the relative terminal velocity and the closing
speed. Kim and Grider [5] first proposed an optimal guidance law to ensure the impact
angle for a reentry vehicle, which pursues a fixed or slowly moving ground target. In [6],
York and Pastrick further improved the guidance law presented in [5], in which the lag
in the autopilot is considered. The resulting guidance law was applied to an air defense
interceptor in [7]. In [8], a generalized form of energy minimization optimal guidance law
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was proposed for satisfying the impact-angle constraints. Song et al. [9] have studied an
optimal impact angle guidance law for varying velocity missiles against a maneuvering
ship. Shaferman [10] derived two impact angle control guidance laws based on the optimal
control and differential game theory for an evasive maneuvering target. An optimal
control planar interception law against maneuvering targets with known trajectories was
devised in [11]. A terminal body angle control guidance law considering the angle-of-attack
dynamics was developed in [12]. It is noted that the abovementioned optimal guidance
laws are all based on a constant weighted performance index, which results in the weak
ability of the trajectory shaping. And the terminal acceleration cannot be guaranteed to be
zero, which possibly increases the miss-distance.

In order to address this drawback, Ryoo [13] proposed a time-to-go weighted optimal
guidance with zero terminal acceleration because the weighting of cost infinitely increases
as the time-to-go approaches zero. Ohlmeyer [14,15] proposed an optimal guidance law
with a weighted gain specified by the user, called Generalized Vector Explicit Guidance,
which improves the ability to shape the trajectory and achieves the impact-angle constraint.
He [16] investigated a similar guidance law which considers the influence of the gravity
and thrust in the exo-atmospheric interception engagement. Lee [17] further developed
a generalized optimal guidance law with arbitrary weighted function to satisfy the impact-
angle constraint. By considering the penalty term regarding the miss distance and intercept
angle weighted by hyperbolic tangent functions in the performance index, Xiong [18]
proposed a new optimal guidance law, of which the guidance performance was less
affected by the time-varying speed. Li [19] further designed a unified optimal impact angle
guidance law with the energy consumption weighted by an arbitrary positive function,
which can adapt to different types of interceptors and targets. In addition to the guidance
law based on the optimal control theory, biased proportional navigation [20–24] and sliding-
mode guidance law [25–29] can also realize the impact with a specified angle. However,
all these guidance laws do not consider the acceleration limit, which possibly leads to large
miss-distance and impact angle error if the acceleration saturation occurs near the target.

In order to limit acceleration, Rusnak [30] and Hexner [31] directly solved the opti-
mal control problem with control constraint, which leads to a significantly complicated
solution. Weiss [32] introduced a new class of optimal guidance law in which a special per-
formance index penalizing the variability of the guidance command is used, and therefore,
an additional design parameter can be profitably used to avoid acceleration saturation.
Although the acceleration limit is considered in this research, the impact-angle cannot
be guaranteed. This is due to the fact that if the constraint of impact-angle is considered
simultaneously, the solved guidance command is extremely complex and even cannot be
solved analytically.

In this paper, an optimal guidance law with constraint on the impact-angle and
acceleration limit is proposed. Firstly, an impact-angle constrained optimal guidance
law (IACOGL) with a variable weighted gain is formulated. The closed-loop guidance
command can be expressed as a linear combination of zero-effort miss distance (ZEM) and
the zero-effort angle error (ZEAE). Then, we analyze the extreme value of the guidance
command curve and derive the closed-form function between the maximum of guidance
command with the weighted gain. Therefore, the maximal acceleration can be efficiently
limited by using the variable weighted gain. Furthermore, the relationship between the
total control energy and the weighted gain is studied. Finally, a systematic method to
select the optimal weighted gain, which minimizes the total control energy and keeps the
acceleration within the constraint, is proposed. The greatest difference from the previous
works is that the proposed method is able to avoid acceleration saturation by choosing the
appropriate weighted gain in an analytical manner, while having optimal performance
for the guidance command. Several numerical simulations are carried out to evaluate the
performance of the proposed method. The results show that this method performs well in
intercepting the maneuvering target with the impact angle constraint and acceleration limit.
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The remainder of this paper is organized as follows: In Section 2, the mathematical
models used for the guidance law derivation and simulation are presented. Section 3
derives the time-to-go weighted optimal guidance law with constraint on impact-angle.
Section 4 provides the derivation process on the maximum of guidance command and the
total maneuvering energy. After which, a method used to select the weighted gain to avoid
the acceleration saturation is also presented in Section 4. Finally, nonlinear simulations are
carried out to evaluate the performance of the proposed law.

2. Model Formulation

Consider a planar engagement geometry for a maneuvering target shown in Figure 1.
Here, XI −OI −YI is a Cartesian inertial reference frame. We denote the missile and target
by the subscripts M and T, respectively. The velocity, acceleration, and flight-path angles
are denoted by V, a and γ, respectively. It is assumed that the velocity of missile and target
for guidance law derivation is constant. The range between the adversaries is r, and λ is
the angle between the line of sight (LOS) and the XI axis. The XR axis, aligned with the
initial LOS, is denoted for linearization. The relative displacement between the target and
the missile normal to this axis is ξ. The intercept angle between missile and angle is defined
as γI = γT + γM, which is required to be a given value γc

f at the intercept time.
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Figure 1. The Planar engagement geometry.

From Figure 1, the equations of relative motion between missile and target are given by
.
r = −[VT cos(γT + λ) + VM cos(γM − λ)] (1)

.
λ = [−VM sin(γM − λ) + VT sin(γT + λ)]/r (2)

And, due to the existence of acceleration and gravitational effect, the flight-path angle
and velocity of the missile as well as the target evolve according to

.
γM = [aM cos(γM − λ)− gM cos γM]/VM (3)

.
VM = aM sin(γM − λ)− gM sin γM (4)

where, gM stands for the gravitational acceleration of the missile. Similarly, due to the
gravitational effect, the flight-path angle and velocity of target evolve according to

.
γT = −gT cos γT/VT (5)

.
VT = −gT sin γT (6)
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where, gT is the gravitational acceleration of the target. gM and gT are assumed as
a constant g because the duration of the terminal guidance phase is typically very short.

It is assumed that the missile’s closed-loop dynamics can be represented by the
following first-order system:

.
aM = (u− aM)/T (7)

where, u is the guidance command, T is the time constant of the missile’s dynamics.
As was done in [10], the derivation of the guidance law in this paper will be performed

based on a linearized model. In the linear model, the kinematics equations of ξ and γI are

..
ξ = −aM (8)

.
γI = (kMaM + ∆gγ)/VM (9)

where, kM = cos(γM − λ) and ∆gγ = −g(cos γM + cos γTVM/VT). In the derivation of
the guidance law, VM, kM, and ∆gγ are regarded as the constants and will be updated in
each guidance step. The state vector of the linearized problem is defined as

x =
[

ξ
.
ξ γI

]T
(10)

The matrix form of the kinematic equations is

.
x = Ax + Bu + C (11)

where

A =

 0 1 0
0 0 0
0 0 0

, B =

 0
−1

kM/VM

, C =

 0
0

∆gγ/VM

 (12)

3. Derivation of IACOGL

In this section, an impact-angle constraint guidance law with a variable weighted gain
is derived on the foundation of optimal control theory. Now, let us consider the following
optimal control problem: Find u(t) that minimizes defined by

J =
1
2

∫ t f

t0

u2/tN
godt (13)

subject to (11) and terminal constraints given by

ξ
(

t f

)
= 0, γI

(
t f

)
− γc

f = 0 (14)

where, tgo = t f − t is the time-to-go; N is weighted gain, which is the shaping parameter
of the guidance command.

3.1. Order Reduction Transformation

Bryson and Ho [3] introduced a transformation enabling reducing an optimal control
problem’s order, which is denoted as terminal projection and can be used to simplify the
derivation. This transformation can be easily applied to the resulting optimal control
problem in previous section.

As was done in [10], let us define a new state vector Z(t) that satisfies

Z(t) = DΦ
(

t f , t
)

x(t) + D
∫ t f

t
Φ
(

t f , τ
)

Cdτ −Dxc
f (15)
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where Φ
(

t f , t
)

is the transition matrix associated with Equation (11), xc
f indicates the

terminal constraint of x(t), and D is a constant matrix

D =

[
1 0 0 [0]1×n
0 0 1 [0]1×n

]
(16)

Since .
Φ
(

t f , t
)
= −Φ

(
t f , t

)
A (17)

the time derivative of the new state vector Z(t) is

.
Z = D

[ .
Φ
(

t f , t
)

x + Φ
(

t f , t
) .

x
]
−DΦ

(
t f , t

)
C = DΦ

(
t f , t

)
Bu =

[
ϕξ

(
tgo
)

ϕγ

(
tgo
) ]u (18)

which is state independent and only the function of the guidance command u. The terminal
value of Z(t) can be expressed using (15) as

Z
(

t f

)
= D

[
x
(

t f

)
− xc

f

]
=
[

ξ
(

t f

)
, γI

(
t f

)
− γc

f

]T
(19)

It is obvious that Z
(

t f

)
should be zeros. Then, using these new variables, the aug-

mented cost function can be written as

J = υ1Z1

(
t f

)
+ υ2Z2

(
t f

)
+

1
2

∫ t f

t0

u2/tN
godt (20)

where, υ1 and υ2 are Lagrange multipliers; Z1

(
t f

)
and Z2

(
t f

)
are the first and second

variables of Z
(

t f

)
.

Note that, besides reducing the order of the problem, the two variables of the new state
vector Z(t) have an important physical meaning. Z1(t) is zero-effort miss distance (ZEM),
and Z2(t) is zero-effort angle error (ZEAE), respectively referring to the miss distance
and the impact-angle error if, from the current time onward, the missile will not apply
any control.

3.2. Closed-Loop Optimal Guidance Command

According to the theory of optimal control, the Hamiltonian of the problem is

H =
1
2

u2/tN
go + λ1 ϕξ

(
tgo
)
u + λ2 ϕγ

(
tgo
)
u (21)

where λ1 and λ2 are co-state variables, respectively. Due to the order reduction transforma-
tion, the time derivative of the zero-effort variables is state independent, and therefore the
adjoint equations can be presented in a simplified manner.{ .

λ1 = −∂H/∂Z1 = 0
.
λ2 = −∂H/∂Z2 = 0

(22)

Then we can obtain the co-state variables: λ1(t) = λ1

(
t f

)
= υ1

λ2(t) = λ2

(
t f

)
= υ2

(23)
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For obtaining an analytic solution for the guidance command, it is assumed that the
dynamics of missile are lag-free. Therefore, the time derivatives of the Z1 and Z2 are
simplified as { .

Z1 = ϕξ

(
tgo
)
u = −tgou

.
Z2 = ϕγ

(
tgo
)
u = u/V′M

(24)

where V′M = VM/kM. Therefore, the optimal guidance command for the missiles,
which satisfy

u∗ = arguminH (25)

are
∂H/∂u = 0⇒ u∗(t) = λ1tN+1

go − λ2tN
go/V′M (26)

Substituting (23) into (26) and integrating from t to t f yields the following two coupled
algebraic equations:

Z1

(
t f

)
= Z1(t)− υ1

tN+3
go

N+3 + υ2
tN+2
go

(N+2)V′M
= 0

Z2

(
t f

)
= Z2(t) + υ1

tN+2
go

(N+2)V′M
− υ2

tN+1
go

(N+1)V′2M
= 0

(27)

Solving υ1, υ2 and substituting the solution into (26), the optimal guidance com-
mand [10] is

u∗(t) =
NZEM

t2
go

Z1(t) + NZEAE
V′M
tgo

Z2(t) (28)

where, NZEM and NZEAE are the navigation gains, which are expressed as

NZEM = (N + 2)(N + 3)
NZEAE = (N + 1)(N + 2)

(29)

And the new states Z1 and Z2 can be expressed using state x as

Z1(t) = ξ +
.
ξtgo

Z2(t) = ∆gγtgo/VM + γI − γc
f

(30)

For the guidance law implementation, the time-to-go must be estimated. It can be
approximated simply by

tgo = −r/
.
r (31)

If the more accurate tgo estimation is needed, the method presented in [8] can be adopted.
It is found that the command of the proposed guidance law is expressed as a linear

combination of zero-effort miss distance and the zero-effort angle error, which is similar
to that of the OGL-CTIA proposed in [10]. However, the navigation gains are absolutely
different from that of the OGL-CTIA. They possess an additional parameter to shape the
intercepting trajectory, which can be used to limit the maximal acceleration. Next, we will
focus on how to select the most appropriate weighted gain to achieve missile acceleration
within the limit.

4. IACOGL with Acceleration Limit

In the previous section, a universal impact-angle constrained optimal guidance law
with great trajectory shaping capability is obtained, but acceleration limit is not considered.
In this section, the maximum acceleration is limited by adjusting the shaping parameter,
which is the weighted gain, N, to avoid acceleration saturation. Firstly, the closed-form
solution to the guidance command is proposed, which is used to derive the function of
maximum of guidance command and total maneuvering energy. Then a systematic method
is proposed for selecting the weighted gain meeting the constraint of the acceleration while
the total maneuvering energy is minimal.
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4.1. Analytical Solution to Guidance Command

In order to derive an analytical solution to the guidance command, let us focus on
the linear dynamics equation presented in (18). Substituting (28) into (18) results in the
following optimal states dynamics:

.
Z
∗
1 = −NZEMZ∗1 /tgo − NZEAEV′MZ∗2

.
Z
∗
2 = NZEMZ∗1 /

(
V′Mt2

go

)
+ NZEAEZ∗2 /tgo

(32)

It is obvious that the resulting equation set is a first-order linear time-invariant ordi-
nary differential equation (ODE). Its solution can be analytically formulated as Z∗1 (t) = (N + 2)C1tN+3

go − (N + 1)C2tN+2
go

Z∗2 (t) = −
[
(N + 3)C1tN+2

go − (N + 2)C2tN+1
go

]
/V′M

(33)

where
C1 = (N + 2)Z10/tN+3

f + (N + 1)V′MZ20/tN+2
f

C2 = (N + 3)Z10/tN+2
f + (N + 2)V′MZ20/tN+1

f

(34)

and Z10, Z20 are initial values, respectively.
For simplification, a non-dimensional parameter, which is a function of Z1, Z2, V′M,

and tgo is introduced.
κ = Z1/

(
V′MZ2tgo

)
(35)

Therefore, Equation (33) can be rewritten as

Z∗1 (t) = V′MZ20t f
[
(N + 2)C1tgo − (N + 1)C2

]
tN+2
go

Z∗2 (t) = −Z20
[
(N + 3)C1tgo − (N + 2)C2

]
tN+1
go

(36)

where, C1 and C2 are non-dimensional coefficients which expressed as

C1 = (N + 2)κ0 + (N + 1)
C2 = (N + 3)κ0 + (N + 2)

(37)

where, κ0 = Z10/
(

V′MZ20t f

)
is the initial value of κ. Substituting (36) into (28), the

expression to guidance command is derived as

u∗(t) =
V′MZ20

t f
ηN

(
C1

N + 1
tN+1
go − C2

N + 3
tN
go

)
(38)

where, ηN = (N + 1)(N + 2)(N + 3) and tgo = tgo/t f is the dimensionless time-to-go.
Therefore, the expression to guidance command can be derived directly if the initial
conditions and terminal constraints are provided.

4.2. Maximum of Guidance Command

From a practical point of view, the available acceleration that the missile can provide
is limited, so it is necessary to analyze the maximum acceleration during the homing flight.
According to the analytical solution to guidance command presented in (38), the maximum
of guidance command for the given initial condition and the selected weighted gain N can
be derived. Therefore, the designer can judge whether command saturations occur when
the acceleration limit is imposed. In this subsection, the maximum of guidance command
for different κ0 is derived in an analytical manner, which is a function of the weighted
gain N. Furthermore, the weighted gain which minimizes the maximum of the guidance
command is derived, which can be used to limit the maximum of the guidance command
during the engagement.
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4.2.1. Expression to Maximum of Guidance Command

For simplification, the dimensionless guidance command is defined as

u∗
(
t
)
,

u∗(t)
VMZ20/t f

= ηN

(
C1

N + 1
tN+1
go − C2

N + 3
tN
go

)
(39)

For a continuous function on a closed and bounded interval, a maximum value can be
observed at a critical point or boundary point by the extreme value theorem. The critical
point of a function is where its time-derivative is zero. It is obvious that the dimensionless
guidance command profile is continuously differentiable in the bounded time interval [0,1]
and its derivative to dimensionless time is

du∗/dt = −ηN
[
C1tgo − NC2/(N + 3)

]
tN−1
go (40)

Then, considering the critical point condition du∗/dt = 0, two critical points can
be obtained:

tgo1 = 0, tgo1 = NC2/
[
(N + 3)C1

]
(41)

It is obvious that the first solution is one of boundary points, which should be removed.
For the second solution, if it is within (0, 1), it can be regarded as the critical point. Now,
let us define a set Next of weighted gain, which makes the second solution within (0, 1).
It is noted that the set Next is dependent on κ0. If κ0 = −1, 0 < tgo1 < 1 degenerates to
0 < N/(N + 3) < 1. Thus, it is apparent that Next = (0,+∞). And if κ0 6= −1, 0 < tgo1 < 1
is equivalent to{

(N + 3)(N − 2N2/3) > N(N − N1)
N − N1 > 0

or
{

(N + 3)(N − 2N2/3) < N(N − N1)
N − N1 < 0

(42)

where
N1 = −(3κ0 + 2)/(κ0 + 1), N2 = −(3κ0 + 3/2)/(κ0 + 1) (43)

Then we can obtain

Next = (0, min{0, N1, N2}) ∪ (max{0, N1, N2},+∞) (44)

Now, let us consider the special case of N = 0. In this case, it can be obtained from
(39) that the terminal dimensionless guidance command is not zero and its value is

u∗f (N = 0) = −2(3κ0 + 2) (45)

when N ∈ Next, Substituting (41) into (39), the dimensionless guidance command at critical
point is

u∗1(N) = −(N + 2)C2tN
go1 (46)

It is noted that, if N → 0 , u∗1(N) is approach to u∗f (N = 0). Thus, if N = 0, the critical
point is at the terminal point. Therefore, the set Next should include the case, N = 0. As a
result, Next for different κ0 can be expressed as

Next = [0, min{0, N1, N2}) ∪ (max{0, N1, N2},+∞)

=


[0, N1) ∪ (N2,+∞), −1 < κ0 < −2/3
(N2,+∞), −2/3 ≤ κ0 < −1/2
[0,+∞), κ0 ≤ −1, κ0 ≥ −1/2

(47)
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Therefore, the maximum of dimensionless guidance command, uMax, can be obtained
by the extreme value theorem as

uMax(N) =

{
max(|u∗0 |, |u∗1 |), N ∈ Next

|u∗0 |, N /∈ Next
(48)

where u∗0 is the value of u∗
(
t
)

at the boundary point, 0, which is the function of N:

u∗0(N) = (N + 2)
(
C2 − 1

)
(49)

All in all, the maximum value can be expressed by a uniform formula which is function
of N. In order to analyze the specific expression of uMax, a function of N is defined to
denote the difference between the magnitudes of u∗0 and u∗1 .

Ξ(N) = |u∗0 | − |u∗1 |, N ∈ Next (50)

Obviously, tgo1 ≥ 0 for arbitrary κ0 and N ∈ Next. Then, substitute (46) and (48) to
(50), Ξ(N) can be expressed as

Ξ(N) = (N + 2)
(∣∣C2 − 1

∣∣− ∣∣C2
∣∣tN

go1

)
=


−(N + 2) fadd(N), C2 ≤ 0
−(N + 2) fsub(N), C2 ∈ (0, 1)
(N + 2) fadd(N), C2 ≥ 1

(51)

where, the functions fadd(N) and fsub(N) are defined as

fadd(N) = C2 − 1− C2tN
go1, N ∈ Nadd (52)

fsub(N) = C2 − 1 + C2tN
go1, N ∈ Nsub (53)

where the domains of Nadd and Nsub are

Nadd = {N ∈ Next|C2 ∈ (−∞, 0] ∪ [1, ∞)}, Nsub = {N ∈ Next|C2 ∈ (0, 1)}. (54)

It is obvious that the magnitude relationship between C2 and 0,1 is different for various
κ0. And therefore, the sets Nadd and Nsub have different interval for various κ0, which is
present in Figure 2. In the figure, N3 is the special weighted gain which makes C2 = 1. It is

N3 = −(3κ0 + 1)/(κ0 + 1) (55)
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2
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N

2C

0
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(d)

Figure 2. The value of C2 for the various κ0. (a) κ0 ∈ (−∞,−1), Nadd = [0,+∞), Nsub = ∅; (b) κ0 ∈ (−1,−2/3),
Nadd = [0, N1) ∪ [N3,+∞), Nsub = (N2, N3); (c) κ0 ∈ (−2/3,−1/3), Nadd = [N3,+∞), Nsub = (max{0, N2}, N3);
(d) κ0 ∈ (−1/3,+∞), Nadd = [0,+∞), Nsub = ∅.
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It can be seen that the sign of Ξ(N) is depended on fadd(N) and fsub(N). The Proposi-
tions A1 and A2 are presented in Appendix A to analyze the sign of fadd(N) and fsub(N).
Actually, the sign of Ξ(N) can be determined according to the magnitude of κ0. And then
the expression of uMax is derived. uMax is a piecewise function of N, the piecewise point of
which is dependent on κ0. Based on the set Next, the specific expression of uMax is divided
into the following four cases.

(1) If κ0 ≤ −1, it can be obtained from the Proposition A1 that C2 < 0 and fadd(N) < 0
for any N ∈ Next. And therefore, it is obvious that Ξ(N) > 0 from (51), i.e., |u∗0 | is larger
than |u∗1 | for N ∈ Next. Note that the sign of u∗0 is negative according to (49). Therefore,
the maximum of dimensionless guidance command is

uMax = |u∗0 | = −u∗0 (56)

(2) If −1 < κ0 < −2/3, the set Next = [0, N1) ∪ (N2,+∞). According to Figure 2,
Ξ(N) divides into three parts according to different weighted gain, which is

Ξ(N) =


−(N + 2) fadd(N), N ∈ [0, N1)

−(N + 2) fsub(N), N ∈ (N2, N3]

(N + 2) fadd(N), N ∈ (N3,+∞)

(57)

Then, the sign of Ξ(N) can be derived according to the Propositions A1 and A2, which is

Ξ(N) =


|u∗0 | − |u∗1 | > 0, N ∈ [0, N1)

|u∗0 | − |u∗1 | < 0, N ∈
(

N2, Nadd
zero

]
|u∗0 | − |u∗1 | > 0, N ∈

(
Nadd

zero,+∞
) (58)

where Nadd
zero is the zero point of function fadd(N). It should be noted that there is a special

case, N ∈ [N1, N2], in which the maximum of dimensionless guidance command is |u∗0 |
according to (48). Additionally, the sign of u∗0 and u∗1 is dependent on the value of C2 which
can be easily conclude that

C2 ≤ (κ0 + 1)N2 + 3κ0 + 2 < 1, N ∈ [0, N2]

C2 > (κ0 + 1)N2 + 3κ0 + 2 > 0, N ∈
(

N2, Nadd
zero

]
C2 > (κ0 + 1)N3 + 3κ0 + 2 = 1, N ∈

(
Nadd

zero,+∞
) (59)

As a result, the maximum of dimensionless guidance command is

uMax =


|u∗0 | = −u∗0 , N ∈ (0, N2]

|u∗1 | = −u∗1 , N ∈
(

N2, Nadd
zero

]
|u∗0 | = u∗0 , N ∈

(
Nadd

zero,+∞
) (60)

(3) If −2/3 ≤ κ0 < −1/2, the set Next is (N2,+∞). Because the derivation process is
similar to the case of −1 < κ0 < −2/3, the sign of Ξ(N) is

Ξ(N) =


|u∗0 | − |u∗1 | < 0, N ∈

(
N2, Nadd

zero

]
|u∗0 | − |u∗1 | > 0, N ∈

(
Nadd

zero,+∞
) (61)

It should be noted that there is also a special case, N ∈ [0, N2], in which the maximum
of the dimensionless guidance command is |u∗0 | according to (48). Thus, the maximum of
the dimensionless guidance command is the same as that presented in (60).
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(4) If κ0 ≥ −1/2, the set Next = [0,+∞). It can be easily obtained that for any
N ∈ [0,+∞),

C2 = (κ0 + 1)N + 3κ0 + 2 ≥ 3κ0 + 2 > 0 (62)

Furthermore, it is clear that if κ0 ≥ −1/3, C2 > 1 for any N. As for the case
−1/2 ≤ κ0 < −1/3, it can be obtained from Figure 2 that{

C2 < 1, N ∈ (0, N3)

C2 > 1, N ∈ (N3,+∞)
(63)

where N3 is a function of κ0, which is presented in (55). Thus, Ξ(N) can be expressed as

Ξ(N) =

{
−(N + 2) fsub(N), N ∈ [0, max{0, N3}]
(N + 2) fadd(N), N ∈ (max{0, N3},+∞)

(64)

According to the Propositions A1 and A2, the sign of Ξ(N) can be derived.

Ξ(N) =


|u∗0 | − |u∗1 | < 0, N ∈

[
0, Nadd

zero

]
|u∗0 | − |u∗1 | > 0, N ∈

(
Nadd

zero,+∞
) (65)

Thus, the maximum of dimensionless guidance command is

uMax =


|u∗1 | = −u∗1 , N ∈

[
0, Nadd

zero

]
|u∗0 | = u∗0 , N ∈

(
Nadd

zero,+∞
) (66)

In conclusion, the closed-form solution of uMax for various initial states are determined
by (56), (60), and (66). Noted that, though uMax is the piecewise function of N, it is
still continuous.

4.2.2. Weighted Gain Minimal Maximum of Guidance Command

In order to find the weighted gain corresponding to the minimal of uMax, the derivative
of uMax to N is obtained. There are still three types according to the different initial states.

(1) If κ0 ≤ −1, it can be obtained from (56) that the derivative of uMax to N is

.
uMax = −2(κ0 + 1)N − (5κ0 + 3) (67)

It is obvious that
.
uMax > 0 for any N ≥ 0, i.e., uMax is the monotonic increasing

function of N. Therefore, the weighted gain which minimizes the maximum of guidance
command is

Nmin = 0 (68)

(2) If −1 < κ0 < −1/2, according to (60), the derivative of uMax to N is

.
uMax =


−2(κ0 + 1)N − (5κ0 + 3), N ∈ [0, N2]

|u∗1 |Γ(N)/(N + 2), N ∈
(

N2, Nadd
zero

]
2(κ0 + 1)N + 5κ0 + 3, N ∈

(
Nadd

zero,+∞
) (69)

where
Γ(N) =

(
1 + C1

)
/C2 + (N + 2) f (N) + 1 (70)
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If N ∈
(

Nadd
zero,+∞

)
, it is obvious that

.
uMax is the monotonic increasing function of

N. According to the Proposition A1, N3 is larger than Nadd
zero. It is easy to find that

.
uMax in

interval
(

Nadd
zero,+∞

)
is larger than zero.

.
uMax >

.
uMax

(
Nadd

zero

)
>

.
uMax(N3) = 1− κ0 > 0 (71)

If N ∈
(

N2, Nadd
zero

]
, the sign of

.
uMax is depended on Γ(N). It can be seen from the

Proposition A3 presented in Appendix A, there is one and only one zero point of Γ(N)
defined as Nu1

ext in the interval (N2,+∞) for the case −1 < κ0 < −1/2. In order to analyze

the sign of
.
uMax(N) in interval N ∈

(
N2, Nadd

zero

]
, it is necessary to study the relationship

between Nu1
ext and Nadd

zero. Substituting N3 into (70), the value of Γ(N) at N3 is

Γ(N3) = 2x[ln(1− x) + (2− 7κ0)x] > 2x[ln(1− x) + 2x] > 0 (72)

where, x = −(κ0 + 1)/(2κ0) ∈ (0, 1/2). Note that, because Γ(N) is the monotonic increas-
ing function and Nu1

ext is the zero point of Γ(N), Nu1
ext < N3. Furthermore, it is clear that

N3 < Nadd
zero because Nadd

zero is the zero point of fadd(N) in the interval (max{0, N3},+∞).
It can be obtained that Nu1

ext < N3 < Nadd
zero. Therefore, it is easy to find that

.
uMax < 0 when

N ∈
(

N2, Nu1
ext
)

and
.
uMax > 0 when N ∈

(
Nu1

ext, Nadd
zero

]
.

If N ∈ [0, N2], it is clear that there is one and only one zero point of
.
uMax(N).

Nu0
ext = −(5κ0/2 + 3/2)/(κ0 + 1) (73)

Moreover,
.
uMax > 0, when N ∈

[
0, Nu0

ext
)

and
.
uMax < 0, when N ∈

(
Nu0

ext, N2
]
.

In conclusion, the sign of
.
uMax is derived as

.
uMax > 0, N ∈

[
0, Nu0

ext
)

.
uMax < 0, N ∈

(
Nu0

ext, Nu1
ext
)

.
uMax > 0, N ∈

(
Nu1

ext,+∞
) (74)

Consequently, the minimum of uMax is at N = 0 or N = Nu1
ext. The weighted gain

which minimizes the maximum of guidance command is

Nmin =

{
0, uMax(0) ≤ uMax

(
Nu1

ext
)

Nu1
ext, uMax(0) > uMax

(
Nu1

ext
) (75)

It can be seen from Figure 3 that, there is only one point, κ0 = −0.7745, in the interval
(−1,−1/2) such that uMax(0) = uMax

(
Nu1

ext
)
. Therefore, (75) can be rewritten as

Nmin =

{
0, −1 < κ0 ≤ −0.7745

Nu1
ext, −0.7745 < κ0 < −1/2

(76)

(3) If κ0 ≥ −1/2, according to (66), the derivative of uMax to N is

.
uMax =


|u∗1 |Γ(N)/(N + 2), N ∈

[
0, Nadd

zero

]
2(κ0 + 1)N + 5κ0 + 3, N ∈

(
Nadd

zero,+∞
) (77)
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It is obvious that
.
uMax > 0 for any N ∈

(
Nadd

zero,+∞
)

. Furthermore, if κ0 > −1/2,

it can be obtained from Proposition A3 that Γ(N) < 0 when N ∈
[
0, Nu1

ext
)

and Γ(N) > 0
when N ∈

(
Nu1

ext,+∞
)
. If Nu1

ext < Nadd
zero, the sign of

.
uMax is{ .

uMax < 0, N ∈
[
0, Nu1

ext
)

.
uMax > 0, N ∈

(
Nu1

ext,+∞
) (78)

Thus, Nu1
ext is the minimal point of uMax. And if Nu1

ext > Nadd
zero, the sign of

.
uMax is

.
uMax < 0, N ∈

[
0, Nadd

zero

)
.
uMax > 0, N ∈

(
Nadd

zero,+∞
) (79)

Thus, Nadd
zero is the minimal point of uMax. Therefore, for the case κ0 > −1/2, the

weighted gain which minimizes the maximum of guidance command is

Nmin = min
{

Nu1
ext, Nadd

zero

}
(80)

It can be seen from Figure 4, there is only one point, κ0 = −0.0634, in the set
(−1/2,+∞) such that Nu1

ext = Nadd
zero. Therefore, (80) can be rewritten as

Nmin =

{
Nu1

ext, −1/2 < κ0 ≤ −0.06335

Nadd
zero, κ0 > −0.06335

(81)
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If κ0 = −1/2, it can be obtained from the Proposition A3 that Γ(N) > 0 when
N ∈ [0,+∞). Thus, the sign of

.
uMax is positive for any N. The weighted gain which

minimizes the maximum of guidance command is

Nmin = 0 (82)

In conclusion, the weighted gain which minimizes the maximum of guidance com-
mand is determined by (68), (76), and (81), which can be summarized as:

Nmin =


0, κ0 ≤ −0.7745, κ0 = −0.5

Nu1
ext, −0.7745 < κ0 ≤ −0.0634&κ0 6= −0.5

Nadd
zero, κ0 > −0.06335

(83)

4.3. Total Maneuvering Energy

For the missile guidance and control system, it is desired to impact the target with
less maneuvering in the course of guidance. Therefore, a special function E is defined to
represent the energy consumption caused by maneuvering in the whole course of guidance.

E =
∫ 1

0
u2(t)dt (84)

Substituting (40) into (84), the expression of E can be obtained as

E(N) = (N+2)2

(2N+1)(2N+3)

[
(κ0 + 1)2N3 +

(
7κ2

0 + 10κ0 + 3
)

N2

+5
(
3κ2

0 + 3κ0 + 1
)

N + 3
(
3κ2

0 + 3κ0 + 1
)] (85)

It is obvious that E is related to the initial value κ0 and the weighted gain N. Therefore,
it is necessary to analyze the minimum of E.

The derivative of E to N is

.
E(N) =

N(N + 2)

(2N + 1)2(2N + 3)2 Θa(N, κ0) (86)

where
Θa(N, κ0) = a2(N)κ2

0 + a1(N)κ0 + a0(N) (87)

And
a2(N) = 12N4 + 96N3 + 275N2 + 334N + 147
a1(N) = 24N4 + 160N3 + 394N2 + 436N + 183
a0(N) = 12N4 + 64N3 + 139N2 + 142N + 57

(88)

It is obvious that the sign of
.
E(N) is determined by the quadratic polynomial Θa(N, κ0).

The trajectory of function Θa(N, κ0) = 0 with different N and κ0 is shown in Figure 5. It is
obvious that it divides space (N, κ0) into two regions, S1 and S2, the one is

.
E(N) < 0 and

the other is
.
E(N) > 0.

As can be seen from Figure 5, there is a maximum κmax of κ0 in the trajectory of
Θa(N, κ0) = 0 which can be regarded as an implicit function of κ0 with respect to N.
Calculating the derivative of both sides of Θa(N, κ0) = 0 to N, it yields

2a2(N) κ0dκ0/dN + a1(N)dκ0/dN +
.
a2(N)κ2

0
+

.
a1(N) κ0 +

.
a0(N) = 0

(89)
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where, dκ0/dN,
.
a2(N),

.
a1(N), and

.
a0(N) are the derivatives of κ0, a2, a1, and a0 to N,

respectively. It is obvious that κmax is at the point which makes dκ0/dN zero. Therefore,
according to (89), κmax must meet the equation as

.
a2(N)κ2

max +
.
a1(N)κmax +

.
a0(N) = 0 (90)

Aerospace 2021, 8, x FOR PEER REVIEW 15 of 30 
 

 

4.3. Total Maneuvering Energy 
For the missile guidance and control system, it is desired to impact the target with 

less maneuvering in the course of guidance. Therefore, a special function E  is defined 
to represent the energy consumption caused by maneuvering in the whole course of guid-
ance. 

( )1 2

0
E u t dt=   (84)

Substituting (40) into (84), the expression of E  can be obtained as 

( ) ( )
( )( ) ( ) ( )

( ) ( )

2
2 3 2 2

0 0 0

2 2
0 0 0 0

2 1 + 7 10 3
2 1 2 3

5 3 3 1 3 3 3 1

NE N N N
N N

N

κ κ κ

κ κ κ κ

+ = + + ++ +
+ + + + + + 

 (85)

It is obvious that E  is related to the initial value 0κ  and the weighted gain N . 
Therefore, it is necessary to analyze the minimum of E . 
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N N
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Because a2, a1, and a0 are polynomial functions of N, those derivatives can be deter-
mined in analytical manner. Additionally, because κmax is at the trajectory of Θa(N, κ0) = 0,
the following equation should be satisfied for κmax and N.

a2(N)κ2
max + a1(N)κmax + a0(N) = 0 (91)

It is easy to solve the equation set (90) and (91) to obtain κmax = −0.6418.
Obviously, if κ0 ≥ κmax,

.
E(N) ≥ 0 for any N, i.e., E(N) is the monotonic increasing

function of N. And if κ0 < κmax, two weighted gains satisfy Θa(N, κ0) = 0, which is
defined as NE1 and NE2 (might as well assume that NE1 < NE2). Then, the sign of

.
E(N) is

derived as { .
E(N) > 0, N ∈ [0, NE1) ∪ (NE2,+∞)
.
E(N) < 0, N ∈ (NE1, NE2)

(92)

It is apparent that E(N) increases with the increase of N when N ∈ [0, NE1), decreases
with the increase of N when N ∈ (NE1, NE2), and increases again when N ∈ (NE2,+∞).
Therefore, the minimum of E(N) is at N = 0 or N = NE2, where the values of E(N) are

E0 = 4
(
3κ2

0 + 3κ0 + 1
)
, E2 = E(NE2; κ0) (93)

In order to determine the minimum of E2 and E0, the difference between them is
defined as

E2 − E0 =
N2

E2
(2NE2 + 1)(2NE2 + 3)

Θb(NE2, κ0) (94)

where
Θb(NE2, κ0) = b2(NE2)κ

2
0 + b1(NE2)κ0 + b0(NE2) (95)

and
b2(N) = N3 + 11N2 + 47N + 49
b1(N) = 2N3 + 18N2 + 63N + 61
b0(N) = N3 + 7N2 + 21N + 19

(96)
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It is obvious that the sign of E2 − E0 is determined by the quadratic polynomial
Θb(NE2, κ0), the discriminant of which satisfies

∆ = −(NE2 − 1)2
(

4N2
E2 + 8NE2 + 3

)
< 0 (97)

Thus, it leads to the fact that Θb(NE2, κ0) > 0 because the highest degree coefficient of
Θb(NE2, κ0) is greater than zero. Furthermore, it can be obtained that E2 > E0. It means
that E0 is the minimum value of E.

4.4. Weighted Gain for Limiting Maximum Guidance Command

In this subsection, a systematic method based on the characteristic presented in
the previous two subsections is proposed for limiting maximum guidance command by
adjusting the weighed gain N. Note that if the initial conditions are given, the maximum
of guidance command can be expressed as a function of weighed gain N. Therefore,
the set of weighted gain N that meets the acceleration limit can be determined inversely.
Additionally, the total maneuvering energy, which is an important index especially for
the missile’s maneuverability with direct force in exo-atmospheric interception, is also
dependent on the weighted gain. Therefore, it is necessary to select the weighted gain
which minimizes the total maneuvering energy while satisfying the acceleration constraint.

It can be seen from last subsection that when N = 0, the value of E is at its minimum,
and the navigation gains NZEM, NZEAE are the minimum. It is beneficial for the missile to
increase the robustness to the error. Obviously, if the maximum of guidance command for
the case N = 0, uMax(0), is less than the acceleration limit, ulim, the weighted gain should
be selected as

N = 0 (98)

If uMax(Nmin) < ulim < uMax(0), there exists an interval (Nlim1, Nlim2) satisfying
uMax(N) < ulim. The weighted gain should be selected as the one makes E minimal in
this interval. If κ0 ≥ κmax, E is the monotonic increasing function of N according to the
previous subsection, and therefore the weighted gain should be selected as

N = Nlim1 (99)

And if κ0 < κmax, E is also a monotonic increasing function of N for N < NE1 or
N > NE2, and a monotonic decreasing function for NE1 < N < NE2. Obviously, the
minimum of E in interval (Nlim1, Nlim2) may occur at Nlim1, Nlim2, or NE2. Therefore, the
weighted gain should be selected as the minimal values of E at these three points.

N = Nj
∣∣min

{
E
(

Nj
)}

, j ∈ {lim1, lim2, E2} (100)

Let us consider a stricter case, uMax(Nmin) ≥ ulim. It is well known that acceleration
saturation will generally occur during the initial period. Therefore, the weighted gain Nmin
should be updated at each guidance step until the current guidance command is within the
acceleration limit. However, If the weighted gain is selected as Nmin, the acceleration will
still be saturated near the interception. A varying weighted gain N should be employed to
avoid acceleration saturation near the interception so as to improve guidance performance.
For this case, the weighted gain should be re-selected to zero at the point κ∗ = −1/2, which
can significantly reduce the maximum of guidance command according to the Proposition
A4 presented in Appendix A.

The weighted gain satisfying the acceleration limit is obtained. Applying it to the
guidance command in the form of state feedback presented in (28), a complete guidance
law with impact-angle constraint and acceleration limit is successfully derived. It is noted
that although this method has been developed for lag-free systems, it may be applied to
lag systems as well.



Aerospace 2021, 8, 358 17 of 28

4.5. Implementation of Proposed Guidance Law

In this paper, the time-to-go weighted optimal guidance law with impact-angle con-
straint and acceleration limit is developed. The procedure for implementing the proposed
guidance law is included in the flow chart in Figure 6 and summarized in detail as follows.
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(1) Initialization: Set initial simulation parameters.
(2) Linearization of relative motion model: Construct the linear model for guidance law

derivation based on the current value of VM, VT , γM, γT , and λ.
(3) Determine whether to update the weighted gain according to the following conditions:

a. The current guidance step is the first one.
b. There is the case mentioned in the previous subsection where the weighted

gain needs to be updated:

i: The current guidance command generated by the current weighted gain
is not within the acceleration limit, update the weighted gain as Nmin.

ii: If umax(Nmin) > ulim, re-select the weighted gain to zero at the point
κ∗ = −1/2.

If yes, go to next step, if not, go to step 7.

(4) Derive the closed-form expression to guidance command of the lag-free dynamic.
(5) Calculate the maximum of guidance command and the total maneuvering energy

based on the closed-form expression to guidance command.
(6) Select the optimal weighted gain that minimal the total maneuvering energy while

satisfying the acceleration constraint.
(7) Using (28), generate the current guidance command with the selected weighted gain.
(8) Apply the guidance command to the real nonlinear relative motion model and update

the initial state, then return step 2.

5. Simulation Results

In this section, numerical simulations using the nonlinear engagement kinematics
are carried out to evaluate the performance of the proposed guidance law. Three cases
with different initial flight-path angle and impact-angle constraint are considered, which
are: (a) case 1: γM(0) = 0◦, γc

f = 0◦; (b) case 2: γM(0) = −20◦, γc
f = 0◦; (c) case 1:

γM(0) = −20◦, γc
f = −20◦. The initial parameters κ0 corresponding to these three cases
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are 0, −0.6, and −1.7, respectively, which are typical cases for the category of κ0. And the
other required initial conditions are listed in Table 1. A first-order lag with a time constant
of 0.3 s is considered for the interceptor. All programs are implemented on a computer
with a 2.6 GHz processor and 2016a MATLAB environment.

Table 1. Initial Conditions for Engagement.

Parameters Values

Missile-target initial relative range, r(0) 230 km
Initial LOS angle, λ(0) 0◦

Missile initial velocity, VM(0) 4000 m/s
Target initial velocity, VT(0) 3000 m/s

Target initial flight-path angle, γT(0) 0◦

Gravitational acceleration, g 9.8 m/s2

5.1. Normal Simulation of Proposed Guidance Law

Numerical simulation is carried out in this subsection in which different initial condi-
tions and weighted gains are considered to verify the previous theoretical results. Figure 7
provide the simulation results of instantaneous ZEM and ZEAE obtained by the proposed
guidance law with N = 0, 0.5, 1. It is obvious that both instantaneous ZEM and ZEAE
converge to zeros at the time of impact, which means that the proposed guidance law is
capable of guiding the missile to intercept the target with desired terminal angle for N ≥ 0.
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Figure 7. ZEM and ZEAE. (a) case 1; (b) case 2; (c) case 3.

Figure 8 shows the histories of the missile accelerations. Obviously, for κ0 = 0 and
κ0 = −1.7, there exists a critical point for the cases with N = 0.5 and N = 1; for κ0 = −0.6
there exists a critical point for the case with N = 1. The simulation results are consistent
with the theory presented in Section 4.2.1, which implies that, if N ∈ Next, there is a critical
point in the acceleration profile.

In order to further verify the validity of the proposed method for limiting maximum
acceleration, some comparisons with linear lag-free system, nonlinear lag-free system,
as well as nonlinear first-order lag system have been done. The simulation results are
demonstrated in Figures 9–11. The subfigure (a), (b), and (c) respectively show the max-
imum accelerations of the three system with various N, the dimensionless time-to-go
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corresponding to the maximum acceleration, and the histories of the real acceleration for
three systems, in which the weighted gain is selected as N = Nmin.

Obviously, the maximum acceleration of nonlinear simulation is approximate to, in
most cases even slightly less than, that of linear lag-free system except for the case 2. The
reason is that the first-order lag system is considered in the simulation, which leads to
a lag for the response of command tracking. Therefore, it can be seen from Figures 9c and
11c, the maximum acceleration at the beginning, is less than that in linear lag-free system.
Accordingly, for the case 1, the acceleration at the critical point t1 is also less than that in
linear lag-free system. As for the case 2, the maximum acceleration is a little bigger than
its theoretical value due to nonlinear and first-order lag. This may result in acceleration
saturation. But the maximum for the acceleration is happened at the beginning of the flight.
And then, it shapely reduces to the non-saturation. Therefore, the acceleration saturation
will not have much influence on the terminal miss. The phenomenon can be inferred from
Figure 10b,c. Conclusively, the method derived from the linear lag-free systems is still valid
for the nonlinear lag systems.
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Figure 8. Missile acceleration. (a) case 1; (b) case 2; (c) case 3.
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Figure 9. Some comparisons for three systems in case 1. (a) Maximum acceleration; (b) Dimensionless time-to-go corre-
sponding to the maximum acceleration; (c) History of the missile acceleration.
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Figure 10. Some comparisons for three systems in case 2. (a) Maximum acceleration; (b) Dimensionless time-to-go
corresponding to the maximum acceleration; (c) History of the missile acceleration.
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Figure 11. Some comparisons for three systems in case 3. (a) Maximum acceleration; (b) Dimensionless time-to-go
corresponding to the maximum acceleration; (c) History of the missile acceleration.

5.2. Comparison with Other Guidance Law

The OGL-CTIA proposed in [10] is a widely used and effective guidance law to impose
a specified impact-angle. In this subsection, a comparison between the proposed guidance
law and OGL-CTIA is provided to demonstrate the superior performance of the proposed
guidance law in limiting maximum acceleration. In the simulations, the engagement
condition is set to case 1 and the various acceleration limits are involved.

Figure 13 shows the interception trajectories of both guidance laws with
ulim = 65, 75, 85 m/s2. As can be seen from those figures, both guidance laws perform
well when the acceleration limit is 85 m/s2. If the acceleration limit is stricter to 65 m/s2

or 75 m/s2, the proposed method also performs well. However, the OGL-CTIA fails to
intercept the target. The statistics of the miss distances and the impact-angle errors are
listed in Table 2. The computational time at every guidance step of the proposed method
and OGL-CTIA is presented in Figure 12. It is obvious that the computational time of
the proposed method is almost same as that of OGL-CTIA. Therefore, the increase of
computational burden due to solving the optimal weighted gain is less and negligible,
so the real-time computational feasibility of the proposed method can be guaranteed.

Table 2. Miss Distances and Impact-angle Errors of Two Guidance Laws.

Acceleration
Limit (m/s2)

Proposed Guidance OGL-CTIA

Miss (m) Angle Error (deg) Miss (m) Angle Error (deg)

65 2.04 × 10−3 1.52 × 10−3 257.54 1.26
75 7.42×10−3 8.08×10−3 32.88 0.26
85 3.68 × 10−3 4.11 × 10−3 3.68 × 10−3 4.11 × 10−3
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Figure 12. Computational time. (a) ulim = 65m/s2; (b) ulim = 75m/s2; (c) ulim = 85m/s2.
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Figure 13. Interception trajectories. (a) ulim = 65 m/s2; (b) ulim = 75 m/s2; (c) ulim = 85 m/s2.

The missile’s accelerations for different guidance laws are given in Figure 14. It is
obvious that the accelerations of all cases for the proposed guidance law are within the
limiting value throughout the homing phase. However, the acceleration for OGL-CTIA
saturates during the last seconds when the acceleration limits are restricted to 75 m/s2

and 65 m/s2. That leads to the failure to intercept the target. It should be noted that only
one case is successful because the acceleration limiting value is only 85 m/s2, which is
much looser than that in other cases. Conclusively, the proposed guidance law improves
the effectiveness of direct hit in comparison with other guidance laws. Note that a salta-
tion in the acceleration profile of the proposed guidance law occurred for the case with
ulim = 65 m/s2. The reason is that, at this point, N suddenly becomes zero in response to
the coming acceleration saturation, which is shown in Figure 15.

Aerospace 2021, 8, x FOR PEER REVIEW 23 of 30 
 

 

 
Figure 14. Missile acceleration. (a) 2

lim 65 m su = ; (b) 2
lim 75 m su = ; (c) 2

lim 85 m su = ; 

 

Figure 15. κ ∗  and N  with 2
lim 65u m s= . 

The miss distance, impact-angle error, and the total maneuvering energy for different 
acceleration limiting values are displayed in Figure 16. Obviously, the proposed guidance 
law can achieve successful interception with desired impact-angle if the acceleration lim-
iting value is as low as 62 m/s2. However, OGL-CTIA will fail if the acceleration limit is 
below 82 m/s2. This is because the acceleration saturates during the last seconds when the 
acceleration limits are stricter, causing large miss distance and terminal angle error. Alt-
hough the total maneuvering energy has increased, it is not too much, by only 11.5%. 
Therefore, it is easy to conclude that the proposed guidance law has a superior perfor-
mance in dealing with the stricter acceleration limit in comparison with typical OGL-
CTIA. 

 
Figure 16. Interception results for various acceleration limiting values. (a) Miss distance; (b) Impact-angle error; (c) Total 
maneuvering energy 

0 10 20 30
-90

-45

0

45

90

0 10 20 30
-90

-45

0

45

90

0 10 20 30
-90

-45

0

45

90

(a)

A
cc

el
er

at
io

n 
(m

/s2 )

Flight Time (s)

 Proposed
 OGL-CTIA

(b)

A
cc

el
er

at
io

n 
(m

/s2 )

Flight Time (s)

 Proposed
 OGL-CTIA

(c)

A
cc

el
er

at
io

n 
(m

/s2 )

Flight Time (s)

 Proposed
 OGL-CTIA

0 10 20 30
-0.6

-0.4

-0.2

0.0

-0.5

κ*

Flight Time (s)

 κ∗

 N

0.0

0.2

0.4

0.6

N

60 70 80 90 1000.001

0.1

10

1000

60 70 80 90 1001E-4

0.001

0.01

0.1

1

10

60 70 80 90 10033

36

39

(c)(b)(a)

M
iss

 (m
)

Acceleration Limit (m/s2)

 Proposed
 OGL-CTIA

Te
rm

in
al

 A
ng

lle
 E

rro
r (

。
)

Acceleration Limit (m/s2)

To
ta

l E
ng

ry
 (k

J)

Acceleration Limit (m/s2)

Figure 14. Missile acceleration. (a) ulim = 65 m/s2; (b) ulim = 75 m/s2; (c) ulim = 85 m/s2.
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Figure 15. κ∗ and N with ulim = 65 m/s2.

The miss distance, impact-angle error, and the total maneuvering energy for different
acceleration limiting values are displayed in Figure 16. Obviously, the proposed guidance
law can achieve successful interception with desired impact-angle if the acceleration
limiting value is as low as 62 m/s2. However, OGL-CTIA will fail if the acceleration limit
is below 82 m/s2. This is because the acceleration saturates during the last seconds when
the acceleration limits are stricter, causing large miss distance and terminal angle error.
Although the total maneuvering energy has increased, it is not too much, by only 11.5%.
Therefore, it is easy to conclude that the proposed guidance law has a superior performance
in dealing with the stricter acceleration limit in comparison with typical OGL-CTIA.
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Figure 16. Interception results for various acceleration limiting values. (a) Miss distance; (b) Impact-angle error; (c) Total
maneuvering energy.

6. Conclusions

A guidance law is proposed for imposing a predetermined impact-angle with the
acceleration limit using linear optimal control methodology. This guidance law introduces
a time-varying weighted function at the cost of control energy so that the acceleration
profile can be regulated by adjusting the weighted gain. Furthermore, the relationship
between the maximum of guidance command, the total maneuvering energy and the
weighted gain is derived in the framework of linear lag-free system. And a method
to select the suitable weighted gain to limit the maximum acceleration is developed.
Several numerical simulations with linear lag-free system, nonlinear lag-free system, and
nonlinear lag system are carried out to verify the performance of the proposed guidance
law. The results demonstrate that, even when the scenario is initiated with largely different
impact-angle requirement, the guidance laws exhibited excellent performance by providing
near-zero miss distance and intercept angle error. Additionally, the proposed guidance law
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also has superior performance in dealing with the stricter acceleration limit in comparison
with typical OGL-CTIA. Benefiting from this character, the proposed method greatly
improves the interceptor’s warhead lethality, resulting in possible warhead size reduction.
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Appendix A

Proposition A1. If κ0 ≤ −1, fadd(N) < 0in set Nadd; if κ0 > −1, there is one and only one
weighted gain Nadd

zero in set Nadd such that fadd(N) = 0 and
fadd(N) ≤ 0, N ∈

{
Nadd

∣∣∣N ≤ Nadd
zero

}
fadd(N) > 0, N ∈

{
Nadd

∣∣∣N > Nadd
zero

} (A1)

Proof of Proposition A1. (1) If κ0 ≤ −1, the set Nadd = Next = [0,+∞). It can be easily
obtained that for any N ∈ [0,+∞)

C2 = (N + 3)κ0 + (N + 2) ≤ −(N + 3) + (N + 2) = −1 (A2)

Then, the sign of fadd(N) can be derived as

fadd(N) = C2 − 1− C2tN
go1 <

(
C2 − 1− C2

)
< 0 (A3)

(2) If κ0 > −1, let us firstly consider the case that N ∈ (max{0, N3}, ∞). For simplification,
a function of N is defined as

gadd(N) , fadd/C2 = 1− 1/C2 − tN
go1, N ∈ (max{0, N3}, ∞) (A4)

Its derivative to N is

.
gadd = (κ0 + 1)/C2

2 − tN
go1 f (N) (A5)

where
f (N) = N

(
1
N + 1

N−N0+1 −
1

N+3 −
1

N−N0

)
+ ln N(N−N0+1)

(N+3)(N−N0)
, N0 = −(2κ0 + 1)/(κ0 + 1)

(A6)

If κ0 > −1, it is obvious that N0 ∈ (−2,+∞). In order to get the sign of f (N), let us
introduce a function

M(a) = ln N
N−a −

N
N−a ; N − a > 0 (A7)
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The derivative of M(a) to a is

dM
da

=
−a

(N − a)2 =

{
> 0, a < 0
< 0, a > 0

(A8)

Using M(a), the function f (N) can be rewritten as

f (N) = M(−3) + M(N0)−M(N0 − 1)−M(0) (A9)

If N0 ∈ (−2, 0], −3 < N0 − 1 < N0 < 0, then

f (N) = [M(−3)−M(N0 − 1)] + [M(N0)−M(0)] < 0 (A10)

If N0 ∈ (0, 1], −3 < N0 − 1 < 0 < N0, then

f (N) = [M(−3)−M(N0 − 1)] + [M(N0)−M(0)] < 0 (A11)

And if N0 ∈ (1,+∞), −3 < 0 < N0 − 1 < N0, then

f (N) = [M(N0)−M(N0 − 1)] + [M(−3)−M(0)] < 0 (A12)

Therefore, it is obvious that f (N) < 0 for any κ0 > −1 and N ∈ Nadd. Then, it is easy
to find that gadd is a monotonic function and its derivative is larger than zero.

.
gadd = (κ0 + 1)/C2

2 − tN
go1 f (N) > 0 (A13)

when N → +∞ , the limit value of gadd can be found, which is larger than zero.

gadd(+∞) = lim
N→+∞

(
1− 1/C2 − tN

go1

)
= 1− e−2 > 0 (A14)

If κ0 ≥ −1/3, N3 ≤ 0, the left boundary value of gadd(N) is

gadd(0) = lim
N→0

(
1− 1/C2 − tN

go1

)
= −1/(3κ0 + 2) < 0 (A15)

And if −1 < κ0 < −1/3, N3 > 0, the left boundary value of gadd(N) is

gadd(N3) = −tN
go1 < 0 (A16)

Conclusively, there is one and only one N = Nadd
zero in interval (max{0, N3}, ∞) such

that fadd(N) = 0 according to Zero Point Theorem. Moreover, the sign of fadd(N) can be
easily derived as 

fadd(N) ≤ 0, N ∈
(

max{0, N3}, Nadd
zero

]
fadd(N) > 0, N ∈

(
Nadd

zero,+∞
) (A17)

It should be noted that if−1 < κ0 < −2/3, Nadd include an interval [0, N1) apart from
[N3,+∞). For that case, C2 < 0. Therefore,

fadd(N) = C2

(
1− tN

go1

)
− 1 < 0 (A18)

because tgo1 < 1, and therefore, there is no zero point of fadd(N) in interval [0, N1).

Proposition A2. If κ0 > −1, for any N ∈ Nsub, fsub(N)is always larger than zero.
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Proof of Proposition A2. For simplifying the derivation, κ0 is regard as the independent
variable. The derivative of fsub to κ0 is

d fsub
dκ0

= (N + 3) + tN
go1

(
N + 3− N

C1

)
(A19)

For any N ∈ Nsub = [max{0, N2}, N3], it is easy to find the expression of the minimum
of κ0 according to (43).

κmin = −(N + 3/2)/(N + 3) (A20)

Substitute (A20) into (37), the minimal value of C1 is obtained as

C1,min = (N + 2)κmin + N + 1 = N/[2(N + 3)] (A21)

Next, substitute (A21) into (A19), we can get the lower boundary of the derivative of
fsub to κ0, which is large than zero since tN

go1 is within [0, 1].

d fsub
dκ0

> (N + 3) + tN
go1

(
N + 3− N

C1,min

)
= (N + 3)

(
1− tN

go1

)
> 0 (A22)

It is obvious that fsub is a monotonic increasing function of κ0. Furthermore, substitut-
ing (A20) into (53), the value of fsub for the case κ0 = κmin is

fsub|κmin = 0 (A23)

Therefore, it is obvious that

fsub(N) > fsub|κmin = 0 (A24)

Proposition A3. If κ0 > −1 and κ0 6= −1/2, there is one and only one zero point of Γ(N)in the
interval [max{0, N2},+∞). And, if κ0 = −1/2, there is no zero point of Γ(N)in the interval
[max{0, N2},+∞).

Proof of Proposition A3 . If κ0 > −1, according to (70), the derivative of Γ(N) to N is

.
Γ(N) = ln N(N−N0+1)

(N+3)(N−N0)
+ 2

N −
N0+2
N−N0

+ N0(3N0+2)
(N−N0)

2

+ N0+1
N−N0+1 −

N0(N0+1)
(N−N0+1)2 +

1
N+3 + 3

(N+3)2

(A25)

where
N0 = −(2κ0 + 1)/(κ0 + 1) (A26)

For simplifying the derivation, N0 is also regard as the independent variable and
.
Γ(N) is defined as Λ(N, N0). According to (A26), it is obvious that N0 is within (−2,+∞)
if κ0 > −1. Furthermore, in order to satisfy N ≥ max{0, N2}, the variables N and N0 must
meet the inequality, 2N − 3N0 ≥ 0. The partial derivative of Λ(N, N0) to N0 is

∂Λ
∂N0

= N0

[
5N + N0 + 4

(N − N0)
3 −

N + N0 + 3

(N − N0 + 1)3

]
(A27)

In order to get the sign of ∂Λ/∂N0, let define

Ω(N, N0) =
5N + N0 + 4

(N − N0)
3 −

N + N0 + 3

(N − N0 + 1)3 (A28)
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It is obvious that 0 < N − N0 < N − N0 + 1 if 2N − 3N0 ≥ 0. And then, Ω(N, N0) is
large than zero.

Ω(N, N0) >
5N + N0 + 4

(N − N0 + 1)3 −
N + N0 + 3

(N − N0 + 1)3 =
4N + 1

(N − N0 + 1)3 > 0 (A29)

Therefore, if N0 ∈ (−2, 0), Λ(N, N0) is decreasing in the direction of N0, and if
N0 ∈ (0,+∞), Λ(N, N0) is increasing, i.e., N0 = 0 is the minimum point of Λ(N, N0).

Λ(N, N0) ≥ Λ(N, N0 = 0) (A30)

Subsisting N0 = 0 into (A25), the value of Λ(N, N0 = 0) is

Λ(N, N0 = 0) = ln
N + 1
N + 3

+
1

N + 1
+

1
N + 3

+
3

(N + 3)2 (A31)

The derivative of Λ(N, N0 = 0) to N is

dΛ(N, N0 = 0)
dN

= − 3

(N + 1)2(N + 3)2 −
6

(N + 3)3 < 0 (A32)

Therefore, it is obvious that

Λ(N, N0 = 0) > lim
N→∞

Λ(N, N0 = 0) = 0 (A33)

It can be easily obtained from (A30) and (A33) that
.
Γ(N) = Λ(N, N0) > 0, i.e., Γ(N) is

the monotonic increasing function. When N → +∞ , the limit value of Γ(N) can be found,
which is bounded by two.

Γ(+∞) = lim
N→+∞

Γ(N) = 2 (A34)

According to (70), if κ0 > −1 and κ0 6= −1/2, the left boundary value of Γ(N) is

Γ(max{0, N2}) =


lim
N→0

Γ(N) = −∞, κ0 > −1/2

lim
N→N2

Γ(N) = 2κ0 < 0, −1 < κ0 < −1/2
(A35)

Conclusively, there is one and only one zero point, Nu1
ext, of Γ(N) in interval

[max{0, N2}, ∞) according to Zero Point Theorem. Moreover, the sign of Γ(N) can be
easily derived as {

Γ(N) ≤ 0, N ∈
[
max{0, N2}, Nu1

ext
]

Γ(N) > 0, N ∈
(

Nu1
ext,+∞

) (A36)

If κ0 = −1/2, the left boundary value of Γ(N) is

Γ(max{0, N2}) = lim
N→0

Γ(N) = 3− 2 ln 3 > 0 (A37)

Therefore, there is no zero point of Γ(N) in interval [max{0, N2}, ∞) because Γ(N) >
Γ(max{0, N2}) > 0.

Proposition A4. The maximum of guidance command can be reduced by reselecting N = 0
when κ∗ = −1/2.
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Proof of Proposition A4. Substituting (36) into (35), the parameter κ relate with the optimal
trajectory is derived as

κ∗ = − 1
N + 3

[
N + 2− C2

(N + 2)C2 − (N + 3)C1tgo

]
(A38)

κ∗ = −1/2 happens at t2 where the value of tgo is

tgo2 = NC2/
[
(N + 1)C1

]
> tgo1 (A39)

Substituting (A39) into (36), it yields

Z∗2 (t2) = −2C1tN+1
go2 Z20/(N + 1) (A40)

According to (39), if the weighted gain is reselected to zero at time t2, it is easy to
find that

u∗(t) = −1 (A41)

Then, the subsequent guidance command is a constant.

u∗c = −VMZ∗2 (t2)/tgo2 (A42)

Also, a variable ηu , u∗1/u∗c is defined to denote the difference between u∗1 and u∗c ,
which can be expressed as

ηu =
1
2
(N + 1)(N + 2)

(
N + 1
N + 3

)N
(A43)

and its derivative to N is
dηu/dN = ηuΠ(N)/2 (A44)

where
Π(N) = ln(N + 1)− ln(N + 3) + 1/(N + 2) + 3/(N + 3) (A45)

It is obvious that ηu > 0 from (A43), thus the sign dηu/dN is determined by Π(N).
The derivative of Π(N) to N is

dΠ
dN

= − 2N3 + 8N2 + 7N − 3

(N + 1)(N + 2)2(N + 3)2 (A46)

As analyzing from the numerator, it is obvious that there is one and only on zero
point of dΠ/dN, and Π(N) will increase at the begging and then decrease as N increases.
Therefore, the minimum of Π(N) is at boundary points, N = 0 or N = +∞.

Π(N) ≥ min{Π(0), Π(+∞)} = min{3/2− ln 3, 0} = 0 (A47)

Finally, it is concluded that

ηu ≥ ηu(0) = 1⇒ |u∗c | < |u∗1 | (A48)

It also means that the maximum of guidance command is reduced. �
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