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ABSTRACT 

In silico approaches for metabolites optimization 
have been derived from the flood of sequenced and 
annotated genomes. However, there exist still nu- 
merous degrees of freedom in terms of optimization 
algorithm approaches that can be exploited in order 
to enhance yield of processes which are based on bio- 
logical reactions. Here, we propose an evolutionary 
approach aiming to suggest different mutant for aug- 
menting ethanol yield using glycerol as substrate in 
Escherichia coli. We found that this algorithm, even 
though is far from providing the global optimum, is 
able to uncover genes that a global optimizer would 
be incapable of. By over-expressing accB, eno, dapE, 
and accA mutants in ethanol production was aug- 
mented up to 2 fold compared to its counterpart E. 
coli BW25113.  
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1. INTRODUCTION 

It is a fact that systems biology is allowing the brain- 
storming for systematic approaches regarding the imple- 
mentation of methods to optimize the synthesis of meta- 
bolites [1]. Cells have been employed as miniaturized 
chemical plants that produce various chemicals towards 
our benefits. Nevertheless, bio-based processes are gene- 
rally inefficient due to the limited metabolic capacity of 
the cell towards the production of a desired product be- 
cause the objective of microbial metabolism is different 
from ours [2]. 

Molecular biology and metabolic engineering have 
emerged to provide the tools to reorient the objective of 

the cell. On one hand, metabolic engineering looks for 
gene candidates susceptible of cloning. On the other 
hand, genomics, metabolomics, and proteomics are cur- 
rently easing the implementation of mathematical models 
aiming to predict reaction rates. These predictions allow 
to rationally choosing genes candidates for cloning or 
deleting. Metabolic fluxes represent the metabolic path- 
ways and help to integrate these factors through a mathe- 
matical framework [2]. 

Flux balance analysis (FBA) is a technique based on 
mass balances around intracellular metabolites under the 
pseudo-steady state assumption. Constraints-based flux 
analysis is a general term for optimization-based simu- 
lation techniques [2], all mostly based on linear pro- 
gramming due to the lineal nature of the problem. Basi- 
cally, the optimization problem is based on the reactions 
stoichiometric, inequality restrictions regarding particular 
metabolic flux, and a cellular objective. In general the 
optimization problem can be formulated as follows: 

cellularobjectiveMaximize                 (1) 
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FBA models typically invoke the optimization of a 
particular cellular objective such as ATP production, bio- 
mass formation, and minimization of metabolic adjust- 
ment; subject to network stoichiometry aiming a flux 
distribution [3]. Specifically, Eq.2 represents the mass 
balance constraints in a metabolic network where  is 
the 

S
m n  stoichimetric matrix (  corresponds to the 

number of metabolites and  stands for the number of 
fluxes); and the constraints imposed on the magnitude of 
individual metabolic fluxes in order to take into account 

m
n
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its reversibility or irreversibility [4]. Many efforts have 
been published related to quantifying each flux in the 
model as it hypothesizes what is the purpose of the cell 
when growing in a specific environment. In that matter, 
Knorr et al. [5] proposed a bayesian-based selection model 
to select metabolic objective functions departing from 
several hypotheses. Finally, their fitness was tested by 
comparing the flux obtained with previously published 
microarrays results [6]. 

In order to identify multiple gene deletions Burgard et 
al. [7] based on the duality theory, transformed the bi- 
level formulation into a single level MILP. These ap- 
proaches felt in limitations because they are only capable 
of proposing deletions based on binary variables. Mole- 
cular biology makes available means to control the ex- 
pression of specific genes through cloning so genes over- 
expression is now possible. Pharkya and Maranas [8] 
transcribed this possibility into an algorithm that propose 
which gene’s transcription should be controlled (up or 
down-regulation) to maximize productivity [8]. 

We believe that all these methods are mainly concerned 
about finding the global minimum. However, model pre- 
dictions and experimental fluxes disagree. Algorithms 
based on evolutionary programming present several ad- 
vantages that could be boosted when maximizing meta- 
bolites using FBA. For example, genetic algorithms offer 
a considerable amount of individuals which are not ne- 
cessarily related to the global but the first level predicts 
an augment in metabolite synthesis. In that regard, gen- 
etic algorithm was utilized to find gene deletions in Sa- 
charomyces cerevisae [9] which was found to be robust 
and low intensive compared to the dual problem approx- 
imation. In order to complement the former study, we 
evaluated the performance of an optimization framework 
that proposes gene modulation instead of deletions in 
Escherichia coli (E. coli) glycerol fermentations to ob- 
tain ethanol. Finally, several non-global optimum indivi- 
duals were experimentally evaluated to demonstrate the 
misleading fact of finding the global. 

2. MATERIALS AND METHODS 

2.1. First Level Platform Implementation 

First level platform utilized is based on the stoichiometry 
model reported by Reed et al. [6]. In order to solve the 
LP problem (Eq.1) optimization tool COBRA developed 
in Matlab® [10] was utilized implementing a simplex 
algorithm with cellular growth of the microorganism as 
cellular objective function (Eq.3) as follows: 

cellular-growthMaximize                (3) 

1
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where   and   are upper and lower bounds reported 
by Reed et al. [6]. 

2.2. Second Level Implementation 

The optimization of the production of a specific bio- 
chemical mostly disagrees with the intention of the cell 
as its main interest constitutes to develop mechanisms to 
maximize the amount of biomass. This fact requires the 
use of a bi-level platform that consider both biomass syn- 
thesis and in our case ethanol production. The formula- 
tion of the optimization problem can be posed as: 

ethanolMaximize                     (5) 

biomassSubject to : Maximize           (6) 
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where ij  is the stoichiometric coefficient of metabolite 
 in reaction , 

S
i j j  represents the flux of reaction , 

r  represents the over-expression, knockout or regula- 
tion of a flux. The last two restrictions in the inner cycle of 
the optimization platform refer to the minimum growth of 
biomass which corresponds to the 1% of the microor- 
ganism’s growth under aerobic conditions and the ac- 
ceptance or rejection of the mutation for the next genera- 
tion.  

j
y

For the solution of the former problem a genetic algo- 
rithm (GA) was developed. This method is a specific 
case of evolutionary algorithms. First, GA randomly gen- 
erates an initial population. Then, a serial of selections of 
new generations are made based on the first population 
established by employing two types of children: elite and 
mutated and crossovered. Individuals are chosen based 
on comparing the ethanol flux value for the actual indi-
vidual with the value obtained in a previous iteration. If 
the value of the actual individual is greater, then the mu-
tation is accepted. Hence, the optimization platform ca-
pable of giving a gamma of mutated strains with an op-
timal cellular growth and chemical production proceeds 
as follows (Figure 1): 

1) Selection of the initial point: wild type metabolic 
model is solved and these fluxes are initially selected to 
propose the next generation. 

2) Generation of a population of 500,000 individuals, 
which are organized raw vectors with the vector flux 
dimensionality (1075 × 1). Each position contains a     
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Figure 1. Flow diagram of the genetic algorithm to determine gene candidates and regulation for maxi- 
mizing the production of ethanol from glycerol based on in silico modeling in Escherichia coli. 

 
number in the [0, 2] interval chosen with a uniform ran- 
dom generator number. A product between this vector and 
the vector flux is calculated to finally generate the indi- 
vidual. Cero accounts for deletion, [0, 1) accounts for 
repression and [1, 2] for over-expression.  

5) New generation is generated based on mutations and 
crossover operations and go to step 3. 

6) Stop when the number of iterations previously is 
reached. 

This algorithm was implemented in Matlab in a Dell 
OptiPlex 780 Desktop with a Intel® Core™ 2 Duo E7600 
@ 3.06 GHz 3.07 GHz processor. The time running total 
time was approximately 3 hours after 115 overall itera- 
tions. 

3) Each flux vector is treated as a single MFA op- 
timization problem. 

4) Ethanol flux results are ordered for each individual 
and the top 250,000 are selected  
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2.3. Experimental Validation with Glycerol  
E. coli Fermentations 

Taking into account the increasing interest from the bio- 
fuel industry towards ethanol production, the manufac- 
ture of this chemical using E. coli’s metabolic pathway 
growing in a glycerol medium was the selected as a case  

of study (see formulation optimization problem Eqs.5 and 
6). After running 115 overall iterations with a neglected 
crossover rate and variable mutation rate as it depended 
on the population size taking in to account what Jennison 
and Sheehan found (1995) we obtained 30 individuals 
(Table 1). 

 
Table 1. Results from the bi-level optimization platform. 

Ethanol Value 
(mmol·h−1·g−1) 

Fold Changea Reaction Abbreviation Reaction Description Subsystem 

11.9197 2.271076578 ENO Enolase Glycolysis Gluconeogenesis 

11.9197 2.271076578 ASP1DC Aspartate 1 decarboxylase 
Cofactor and Prosthetic Group  

Biosynthesis 

11.9196 2.271057525 HSTPT Histidinol phosphate transaminase Histidine Metabolism 

11.9196 2.271057525 EX_xyl_D(e) D Xylose exchange Exchange 

11.9196 2.271057525 SDPDS 
Succinyl diaminopimelate  

desuccinylase 
Threonine and Lysine Metabolism 

11.9196 2.271057525 EX_fum(e) Fumarate exchange Exchange 

11.9195 2.271038472 ACCOACr Acetyl CoA carboxylase reversible reaction Membrane Lipid Metabolism 

11.9195 2.271038472 PHETA1 Phenylalanine transaminase 
Tyrosine Tryptophan and Phenylalanine 

Metabolism 

11.9195 2.271038472 PGSA_EC Phosphatidylglycerol synthase Ecoli Membrane Lipid Metabolism 

11.9195 2.271038472 THDPS Tetrahydrodipicolinate succinylase Threonine and Lysine Metabolism 

11.9194 2.271019419 GLNS Glutamine synthetase Glutamate metabolism 

11.9194 2.271019419 PPNDH Prephenate dehydratase 
Tyrosine Tryptophan and  

Phenylalanine Metabolism 

11.9194 2.271019419 PRAMPC Phosphoribosyl AMP cyclohydrolase Histidine Metabolism 

11.9193 2.271000366 CYSS Cysteine synthase Cysteine Metabolism 

11.9193 2.271000366 GMPS2 GMP synthase Purine and Pyrimidine Biosynthesis 

11.9193 2.271000366 EX_no3(e) Nitrate exchange Exchange 

11.9193 2.271000366 DPCOAK Dephospho CoA kinase 
Cofactor and Prosthetic Group  

Biosynthesis 

11.9192 2.270981313 RBFSa Riboflavin synthase 
Cofactor and Prosthetic Group  

Biosynthesis 

11.9192 2.270981313 DHDPRy Dihydrodipicolinate reductase NADPH Threonine and Lysine Metabolism 

11.9192 2.270981313 NDPK3 Nucleoside diphosphate kinase ATPCDP Nucleotide Salvage Pathway 

11.9192 2.270981313 DPR 2 dehydropantoate 2 reductase 
Cofactor and Prosthetic Group  

Biosynthesis 

11.9191 2.27096226 DAGK_EC Diacylglycerol kinase Cell Envelope Biosynthesis 

11.919 2.270943206 SUCCt2b Succinate efflux via proton symport Transport Extracellular 

11.919 2.270943206 G3PD2 
Glycerol 3 phosphate  
dehydrogenase NADP 

Alternate Carbon Metabolism 

11.9189 2.270924153 C161SN Fatty acid biosynthesis n C161 Membrane Lipid Metabolism 

11.9188 2.2709051 SDPTA 
Succinyldiaminopimelate  

transaminase 
Threonine and Lysine Metabolism 

11.9188 2.2709051 HCO3E HCO3 equilibration reaction Unassigned 

11.9188 2.2709051 IGPDH 
Imidazoleglycerol phosphate  

dehydratase 
Histidine Metabolism 

11.9188 2.2709051 PASYN_EC Phosphatidic acid synthase E. coli Membrane Lipid Metabolism 

11.9188 2.2709051 PTPATi Pantetheine phosphate adenylyltransferase
Cofactor and Prosthetic Group  

Biosynthesis 
a
 This column corresponds to the relation of the value of ethanol flux obtained and the original value of ethanol flux at aerobic conditions. 
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2.4. E. coli Fermentations Setup 

2.4.1. Microorganism and Media 
E. coli strains were obtained from ASKA clones library 
[11] which encompasses all E. coli W3110 OFR in the 
plasmid pCA24N (Table 2 and Figure 2) to evaluate the 
effect of the over-expression of specific genes. The strains 
were kept in 32.5% glycerol stocks at −80˚C. E. coli 
cells were initially streaked on Luria-Bertani (LB) agar 
plates [12] containing 50 μg/mL chloramphenicol (for those 
containing pCA24N-based plasmids), and incubated at 
37˚C. Wild-type E. coli K-12 BW25113 was obtained 
from the Yale University CGSC Stock Center. 

2.4.2. Fermentations 
Strains (stored as glycerol stocks at −80˚C) were streaked 
onto LIU medium [13] (8 g/L Yeast Extract, 3 g/L 
KH2PO4, 3 g/L K2HPO4, 1 g/L (NH4)2SO4, 0.41 g/L 
CaCl2, 0.3 g/L MnSO4, 4 g/L Glucose, 8 g/L MgSO4, and 
50 μg/mL chloramphenicol, where appropriate) plates 
and incubated overnight at 37˚C. A single colony was 
used to inoculate 250 mL Erlenmeyer flask filled with 25 
mL LIU medium. The flasks were incubated at 37˚C, 250 
rpm overnight. Then, in order to obtain ethanol, fermen- 
tations were performed in a 250 mL Erlenmeyer flask 
containing 10 mL of modified LIU medium (8 g/L Yeast 
Extract, 1 g/L (NH4)2SO4, 0.41 g/L CaCl2, 0.3 g/L 
MnSO4, 8 g/L MgSO4, 20 g/L Glycerol, 2 g/L Lactose, 
and 50 μg/mL Chloramphenicol, where appropriate) at 
37˚C, 200 rpm for 2 days in an Orbital MRC® Shaker. 
Anaerobic conditions were maintained by flushing the 
headspace with ultrahigh purity nitrogen at 0.01 LPM. 
Four repetitions were made for each gene. Lactose was 
utilized as an inducer for scaling-up matters considering 
the cost of the typical inducer (Isopropyl β-D-1-thioga- 
lactopyranosid). 
 

 

Figure 2. Cloning vector map of pCA24N. 

2.5. Biomass 

A genesis 10 UV Tremoelectron Corporation® spectro- 
photometer was used to determine Optical Density in 
cultures at 550 nm and used as an estimate of cell con- 
centration (1 OD = 0.34 gDW/L). Growth rate was cal- 
culated assuming a cero or first order kinetics based on 
experimental results.  

2.6. Ethanol 

Near infrared spectroscopy (NIR) was utilized to quan- 
tify the ethanol during the fermentation (FOSS® NIR Sys- 
tem 6500). To perform the calibration, E. coli fermenta-
tions were performed in 250 ml Erlenmeyer flasks during 
four days, the samples were centrifuged for 4 hours at 
4000 rpm at 4˚C. The supernatant was heated for 60 
minutes at 45˚C to remove ethanol in the samples and 
ethanol was added at different concentrations. One inde- 
pendent calibration was plotted. The calibration curve 
showed a linear correlation with the following character- 
ristics: slope of –1209.4952, intercept 0.2419 and a r2 
value of 0.8464. 

2.7. Glycerol 

An Analogue Zhifong® Refractometer was utilized to 
quantify the glycerol during the fermentation. To per- 
form the calibration, fermentations were developed in 
250 mL Erlenmeyer flasks during four days, the samples 
were centrifuged for 4 hours at 4000 rpm at 4˚C. Glyc- 
erol was added to the supernatant at different concentra- 
tions. One independent calibration was plotted. The cali- 
bration curve showed a polynomial correlation with the 
following characteristics: a0 of 175746, a1 of –264298, 
a2 of 99366 and an r2 value of 0.8464 

3. RESULTS AND DISCUSSION 

3.1. Genetic Algorithm Results  

500,000 individuals were generated to finally obtain 30 
individuals (Table 1). Interestingly, these mutants are not 
directly related to ethanol synthesis, so GA reaches to 
uncover non-obvius genes to optimize ethanol synthesis. 
First, we solved the wild LP problem to establish an initial 
point. The original value for ethanol production in E. coli 
at anaerobic conditions corresponds to 524 mmol·h−1·g−1. 
Then, after running the GA over 115 overall iterations, 
we found genes whose regulation falls in [0.0557, 0.0591] 
flux ethanol interval. Interestingly, GA predicts overex- 
pression for all genes found, possibly due to restrictions 
imposed on the optimization problem regarding growth 
velocity. 

3.2. Equations 

We tested all 30 genes proposed to observe yields after  
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Table 2. Escherichia coli bacterial strains and plasmids used in this study. CmR is chloramphenicol resistance. 

Strains and plasmids Genotype/relevant characteristics Source 

Strains   

BW25113 lacIq rrnBT14 ∆lacZWJ16 hsdR514 ∆varaBADAH33 ∆rhaBADLD78 [12] 

Plasmids   

pCA24N CmR; lacIq, pCA24N [10] 

pCA24N-accA CmR; lacIq, pCA24N PT5-lac::accA+ [10] 

pCA24N-accB CmR; lacIq, pCA24N PT5-lac::accB+ [10] 

pCA24N-accC CmR; lacIq, pCA24N PT5-lac::accC+ [10] 

pCA24N-accD CmR; lacIq, pCA24N PT5-lac::accD+ [10] 

pCA24N-aspC CmR; lacIq, pCA24N PT5-lac::aspC+ [10] 

pCA24N-can CmR; lacIq, pCA24N PT5-lac::can+ [10] 

pCA24N-coaD CmR; lacIq, pCA24N PT5-lac::coaD+ [10] 

pCA24N-cysK CmR; lacIq, pCA24N PT5-lac::cysK+ [10] 

pCA24N-cysM CmR; lacIq, pCA24N PT5-lac::cysM+ [10] 

pCA24N-dapB CmR; lacIq, pCA24N PT5-lac::dapB+ [10] 

pCA24N-dapD CmR; lacIq, pCA24N PT5-lac::dapD+ [10] 

pCA24N-dapE CmR; lacIq, pCA24N PT5-lac::dapE+ [10] 

pCA24N-dcuC CmR; lacIq, pCA24N PT5-lac::dcuC+ [10] 

pCA24N-dgkA CmR; lacIq, pCA24N PT5-lac::dgkA+ [10] 

pCA24N-eno CmR; lacIq, pCA24N PT5-lac::eno+ [10] 

pCA24N-fabA CmR; lacIq, pCA24N PT5-lac::fabA+ [10] 

pCA24N-fabB CmR; lacIq, pCA24N PT5-lac::fabB+ [10] 

pCA24N-fabG CmR; lacIq, pCA24N PT5-lac::fabG+ [10] 

pCA24N-fabI CmR; lacIq, pCA24N PT5-lac::fabI+ [10] 

pCA24N-fabZ CmR; lacIq, pCA24N PT5-lac::fabZ+ [10] 

pCA24N-gpsA CmR; lacIq, pCA24N PT5-lac::gpsA+ [10] 

pCA24N-glnA CmR; lacIq, pCA24N PT5-lac::glnA+ [10] 

pCA24N-guaA CmR; lacIq, pCA24N PT5-lac::guaA+ [10] 

pCA24N-hisB CmR; lacIq, pCA24N PT5-lac::hisB+ [10] 

pCA24N-hisC CmR; lacIq, pCA24N PT5-lac::hisC+ [10] 

pCA24N-hisI CmR; lacIq, pCA24N PT5-lac::hisI+ [10] 

pCA24N-ilvC CmR; lacIq, pCA24N PT5-lac::ilvC+ [10] 

pCA24N-ilvE CmR; lacIq, pCA24N PT5-lac::ilvE+ [10] 

pCA24N-ndk CmR; lacIq, pCA24N PT5-lac::ndk+ [10] 

pCA24N-panD CmR; lacIq, pCA24N PT5-lac::panD+ [10] 

pCA24N-panE CmR; lacIq, pCA24N PT5-lac::panE+ [10] 

pCA24N-pgsA CmR; lacIq, pCA24N PT5-lac::pgsA+ [10] 

pCA24N-pheA CmR; lacIq, pCA24N PT5-lac::pheA+ [10] 

pCA24N-plsB CmR; lacIq, pCA24N PT5-lac::plsB+ [10] 

pCA24N-plsC CmR; lacIq, pCA24N PT5-lac::plsC+ [10] 

pCA24N-puuA CmR; lacIq, pCA24N PT5-lac::puuA+ [10] 

pCA24N-ribC CmR; lacIq, pCA24N PT5-lac::ribC+ [10] 

pCA24N-tyrB CmR; lacIq, pCA24N PT5-lac::tyrB+ [10] 
 

Copyright © 2012 SciRes.                                                                       OPEN ACCESS 



C. M. Barreto-Rodriguez et al. / Advances in Bioscience and Biotechnology 3 (2012) 336-343 342 

 
inducing the expression of the genes finding (Figure 
3(a)-(c)). Bacterial growth rate showed general zero or-
der kinetics for all cases (results not shown) falling 
within [0.05 0.07 h−1] range. Specifically, over-expressed 
dcuC, aspC, gpsA, glnA, ilvE and hisB mutants displayed 

a higher growth rate, this effect is deepened to lactose 
concentration. 

The results obtained for ethanol production presented 
a positive effect when inducing expression on ethanol 
yield. For example accB, eno, dapE, and accA induction  

 

 
(a)                                                  (b) 

 
(c) 

Figure 3. (a) Ethanol Concentration for E. coli BW25113 (Wild Type: WT), E. coli W3110/pCA24N-dgkA+, E. coli W3110/ 
pCA24N-fabZ+, E. coli W3110/pCA24N-fabA+, E. coli W3110/pCA24N-can+, E. coli W3110/pCA24N-gpsA+, E. coli W3110/ 
pCA24N-plsC+, E. coli W3110/pCA24N-fabG+, E. coli W3110/pCA24N-hisB+, E. coli W3110/pCA24N-plsB+, E. coli W3110/ 
pCA24N-glnA+, E. coli W3110/pCA24N-cysK+, E. coli W3110/pCA24N-ilvE+ and E. coli W3110/pCA24N-hisC+ fermentations at 
constant lactose dose (2 g/L) (b) Ethanol Concentration for E. coli BW25113 (Wild Type: WT), E. coli W3110/pCA24N-guaA+, E. 
coli W3110/pCA24N-ndk+, E. coli W3110/pCA24N-dapB+, E. coli W3110/pCA24N-cysM+, E. coli W3110/pCA24N-aspC+, E. coli 
W3110/pCA24N-dapD+, E. coli W3110/pCA24N-hisI+, E. coli W3110/pCA24N-pgsA+, E. coli W3110/pCA24N-tyrB+, E. coli 
W3110/pCA24N-accD+, E. coli W3110/pCA24N-puuA+, E. coli W3110/pCA24N-pheA+ and E. coli W3110/pCA24N-accA+ fermen- 
tations at constant lactose dose (2 g/L) (c) Ethanol Concentration for E. coli BW25113 (Wild Type: WT), E. coli W3110/pCA24N- 
dcuC+, E. coli W3110/pCA24N-fabB+, E. coli W3110/pCA24N-cynT+, E. coli W3110/pCA24N-coaD+, E. coli W3110/pCA24N- 
fabI+, E. coli W3110/pCA24N-ribC+, E. coli W3110/pCA24N-panE+, E. coli W3110/pCA24N-ilvC+, E. coli W3110/pCA24N-accB+, 
E. coli W3110/pCA24N-accC+, E. coli W3110/pCA24N-eno+, E. coli W3110/pCA24N-dapE+ and E. coli W3110/pCA24N-panD+ 
fermentations at constant lactose dose (2 g/L). Mean and standard deviation was calculated from four repetitions at each condition. 

tandard deviation obtained was in the range of 1.6032 and 0.0995. S  
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caused a minimum of 1.5 fold increase compared to its 
counterpart E. coli BW25113. 

We did not find a direct cause that could explain the 
ethanol yield increment through overexpressing those 
genes as they are involved in non-direct metabolic path- 
ways: accB and accA in fatty acid biosynthesis, eno in 
glycolysis and dapE in lysine biosynthesis. The com- 
plexity of the connectivity of the metabolic network in a 
microorganism does not allow to elucidate trough a first 
view all the candidates susceptible of modifying its ex- 
pression so we believe that our approach constitute an 
interesting way elucidate stratagems for increasing etha- 
nol synthesis by uncovering the underpinnings of the 
network. 

4. CONCLUSION 

Mostly all the previous work related to the optimization 
of the production of ethanol using metabolic engineering 
are mainly concerned about the global maximum. In 
spite of this, the model predictions and experimental re- 
sults disagree. Considering that algorithms based on evo- 
lutionary programming could offer a considerable amount 
of individuals which are not necessarily related to the 
global maximum, we developed a bi-level platform able 
to maximize both biomass and ethanol production. Al- 
though in silico approaches are still incapable of pre- 
dicting the exact experimental results due to the fact that 
not all variables can be considered, our main objective 
was to look for an answer different from single solutions. 
Interestingly, we found out that our platform in fact 
uncovered genes that were not directly related to ethanol 
synthesis such as accB, eno, dapE, and accA. 
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