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In this manuscript, exciting fixed point results for a pair of multivalued mappings justifying rational Gupta-Saxena type
O-contractions in the setting of extended b-metric-like spaces are established. The theoretical results have also been strengthened
by some nontrivial examples. Finally, the theoretical results are used to study the existence of the solution of Fredholm integral
equation which arises from the damped harmonic oscillator, to study initial value problem which arises from Newton’s law of

cooling and to study infinite systems of fractional ordinary differential equations (ODEs).

1. Introduction

The importance of fixed-point (FP) theory increased after
Banach introduced his principle [1]. It became an essential
tool in nonlinear analysis. In particular, there are many
important applications in which the FP method is involved
such as economics, microbiology, and physical applications.
This technique permeates fractional analysis and becomes a
basic method in finding solutions to some fractional systems.
For more details, we suggest the reader to read the books of
Kilbas et al. [2], Samko et al. [3], Wang et al. [4], and
Atangana and Baleanu [5]. Furthermore, this methodology
is widely used in finding solutions of integral equations, frac-
tional differential equations, and boundary value problems,
for example, see [6-11].

Under Hausdorff metric space formalism, Nadler [12]
introduced the notion of multivalued mapping as follows:
Let (V, 7) be a metric space, V- represents the set of non-
empty closed bounded subsets of V, and let Z: V5 x
Veg — R* be a function given by

E(z,,2,) = max {supT(E, z,), supt (¢, zl)},Vzl, z,€ Ve (1)

Eez, (ez,

where 7(§,0,) =inf {7(§,{): { € z,}.

The function Z is called also the Hausdorff-Pompeiu
metric. Consider

8(z1,2,) =sup {7(&,0): § €2, € 2}, (2)
then, one can deduce that for all z;,z,,z; € Vi,
(i) 8(z),2,) = 8(2,, 2)

0oz =2={&}

S 6(21) Zz) + 8(Z2> 23)

)
(ii) 8(z;,2,)
(iii) 6(z;,25)
(iv) 8(zy,2z,) = diamz,

In 2012, Wardowski [13] generalized the old principle of
Banach to a broader kind. He called it Q-contraction and
presented it in the following definition:

Definition 1. A nonlinear mapping N : V — V described on
the metric space (V, 7) is called a Q-contraction if there exist
F e X and v >0 so that

T(Ng,Nh) > 0= v+ Q(1(Np,Nh)) <Q(t(ph)),Ve.h e V,
(3)
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where X is the class of functions Q : (0,4+00) — R so that
the assertions below hold:

(Q)) for all z;, z; € RY, if z; < z,, then O(z;) < Q(z,)

(Q,) for all positive real sequence {z,},z, — 0 if and
only if Q(z,) — —0c0 as r — 00

(Q;) there exists £ € (0, 1) so that lim,__,5.5,0Q(s) =0

Many researchers have turned to generalize ordinary
metric spaces to more comprehensive spaces such as b-met-
ric, metric-like, and b-metric-like spaces. In the other word,
Czerwik [14] was able to present b-metric spaces, Alghmandi
et al. [15] introduced metric-like and b-metric-like spaces,
and Hammad et al. [16] presented extended b-metric like
spaces. It should be noted that the definitions of these spaces
are mentioned in the next section.

The concept of multivalued mapping and Q-contraction
mapping in abstract spaces are combined, and fruitful FP
results in this line are obtained. For instance, see Cosentino
and Vetro [17], Sgroi and Vetro [18], and Ali et al. [19].

By the same approach, in this manuscript, some FP
results under rational Gupta-Saxena type (2-contractions
(for short, (D;)Gé—contractions) are obtained in the setting of
extended b-metric-like space (for short, ¥,-spaces). Also,
the results are supported by nontrivial examples. Finally,
the theoretical results are applied to study the existence of
the solution to the Fredholm integral equation which arises
from the damped harmonic oscillator, to study the initial
value problem (IVP) which arises from Newton’s law of
cooling and to study infinite systems of fractional ODEs.

2. Preliminaries
This section discusses some extended spaces and their topo-

logical properties.

Definition 2 [15]. Let V be a nonempty set. A function 7 :
V? — R" is called a metric-like on V, if for all z, z,,z; €
V, the conditions below hold:

(@) 1(z,2,)=0=2,=2,
(b) 1(zy,2,) =1(25, 21)

(©) 1(z1,23) < 7(21, 2,) +7(25, 23)

Here, (V, 1) is named as a metric-like space.

Definition 3 [15]. A b-metric-like on a nonempty set V is a
function 7 : Vx V— R" so that for all z;,z,,2; € Vand a
constant j > 1, the following three conditions hold:

(e) 1(2),2,) =0=>2,=2,
() 7(z1,2,) =1(25, 7))
(8) 1(z1,23) <jlr(z, 25) + 7(22, 23)]

Here, (V,7) is called a b-metric-like space with con-
stant j.
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For more details about the conversion of metric-like and
b-metric-like spaces, see [20-22].

Very recently, Hammad et al. [16] merged the results of
metric-like with b-metric-like spaces and formed a ¥,-space.
Also, topological properties of this space were discussed, and
some nice FP results of Wardowski and Suzuki contraction
mappings were obtained. This space is introduced as follows:

Definition 4 [16]. Assume that V is a nonempty set and j :
VxV—[lLoo) is a given function. A function 7;: V?
— [0,00) is called a modified 7;-metric-like if for all z;,
Zy,23€V:

() 1i(21,2,) =0=>2, =2,

(1)) 7j(21,2,) = 7(25, 2)

(133) 7(215 23) < (21, 23) [7(21, 25) + 7525, 23)]

Then, (V, ;) is called a ¥,-space.

Note that the class of ¥,-spaces is larger than the class
of b-metric-like spaces by replacing the constant j>1 of
Definition 3 by a nonconstant function j: V x V — [1,00)
of Definition 4.

For more examples and applications via the mentioned
space, see [16].

Definition 5 [16]. Let {z,} be a sequence in the ¥,-space
(V1))

(i) Iflim;, (2, 2) =7(2, 2), then {z,} is convergent

1—>00 ] ]
toz
(i) {z;} is called Cauchy if lim;;_,,7;(2;, z;) exists and
is finite
(iii) If for each Cauchy sequence {z;}, there is z € V, so

that lim;,,,7(z;2¢) = 7(2, 2) =lim__,,7/(z;, 2);

then, (V, ;) is called complete

Lemma 6 [4]. Suppose that (V, ) is an extended b-metric
space and that V,,V,e Vi gueV, and A> 1, there exists
n(u) € V, so that @g(p, 1) <AE(V,, V,).

It should be noted that Lemma 6 also satisfied in each of
metric spaces [23] and b-metric spaces [24]. Hence, it can be
easily achieved in ¥,-spaces.

3. Main Theorem

We begin this part with the following definition:

Definition 7. Let (V, 7;) be a ¥,-space with a function j : V' x
V — [1,00). Assume that @, ¢ : V — V- are two multi-
valued mappings. We say that the pair (@, ¢) is a @fg—
contraction if there exist v>0 and Q€ X so that for all
z,,2, € V, then

v+ QAH(Pz,, 92,)) < Q(B(21,25)); (4)
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where

B(z1,2,)

1+71,(z,DPz)|7T:(2,, @z
— max {Tj(zl)zz)) [ ]( 1 1)} j( 2> P 2)

1+7(z),2,)

7i(215 q)Zl)Tj(ZZ’ 9z) }

1+7;(zy,25)
()
7;) be a complete ¥,-space and let (¢,

that for all z,eV,
z,) <1/A. Then, ¢ and @ have a unique

Theorem 8. Let (V,
D) be a @;)Gg—contmction 50

hmmnﬁooj(zm’
common FP.

v+ Q( (Zans1> Zans2)) S U+ QAH(D2,,, 92341))

Proof. Let z, € V and z, € @z,. Assume that z, = ¢z, and by
Lemma 6, there is z; € @z, so that

7j(23,2,) S AH(®z,, 92,). (6)

Inductively, we let z,, =
select z,,,,, € Dz,, so that

¢z,,_;, and by Lemma 6, we

Tj(ZZn—l’ ZZn) = AH(Q)ZZW q)ZZn—l)' (7)

Applying (4) and (7), we have

<0 (max {Tj(ZZn’ Z2n+1)’

1+ Tj(ZZn’ Z2n+1)

>

[1 + (250 ®z2nﬂ T(Zane1 PZone1)  Tj(Z2m PZ20) Tj(Z2ns1> PZ2nsn)
l+7 (z2n> 22n+1)

1+7.(2,,,2 T.(z z 7:(2,,,2 T:(z z
= 0| max Tj(Zzn>Zzn+1)’ [ ]( 2n> 2n+1)] ]( 2n+1> 2n+2>’ ]( Zni +2r:1) ]( 2n+1> 2n+2)
(ZZn’ZZnH)

L+ Tj(ZZn’ Z2n+1)

< Q(max {7;(23 Zan41)> T(Zans1> Zans2)> Tj(Zans1> Zane2) )

= Q(max {Tj(ZZn’ Zoni1 ) Tj(zzn+1> Zoni2) }) .

If max {Tj(zzw Zoni1)> Tj(22n+1’ Zon2)} = Tj(22n+l’ Zoni2)>
then

v+ Q( (22n+1’ Z2n+2)> < Q(Tj(ZZnJrl’ ZZn+2))' (9)
This is a contradiction according to . Therefore,

max {Tj(zzm Zone1)> Tj(Z2n+1’ Zonea)} = Tj(ZZn’ Zyps1)- Then,
from (8),

Q(7(22m1> Zane2) ) < Q(7j(2200 22011)) — 0V 20, (10)
Similarly, we get
Q(7i(z20 Zan11)) < Q(75(220-15 220)) — V- (11)
Applying (10) and (11), we have
Q(7(2an41 Zan2)) S Q(Ti(220-10 220)) = 20- (12)
Repeating consequently, one can obtain
Q(7i(22p41> Zans2)) < Q(75(20021)) = 2n+ v, (13)
Similarly,

Q(7i(2 Zani1)) S Q(7;(20,21)) — 210 (14)

By using (13) and (14), we have
Q(Tj(zn’ zn+1)> < Q( (ZO’ )) — nv. (15)
Taking the limit as n — 00 in both sides of (15), we get

lim O(7;(2,, 2,41)) = —00. (16)

n—~od
It follows from (2, that

lim 7/(z,,2,,,) =0. (17)

n—00

By (15), for n € IN, we get

¢
(Tj(zn Zn+1)) [Q(T](Z Zn+1)) Q(Tj(ZO’ Zl))} (18)

<—(7i(2 Zpe1) )Env <0,
for all € € N U {0}. Letting n — oo in (18) and applying (16)
and (17), one can write

[4

lim n(7;(2,,2,11)) =0 (19)

n—~oo

From (19), there is n; € N so that n(7;(z,,, z,)) <1, for
all n>n,. It follows that

T(Z Zy1) < g VN 2 1y (20)



4
Using (20) for m > n > n,, we have
](Z Z ) (zn’ zm) [ ( n+1) + T](zn+l’zm)]
(szm)T]( n+1)
Zn’zm) ( n+1>Zm )[Tj(an’ n+2) +7; ( n+2>Zm)]
( 2 ) ( n+1) +]( )](zn+l’zm)Tj(zn+l’Zn+2)

+ (2 2) (215 2 )i (a2 Zin) 1 (Zm-2 Zm)
(21 Zm) T (21 Zm)

<J(202m) (220 Z) + J(Zs Z0n) T (2> 21
+ (215 21)j(220 Zin) -+ J(Zps15 Zn) Tj(Zni1> Znst)

+"'+j(zl’ Zm)j(ZZ’ Zm) '“j(szl’ Zm)Tj(mel’ Zm)'

It should be noted that the series

Zn’ZnH) Hj(zi’ Zm)’ (22)
i=1

M3

n=n,

converges because

n

[ ©
z Tj(zn’zn+1) Hj(zi’ Zm) < Z WH.KZD Zm)
n=n, i = i

v+ Q(A{(230120 92)) S0+ QAH(D2y,,1, 92))
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which is convergent. Put E=}'2 7,(z,, 2,.)[ (2> Zn)
and Ey = Y2, 7;(20 2w ) [ 111 0(250 m) Thus, for m>n > ny,
inequality (20) implies that 7,(z,,2,,) <E,_; — E,_;. Passing
n—> 0o, we conclude that {z,} is a Cauchy sequence
n (V,7;) but a ¥-space (V,7;) is complete so there exists
z €V such that lim, , z,=z.

Now, we want to show that z is a common FP of @ and ¢.
It is clear that

ATi(Zap120 92) S AH(D2yp415 92) < AH (D245 92), A > 1.

(24)
Hence,
/\Tj(ZZnJrZ’ $z) < AH(Dzy,,1, 92). (25)
Since ( is strictly increasing, therefore
Q(/\Tj(ZZnJrZ’ 92)) < QAH(Pz,,,15 92)).- (26)

By adding v to both sides and using (4), we have

1+7.(z,,,,, Dz T(2, 9z
< 0| max Tj(ZzprZ), [ ]( 12n+1 2n+1)] ]( % )’
+T(Z3m41>2)

Since v > 0, we have

Tj(z2n+1’(pz2n+l)Tj(Z’ gDZ) }) ) (27)

1+ 7;(220415 22)

Q(A1j(230120 92)) < Q2 (max { Tj(Zan41> 2)> [

Since (2 is strictly increasing, we get

>

1+ 7(25015 ®22n+1)] 7i(292)  Tj(Zope1> PZ2ps1)Tj(2 92) (28)
1+ Tj(22n+1’ Z)

1+ Tj(ZZnJrl’ ZZ)

ATi(2342> PZ) < maX {Tj(ZZnH’ z),

[1 +Tj(Zon415 ®Zzn+1)]'[j(z’ $2) Ti(Zan41> PZopi1)T;(2 92) (29)
1+75(254152)

1+7;(230415 22)
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Letting n — 00 in the above inequality, one can write @z. Therefore, z is a common fixed point of @ and ¢.
In order to show the uniqueness, let z* be another common
Ati(z, @z) <max {0, 7,(z,92),0} = 7;(z, 9z). (30)  FP of @ and ¢ so that z* #z. Then, by ®[$%-contraction

(4), one can obtain
This implies that (A - 1)7;(z, ¢z) < 0. So, we have 7,(z,

¢z) — 0. Thus, z € ¢z. Slmllarly, one can prove that z €

v+ 0Q(Mj(2,2")) Sv+ QAH(Dz, 927))
< Q(max {Tj(z, ), [1 +Tj(z, (DZ)]Tj(Z*’(Pz*) ’ -rj(z, ch)Tj(+Tj(z, Z*),(P"'Tj(z’ z*)) }) :Q(Tj(z) Z*))

1+7(2,2%) +7i(2,2%)

(31)

Based on the properties of Q2 and since v >0, we con-  Example 1. Let V=0, 1]. Define 7; : V. x V — R* by (2,
clude that (1-A)7;(z,2") <0. This means 7(z,z") — 0,

2,) = (z, +z,)* for all z,,z, € V; then, the pair (V, T;) is
i.e, z=z*. This finishes the proof. O

¥-space with j(z,,z,) =2+ (z,)” + (z,)*. Define @,¢:V

V d Q:R* R* b
Remark 9. The contraction condition of Theorem 8 is — Vep Al - Y

reduced to the following: z, Z,
Oz, = {0, ?},(pzz - [o, ?],forauzl,zz €0, 1, A>1,

(i) @3-contraction in b-metric-like space, if j(y,z) =
j(=1)

(ii) (D’Gs—contraction in metric-like space, if j(y, z) = 1

(32)

and Q(o)=In (o), for all 0>0, respectively. Now, we
have

(iii) (DbGS—contraction in ¥-spaces, if @ = ¢ )
_ Z Z L2
(iv) @S-contraction in b-metric-like space, if ® = ¢ and 3H(Pz), 92,) = 3H( [0’ ?} > {0 3 } ) <3 ( 33 )
in.2) =j(z1)
B(z1:2,)-

(v) @S5-contraction in b-metric-like space, if j(y, z) = 1
and O=¢ (33)

W~

1
(2, +Zz) = gTj(ZhZz) =

w|>—t

Taking log to the base e on both sides, we get

Bie=)) »
) +1n (B(z,2,).

Corollary 10. Theorem 8 is still valid if one of the following

forms is chosen for B(z;,z,) in Equation (5): In (3H(®z,, 92,)) <In <

(1) B(z1,25) = 7i(2;, 25) <

1

3

( 1

(2) Plz1p2) = [1+7,(2;, D2)]r;(200 92,) 1 + 7,(21, 2,) 3
(

(3) B(zpz5) = [1+7(z;, Pz))]7i(2,, 92,) /1 + 7(2,, 2,) This implies that

(4) B(z;>z,) = max {Tj(zl’ z,), [1+7; (Zp @zt (Zz’

$z,)/1+7,(z),2,)} In (3H(®zy, 92,)) ~ In (B(21,25)

~In (3) > QAH(®z,, 92,)) - Q(B(z1,2,) < —v.
(5) B(z;, z,) = max {Tj(zl’ 25), Tj(zp @21)71'(22’ ‘Pzz)/Tj (35)

(21 (DZI)Tj(ZZ’ $z,)}
_ Hence, the contraction condition (7) is fulfilled with
(6) Blz), 2) = max {[1 +7,(z), D2))]7 (25 92,) /(21 A=3>1 and v=In (3) >0. Thus, all stipulations of The-

(Dzl)Tj(ZZ’ ¢Z2)’Tj(zl’(pzl)7}(z2’ 9z,)/1 + TJ(ZI’ZZ)} orem 8 are fulfilled, and 0 is a unique common FP of @
and ¢.

4. Mlustrative Examples Example 2. Assume that V = [0, 1]. Define a distance function

2 .
In this section, we give some illustrative examples to support ~ T; over a set V by 7,(z,2,) =[z; +2,/" and j: VXV —
Theorem 8 and its consequences. [L,oo) by j(zy,2,) =2 + 22, +32,. Then, (V,7;) forms a ¥-



space. Define multivalued mappings @,¢ : V — V5 by
D(z) =2/15{z}, for all z€[0,1] and
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Case 1. If z; €[0,1) and z, = 1, consider

s )03 2 12.0))

2
—{z}, ifze[0,1), 1
gz = { 10{ } [0-1) (36) = ( H({z,}, 0)) ( (z; +0)2>
. 3
0, ifz=1.
i <(Z;)4 . @2)
Define the function Q : R* — R* by Q(¢) =1n (o? +
o) for all >0, v>0, and A =5/2. (37)
Now, to fulfill the conditions of Theorem 8, we discuss
the following cases: Now, consider
By ) = max L (2 1), [1+7(2,,2/15{z, })]7;(1,0) ’ 7;(21,2/15{z,})7,(1,0)
1+T]-(Zl,1) 1+Tj(Zl,1) 38)
38
1+514/225(z,)% 289/225(z, )
=max { (z; + 1), ol 5(221) > i 5(21)2 =(z, +1)%
1+(z,+1) 1+ (z, +1)
Therefore, Case 2.1fz, € [0, 1) and z, = 1, then ®(z,) = ®(1) =2/15 and
@z, =1/5{z,}.
Q(B(21,2,)) =2((z, +1)*) =In ((z, + 1)* + (7, + 1)?). Consider
(39)

Thus,

Q(AH(@2,, 97,) - Q(B(z1,2,)) <In (( (21)'19+ ()13 )

z+ 1)+ (2, + 1)
= =In <<%+z2) +(§+zz) )

(40)

(42)
for any value of 0 <z, < 1 and v > 0. Therefore,
v+ QOH(@z,,92,) SQ(B(z,2,).  (41)  Now consider
L+7; (1,2/15 Z,, 1/5 1,2/15)t(z,, 1/5
Bz, 2,) = max T]-(l,ZZ), [ ) ]( 2 {Zz})’ ( )T ( 2 {z2})

1+7,(1,2,) 1+7(1,2,)

(43)

:max{(1+ )5

Therefore,

Q(B(z1,2,)) =Q((1+72,)*) =In (1 +2,)" +

» 514/225.36/25(z,)" 289/225.36/25(z,)" | _ (1+2,)
1+ (1+2,)° ’

1+ (1+2z,)°

Thus,
Q(AH Pz, 9z,) - Q(B(215 23))
n ((1/3+z2)4+(1/3+z2)2> L, W

(1+2)* + (1 +2,)°
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for any value of 0 <z, < 1 and v > 0. Therefore,

v+ Q(AH(Dz,, 9z,)

Thus, all requirements of Theorem 8 are fulfilled, and 0 is

a unique common FP of @ and ¢.

Example 3. Assume that V = [0,

7;overaset Vbyt,(z;,2,) =

j:VxV— [1,00) by j(z,2,) =

forms a ¥-space.

<Q(B(z1,22))-

1]. Define a distance function
|2,| + |2,] + |2, /4 + |2, |*/5 and
21 + 2,
Define multivalued mappings @, ¢ :

Define the function Q : R* — R* by Q(0) =
allo>0,v>0,and A=2>1.

log (o) for

(46)

Case1.1fz,, z, €
Consider

[0,1/2), then gz, = {23/2} and ¢z, = {z3/2}.

H2)

Q(AH (92, 92,) =Q(2H<{7
\Zl\

4
s0(jaf + o+ B4 B2
4 5

Then, (V,7;)

V— Vs by \
z
2 1 =log (|Zl| + 2+ - i ll | ;l )
— ifze |0, =),
2 2 (48)
Oz=¢z= | (47)
3 1
o8 ( )}, ifze {—,1]
4 2 Now, consider
1+7;(zp, 27 12 2,,2312) Ti(21,2112)7(25, 2512
,B(szz) = max Tj(zl’ZZ)’ [ (1 " )} ( ), J( . ) ( )
7i(21,2,) +7(21,25)
2
z
e+ 2 2
. (1+ |2,| + |2, [/2 + |2, 714 + |2,[1120) (|2,] + |2,]/2 + |2, |*14 + |2, |*120) (49)
= X 3
L+ |z| + |2y + |21 14 + |2, |15
(|z1] + |21]12 + |2, P14 + |2, 120) (|2, | + |22]/2 + |2, |14 + |2,]*/20)
L+ |z| +|z5| + |21 )14 + |2, 215
2 | Jal
+lz,|+ - +
= 21| + |22 4 5
Therefore, Hence, Q(AH(¢9z;,9z,) - Q(B(z,2,)) <—v, which
implies
v+ Q(AH(9z), 92,) < Q(B(21, 2,))- (52)

Thus,

Q(AH(9zy, 9z,) -

Q(B(z1,22))

Case 2. If z,,z, € 1/2, 1], then ¢z,
{log (3z,)/4}. Consider

={log (3z,)/4} and ¢z, =

Q(AH(9z, 92,)

el Pes )
({5 )

2 2 4 4

+ + 4+ 5

<log <|Z1| |2, |le| / |Z22| / > (51)
21| + |22 + [21]714 + |2,]7/5

= —y, for some v > 0.

SQ( g (3z)) + log (3z,) . |log (3z,)|? . |log (3zz)|2>
2 2 16 20
2 2
log (108 ()|, [log (32,)] , llog (32))F", Jlog (32,) )
2 } 2 16 20

(53)
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Now, consider

j >

1+7:(z;,log (3z,)/4)|7:(z,,log (32z,)/4) T,(z,,log (3z,)/4)T,(2,,l0g (3z2,)/4
ﬁ(zl,zz)=max (21, 2,), [ ]( 1 Ogg 1) )} ;( 2 log (32,)/4) ]( 1> log ( 11) ) ]( 2> 1og (32,)/4)
+7(21,2,) +7(21,2,)

2 2
z z
|Zl|+|zz|+|;| +|§| >

(1+|z,| + [log (32,)/4] + |z,|*/4 + |log (32,)[*/80) (|z,| + |log (32,)/4| + |z,|*/4 + |log (32,)|*/80)

- max L+ |z,| +|2,| + |2, |14 + |2, 215 ’
(|2,| + log (32,)/4] + |z, |*/4 + [log (32,)*/80) (|z,| + |log (32,)/4| + |z,[*/4 + |log (3z,)|*/80)
1+ |z | + |25| + |21 )14 + |2, 215
_ |Z1|2 |22|2
_‘Zl|+|22‘+T 5
(54)
Therefore,
z* 2 |?
(e z)) =0 Jal + =l + B+ )
5 5 (55)
2] | |z
:log |Zl|+|Z2|+T+T .
Thus,
log (3z,)/2| + |log (3z,)/2| + [log (3z,)[*/16 + |log (3z,)|*/20
Q(/\H((Pzp(l)zz)_Q(ﬁ(zpzz))Slog |0g( Zl)/ ‘+|0g( 22)/ |+|O§( Zl)' /2 +|Og< ZZ)| /
|z1] + |25] + |2, |14 + |2, |15 (56)
= —v, for some v > 0.
~ Hence, Q(AH(@z,, 9z,) - Q(B(z,2,)) <-v,  which _olul iz log (32,)
implies = {21}’ 5
vrO0H(pn 92) < 0BG z). (7)) (w  [log (32|, J=1[* , Jlog <3z2>|2>
N 2 4 20
Case 3.1f z; €0, 1/2) and z, € [1/2, 1], then ¢z, = {z?/2} and
¢z, = {log (3z,)/4}. Consider log <|21|2 . log (23z2) . @ |log (2?)22)|2>' -

Q(AH(¢z,, 9z,) :Q<2H<{z§} {%}>) Now, consider

B [1+7;(21,212) ] 7j(22, log (32,)14)  7(2,,23/2)7;(2,, log (32,)/4)
B(zr 25) = max {T/(Z"ZZ)’ ’ l+‘[7(Z]1322) - 1+rjj(zl»zz)
|z

= max +|z,| +
{\m feal + £

. \zz\z (1+]z] + |zf/2‘ +|z, \2/4 +z, \4/20)(|zz\ + |log (32,)/4] + \22\2/4 +|log (322)\2/80) (\z,\ +zy| + |zf/2‘ +z, 714+ |z, \4/20) (|25 + [log (32,)/4] + \22\2/4 +|log (322)\2/80)
57 L+|zy| + 2| + |2, [774 + |2, /5 ’ Lt |zy| + 2] + |2 14 + |2, 15

_ [af |z

=lal+ [+ BE 4

5

(59)
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Therefore,

5

2
2]

=1 g+ Al 1§ MRS
og <|Z1| |Z2| 4 5

(pten ) =0(ja+lal + B+ )
60)

Case 4. 1f z, € [1/2,1] and z, € [0, 1/2), then ¢z, =
4} and ¢z, = {z3/2}. Consider

Q(AH(‘PZI"PZZ):Q(ZH<{10g = } { }>>
A1)

{log (32,)/

Thus,
log (3z,) llog (32,)* \Zz\
<0 2 +z,* + 20
Q0H(gz,,92) - Bz, ) o
log (3 log (3
< log (122 #1198 (322)12 + =14+ log (32,120 - log ( R802)) 4 gy L8 BT, 4)
- 21| + [25] + |21 14 + |2, |15
(63)
= —v, for some v > 0.
(61)
Now, consider
Hence, Q(AH(@z,9z,) —Q(B(z,,2,)) <-v, which
implies
v+ Q(AH(9zy, 92,) <Q(B(2y,23))- (62)
o [1+7)(2),l0g (32,)/4)] 7;(25, 23/12) (2, log (32,)/4)7;(2,, 23/2)
B(z1,2,) = max {T,(szz)v s 1 7,(2002) ’ o 1+7;(21,2,) }
. laf , (1+\zl\+\10g (32))/4] + |z, P14 + [log (32,)180) (|2, + |23/2] + |z, /4 + |2, /zo) (1+]z,] + [log (32,)/4] + |z, [*/4 + |log (32,)[*180) (|2, + |3/2] + [z, 14 + |z, *120)
h al el + =+ 55 V|2, + fzal + |21 P14 + |2 15 Ut |2, +2al + |2 A + 215
e+ 2L L
(64)
Therefore, From the four cases, we conclude the contraction

Q(B(z1,2,)) = ('Zl' ol B 4| * %>

=1 . 1§ +|22| :
og<|z1| |2, 4 5

Thus,

Q(AH(9zy, 92,) = Q(B(z152,))

<log [log (3z,)/2] + |z2| + |log (321)| /20 + \zz| /4
- ‘Zl|+|22‘+|zl| /4+|Z2| /5

= —v, for some v > 0.

(66)

Hence, Q(AH(@z,,9z,) —Q(B(z,,2,)) <-v, which
implies

v+ Q(AH(9z), 9z,) < Q(B(21,2,))- (67)

condition (iii) of Remark 9 is fulfilled and 0 is a unique
FP of ¢.

Example 4. Let V = {{S,}: t€ {1,2, -,
defined by

100}} be a sequence

S,=12,5,=23,--,F,=t(t+1). (68)

Suppose that 7; : VX V— (0,00) and j: VXV — 1,

o) are functions described by 7;(z;,2,) = (max {z,2,})°

and j(z,,z,)=1+2, +2,, respectlvely, for all z;,z,€V.
Then, (V,7;) is ¥ — space. Define the multivalued mappings
D,9: V— Vegand Q: R — R'by

DT, =93, ={3,}, 23, =93, ={S.,},  (69)

and O(o) =1In (0), for all o > 0, respectively. Now, we have
the following calculations for two cases:
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Case 1. For each €N,s > 2, and t = 1, we have

Advances in Mathematical Physics

H(9S,95,) _ (max S, 1. 5.}
B(SeS81)  max {7;(S, ), [1+7,(Se 9| 7:(S1 93))/1+ 7,(3,, §)) 75(Se 93,)75(S1, 93,)/1 + 75(S. Sy)
_ (max {3, ,,G,})’
max {7;(Sp, Fy)s [1+7;(Se So1) | 75(S1, B/ +7,(86 ), 7(So B 75(S1, 1)1 +75(S, S)) }
_ S S
max {32, [1+S7]S3/[1+S2], SL.S/1+ 52} max {S?, §1, S7.91/1+ S}
S _ (-1 ’s? _ (- 1)* <002
g2 (s+1)*  (s+1)
(70)
Case 2. For each s, t € N,s > t > 1, we get
H((PSS’ goSt) — (max {Ss l’st 1})2
B(S:S:)  max {7;(8,, ), [1+7(S0 95) | 7(Sp 951)/1+7;(S ), (S, 93 7,(S1, 93)/1 + (3, )
i (max (S, S, 1)’
max {18 8, (17,8, 8 )7, (80 S )+ 1,80 8,078 80 )7,(8, 8, )+ 7,(3,, 5}
i 52, 52,
max {7, [1+S2]S/[1+ 7], 92.97/1+ 37} max{ , S5, S + St
_ S _ (- 1)’ (s-1) <002
2 2(s+1)> (s+1)

Multiply 1.02 on the both cases and taking In, we have
In (1.02H(¢S,, ¢S,)) — In (B(S,, S,))

<In (1.02x e *%) = 1In (1.02H(¢S,, ¢S,)) - In (B(

<-0.00019737 = In (AH (¢S, ¢3,)) — In ((

<-v=>0v+Q((AH9S,, 93,)) < Q(B(S, T,))

3.5

0)

3o 3)

(72)

Therefore, the condition (iii) of Remark 9 is fulfilled with
v=0.00019737 and A = 1.02. Hence, ¢ has a unique FP.

5. The Damped Harmonic Oscillator

Assume that we have a body of mass ¢ moving back and forth
on the x-axis around the equilibrium position x = 0 and has a
position x(t) at time ¢ (see Figure 1). The force subjected to
by the spring gives from

F.=—kx.

S

(73)

In addition to the damping force that impedes the move-
ment of the body, it gives from

b

Fa=b

(74)

(71)
From the second law of motion we find that
d*x
Fnet =m W > (75)

where ,b, and m are positive constants. Previously, this force
is called the force damping oscillation.

Now suppose that there is an additional time-dependent
force F(t) that affects the body. Based on Newton’s second
law, we can write

dzx dx
d2 bd

+kx=F(t),x(0)=x"(0)=0.  (76)

By Green’s function, Problem (76) is equivalent to the
following Fredholm integral equation:

w(t)) =J

O(t,, r)B(t,, r,w(r))dr, t, € (77)

0

0,1,
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FiGure 1: Forced oscillations.

where B:[0,1]x[0,1]x R— R is a continuous function
depends on F and the continuous Green’s function O for
critically damping oscillation is described by

and v can be found in terms of m,b, and k.
Suppose that V' =8(C[0, 1], R) is the set of all bounded
real continuous functions defined on [0, 1], equipped with

2
Ti(21,2) = (|21 + 22l o) V21 22 €V, (79)

1+ |z, + Dz, |*] |z, + Dz, |

11

where |[|z[|, =sup,¢o; {[z(t)[e™}. Define the function j:
VxV—[1,00) by j(z;,2,) =1+ |z;| + |z,|. Then, (V, Tj)
is a complete ¥-space.

In order to study the existence of a solution to Problem
(77), we shall consider the following stipulations:

(a) There is a continuous function B: [0,1] %0, 1] x
R — R and for r,£, €0,1] and A >1 so that

[B(t1, 7,2 (r)) + Bty 1,2 (r))|* < ;ﬁ(zl(r)ﬂz(f)),
(80)

for all z;,z, € R, where

B(zy> z,) = max {|Z1 +2,[, [

and @: C([0,1]) — B8C([0,1]) is a multivalued
operator defined on the beginning proof.

) [LO(t,, 7)

Now, we present our main result in this part.

)< 1, for some ¢, >0

Theorem 11. Assume that (V, 7;) is a complete ¥-space. Then,

Problem (77) has a unique solution provided that the stipula-
tions (a) and (b) are fulfilled.

(|Pz, (1) +®Zz(t1)|)2 =

0
1
<

—

0

W

1+ |z, + 2,

O(ty, 1) [B(t1: 121 (r)) + B(t1: 1, 25(r)) dr

(81)

|z, + Dz, [*|z, + Dz, | .
1+ |z + 2,

Proof. Define an operator @ : C([0, 1]) — 8C(]0, 1]) by

Quw(t) = JIO(tl, r)B(t, r,w(r))dr, t, €

0,1.  (82)

It should be noted that the unique FP of the mapping @ is
a solution of the nonlinear Problem (77). Hence, it is a solu-
tion to the differential equation of the second degree (76).

For z,,z, € V, then by the hypotheses (a) and (b), we
can get

2

< j 1Ot P)2IB(tys 121 (1)) + Bty 7, 23(r)) P

l—v

|B(t1,r,zl(r))+B(t1,r,zz(r))|2dr<J _ﬁ(zl( )25 (r))dr

>—I

[1"'7](21’@21)] (22> 925)

1+\zl+z2\e” 1+\zl+zz|e“

>»|“‘

1
e max { 7i(21,22)5

—U

1+7;(z,2,)

—v 1l 1+ +O + O 2 —2v 2 —20
Je max { 2, +Zz|23_u» [ 2 Z4 | ]|Zz Z,|"e X |Z1+®21| |2, + Pzy| e }dr (83)

Tj(zl’(Dzl)Tj(ZZ’(/)Zz) dr
1+7;(21,25)

e r e
- Tﬁ(zpzajoe dr = Blenz) xe
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Hence for z,,z, € V, Taking the log for the base e to both side, we have
s In (A1;(@z), @z,)) < ~v+1n (B(z), 2,)).- (86)
M| Dz, (1)) + Dz, (1))]) x eV <e7"B(21,2,)s (84)
Describe the function Q : R* — R* by Q(0) =1n (o),
0 >0 in (86), so that Q € X, and we get

which yields

v+Q()LT]-(<Dz1,(Dz2)) <Q(B(z1,2,))s (87)
Atj(D@zy, zy) <e7"B(z1, 2,). (85)  where
1+71i(2), DPz))|7i(2,, Dz (21, Dz))1i(2,, D
/S(Zl,zz)zmax T]‘(Zl,zz)) [ ](Zl Zl)] ]( 2 2)’ T]( 1 1) ](ZZ ZZ) ) (88)
1+7(21,25) 1+7(21,25)

Therefore, all requirements of Theorem 11 under a spe-
cial case (iii) (@[5-contraction) are fulfilled. Then, there is
a unique FP of the mapping @, which is a unique solution
to Problem (77) and then to (76). |

6. Newton’s Law of Cooling

Newton’s law of cooling is a differential equation that fore-
sees the cooling of somebody that placed in a colder environ-
ment; then, the fixed point method can be applied in finding
the solution of this differential equation as follows. Consider
the IVP in the form of

R'(1)=E5(t, R(1)), R(t,) =R,. (89)

We say that R(¢) is a solution of Problem (89) if and only
if [25]

R(1)=R, + Jt E(6R(0))de, (90)

ty

for all t,€ € [t,, t], where the functions R : [t,, t] — R and
@ : [ty t] x R — R are continuous.

Define a distance norm 7;(g,) = (lp+hll,)* on the set
of all real continuous functions V = C([¢,, t], R) defined on
[ty ], for all i eV, where (|||, =sup,c {l@(t)le™}.
Then, the pair (V,7;) is a complete ¥-space with j(g,h) =
1+ |+ A

Now, we present the main theorem in this section.

Theorem 12. Assume that (V,t;) is a complete ¥-space.

Assume also, for all t,€ € [t,, t], there is a constant v € R* so
that

—v/2

[2(6p(8)) +E(&R(8))] < A=t (Ip(&) +h(e)]), (91)

where p,he V,A> 1. Let g, h, € V so that |p, +h,| <1, for
all w € R. Then, Equation (90) has a unique solution.

Proof. Define an operator @ : V— V by

OR(t) =R, + Jt 2(8, R(2))de. (92)

ty

It is clear that, if @R =R, then R is a solution of the
Equation (90) and then (89).
For g, h € V, one can write

() + Ph(t)[*

" 2

0o + Jt S(e(0))de + by + J 5(¢,h(R))de

ty ty

< ( t 2(6p(0)) +E(€,h(£))d£)

ty

t 670/2 2
= ( tomﬂ@(e) +h(3)|)d€>

X Ve 2 x e x (|g(8) + h(€)|)d€>

t e—v/2
) < ty \/X(t - tO)

2
e—v t
= x7,(ph) xe Jd@
At —ty)? i) <to )

—U —U

_¢ 2v e 2v
= TTj((p,h)e < Tﬁ(p,h)e t,

where

Blh) = max {Tj(p,h), [147,(p. Q)] 7,(h, Oh) 7;(p.Qp)7;(h, @h)}.

1+7;(:h) 1+7;(:h)
(94)
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Hence, one can write

(19p(t) + @h() x ) < S plph),  (95)

yields,

(IPe(t) + @h(0),,) < T Blh). (%)
It follows that
ey (@pa(e), Bh(1)) < e Bl (97)
Consider (") =1n () for o> 0 and Q € 5; then,
In (Ar,(@p(1), @h(1))) <In (*Blph),  (98)
v+In (Ar;(@gp(t), Ph(t))) <In (B(ph)). (99)

Equivalently,

v+ QA (D (1), Dh(1))) < Q(B(.h)). (100)

Based on Theorem 8 under a special case (iii) of Remark 9
(DS-contraction), @ possesses a unique FP, which is a
unique solution to Equation (90) and then to (89).

Now, we describe Newton’s law of cooling as follows: Let

n' (t) ==E(n(t) - 1,), (101)

where #(t) and #,, refer to the temperature of the object at the
time t and the temperature of the environment, respectively,
and & is proportionality constant. If we put #(t,) =1#,, then
we obtain the IVP below:

(102)

Assume that Z(t, 1) = =&(n(t) - n,). Then, we have

|E(6(8)) + E(& ()] = -8 (0 (1) — 0,,) —§(A(t) —h,)|
=¢&lp(0) + A(L) - (py + 1)
<&(lp(e) +A(0)| + |, + 7|
<¢&lp(L) +h(t)|

e—v/Z

= mﬂ@(e) +h(2)]).

(103)

According to Theorem 12, the initial value problem (102)
has a unique solution. It should be noted that the exact solu-

tion of (102) is n(t) =1, + (1, — n,)e . 0O

13

7. Infinite Systems of Fractional ODEs

In this part, we study the sufficient condition to find the solu-
tion to an infinite nonlinear fractional system from ODEs on
the space of all real sequences whose limit is finite which
denoted with c.

Assume that the system is defined as follows:

—U

[4

Tp = q(t) q;(t) T +0,(7 Ty Ty, ), py € (0, 1),
e—U
T, = q(t) q;(t) 7T+ 0;(7 7Ty, T, o), k5 € (0, 1),
_[0 = _[é)y i)j: 1) 2’ Y
(104)

where t € ],] is any fixed interval on the real line and v is the
positive real number.

Suppose that V=c equipped with 7;(g,h)=sup
{lg; + h;|’e} for all p,he V, and j: V x V — [1,00) is a
function described by j(g,h) =1 + || + |A|. Then, (V, 7)) is
a complete ¥-space.

System (104) will be studied under the following
hypotheses:

(hy,)) To="Thecand o= (0,,0,, ) Jxc—c¢

(hy,) the function g;(t) >0 is a continuous for all t € J
andi=1,2---

(hy,) for all g, fi e V, we have

0(tg) +o,(6h) < S~ VBERLAS L, (105)

2vA
), g =(hy, hy, -++) and

where = (g, 0, -

T(.DQi) |7 (B p.h) Ti(p.Dig0)T: (Bl
ﬁ(@:h)=max {T](p)h)) [1+ ](so p)} ]( q’" ) ](@ p) ]< (P" )}

1+Tj(p,h) 1+Tj(p,h)
(106)
(hy,) forall p,he V and for t € ],
q(t)
aOpa O] < T2 VB (07)

Now, we state and prove our main theorem.

Theorem 13. System (104) has a unique solution under
hypotheses (hy,)-(hy,).

Proof. Let @(ty),¢;(t,h): Jxc—c be mappings
described by
e—U
D;(tp) = a0 9;(D)i+0, (001> 2> )
. (108)
e v
¢;(th)= 0 q;()h; +0y(h by Ty, ).
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A sufficient condition for a solution to System (104) to
exist is that there is a common FP of the mappings (108).
To achieve this, consider

[@i(t0) + 9,(. )|

‘qe t)Q( PO P ) + (t)q](t)h +0;(h By hy, )
< ‘; (t) q, (DR |+ |03 (04012 020 ) +0( Ty Ty, )|
< a(t) e Ty £ Y
o L Bl B = B,
(109)
Squaring both sides, we get
2 e—2v
@) + 9, (6 B[ < - Bloh),  (110)
or
2
A@i(t) + g, h)| e < Bloh) < Blph). (111)
It follows that after taking the supremum,
A, (q),., (pj) < e B(ph). (112)
By taking the In of both sides, we find that
v+ln (Arj (cbi, (pj)) <In (B(g:h)).- (113)
Letting Q(0) =1n (0),Q € %, one can write
v+Q(ATj (cpi, goj)) < Q(B(g:h)), (114)

where

Blh) = max {mm ,

1+7;(g.h) 1+7;(g,h)

(115)

Hence, we conclude by Theorem 12 that System (104)
has a unique solution. d
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